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Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering
functions. A Finite Element Method is used to model metallic nanoparticles gratings. The accuracy
of this method is shown by comparing numerical results with measurements on a two-dimensional
grating of gold nanocylinders with elliptic cross section. Then a parametric analysis is performed
in order to design efficient filters with polarization dependent properties together with high trans-
parency over the visible range. The behavior of nanoparticle gratings is also modelled using the
Maxwell-Garnett homogenization theory and analyzed by comparison with the diffraction by a single
nanoparticle. The proposed structures are intended to be included in optical systems which could
find innovative applications.

I. INTRODUCTION

Metallic nanoparticles supporting plasmonic reso-
nances can be used to design optical functions, for in-
stance filtering properties, or chemical and bio-sensing
[1, 2]. Such systems offer several advantages, like the
possibility to control the operating wavelength with the
nature of the metal, the size of the particles, the polar-
ization of the illumination... In this paper we focus on
the design of spectral filtering property in reflectivity, i.e.
frequency selective mirror property. In particular, chal-
lenges lie in obtaining a narrow reflexion peak while keep-
ing absorption losses as low as possible together with a
transmission level averaged over the visible range as high
as possible.

Reflective color filters based on plasmonic resonators
have already been proposed in the literature. In [3], dif-
ferent arrays of metallic nanodisks are deposited on a
back reflector made of silver and gold to print a color im-
age at the optical diffraction limit. Dense silver nanorods
arrays are used in [4] to create reflective color filters at
specific wavelengths depending on the arrays geometry.
Nevertheless, in these propositions, the overall transmis-
sion remains low. Core-shell nanoparticles, made of sil-

ica and silver and embedded into a polymer matrix, have
been proposed in [5] to make transparent displays based
on resonant nanoparticle scattering. The considered fil-
ters have reflexion properties at defined wavelengths to-
gether with globally transparency over the visible spec-
trum. However, the latter structure, based on the scat-
tering phenomenon, does not work as a mirror, but as a
display with virtual image located in the reflecting struc-
ture. High resolution color transmission filtering and
spectral imaging have also been achieved [6], where plas-
monic nanoresonators, formed by subwavelength metal-
insulator-metal stack arrays, allow efficient manipulation
of light and control of the transmission spectra. Also,
highly transmissive plasmonic substractive color filters
are proposed in [7] with a single optically-thick nanos-
tructured metal layer thanks to the counter-intuitive phe-
nomenon of extraordinary transmission.

In this paper, the main objective is to design metallic
nanoparticles gratings in order to obtain filtering prop-
erty for wavelengths in visible range together with rel-
atively low absorption. First, we present the formula-
tion of the Finite Element Method (FEM) [8] chosen
to model the considered structures, whose accuracy has
been checked using comparison with the Fourier Modal
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Method [9]. The relevance of this numerical tool is shown
with a comparison between full three-dimensional numer-
ical calculations and measurements on fabricated sam-
ples. The numerical tool is then exploited to perform
a parametric analysis of the influence of geometric pa-
rameters and polarization on the filtering properties and
absorption. Next, this parametric analysis is used to pro-
pose optimized filtering systems with high level of trans-
parency in average on the visible spectrum. In addition,
different models are proposed to analyze the behavior of
the nanoparticles gratings. An analytical homogeniza-
tion model based on the Maxwell-Garnett approxima-
tion is faced to the rigorous FEM calculations. Finally,
the multipolar radiation of a single nanoparticle is com-
pared to the diffractive properties of a grating of the same
nanoparticles.

The considered gratings are defined as two-dimensional
square arrays of metallic nanoparticles on a glass (SiO2)
substrate. The lattice constant of the array along the
two directions x and y is denoted by a. On each node of
this array lies a nanocylinder with elliptic cross section of
height h, diameters dx and dy (along the x and y direc-
tions), and made of gold (Au) or silver (Ag). Note that,
for fabrication requirements, an optional Indium Tin Ox-
ide (ITO) thin film layer of height hITO may be added on
the top of the substrate, and a second optional attaching
layer of titanium (Ti), of height hTi, may be also added
to the bottom of the nanocylinder. Finally, nanocylin-
ders grating can be embedded into a SiO2 cover layer of
height hcov from the top of the nanocylinder. Figure 1
presents schemes of the considered structures. Finally,

FIG. 1. Schemes of the considered nanoparticles gratings.

the refractive indices of the different materials for the
simulations are taken from [10] for SiO2, [11] for gold,
[12] for silver, and [13] for titanium.

II. NUMERICAL MODELING

A. Finite Element Method formulation

The FEM formulation used in the present paper is de-
scribed in [8]. This numerical method allows calculation
in the time-harmonic regime of the vector fields diffracted
by any arbitrarily shaped crossed-grating embedded in
a multilayered stack. The considered grating shown on
Fig.1 is placed in an air superstrate (incident) medium

with permittivity ε+ = 1. The SiO2 substrate is con-
sidered as semi-infinite with permittivity ε−. All mate-
rials of the structure are considered to be non magnetic
(µr = 1). The time-harmonic regime with a exp[−iωt]
dependence is considered, where the frequency ω is re-
lated to a wavelength λ = 2πc/ω in vacuum, c being the
speed of light in vacuum. The grating is illuminated with
a plane wave E0 = A0 exp[ik+ ·x], where the wavevector
k+ is defined by ‖k+‖ = k+ = k0 = ω/c and the two an-
gles θ0 ∈ [0, π/2] and ψ0 ∈ [0, 2π] (k+ is in the xz-plane
if ψ0 = 0 and k+ is in the yz-plane if ψ0 = π/2). This
incident plane wave is p-polarized if the electric field is
inside the incident plane (see left panel of Fig. 2) and
s-polarized if the electric field is perpendicular to the in-
cident plane (see right panel of Fig. 2).

FIG. 2. Scheme of the illumination conditions for wavevector
k+ lying in the xz-plane (ψ0 = 0).

We want to retrieve the total electromagnetic field
(E ,H) solution of the Helmholtz equation

∇×∇×E + k20µ0εE = 0 , (1)

where the diffracted field defined as Ed = E − E0 sat-
isfies an outgoing wave condition, and where the field E
is quasi-periodic along the two directions x and y. The
vector field Ed diffracted by the structure is calculated
using the solution of an ancillary problem corresponding
to the associated multilayered diffraction problem (with-
out any diffractive element and with the same condition
of illumination). This intermediate solution is then used
as a known vectorial source term whose support is local-
ized inside the diffractive element itself. Hence, the total
field E of the structure is compound of three fields: i) the
diffracted field Ed calculated using the FEM; ii) the inci-
dent plane wave E0; iii) the plane waves diffracted by the
multilayer structure (the diffracted field associated to the
ancillary problem which is compound of the transmitted
and reflected waves of the multilayer structure). The to-
tal field E having Bloch-boundary conditions along the
two directions of periodicity, the computation domain is
then reduced to a single cell of the grating through the set
(kx, ky) ≡ (k+x , k

+
y ) imposed by the incident plane-wave.

[Note that the two-components wavevector (kx, ky) is the
same in the whole structure with the grating periodicity:
hence (k+x , k

+
y ) is denoted by (kx, ky).] The implemen-

tation of those specific boundary conditions adapted to
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the FEM is described in [14]. As mentioned above, the
diffracted field Ed should also satisfy an outgoing wave
condition in the z-direction. Thus, a set of Perfectly
Matched Layer (PML [15]) are introduced in order to
truncate the substrate and superstrate along the z axis.
Indeed, the diffracted field that radiates from the struc-
ture towards the infinite regions decays exponentially in-
side the implemented PML along the z axis.

Once the values of the fields in the whole structure
are obtained, they are used to compute a complete en-
ergy balance of the bi-periodic grating. It is based on i)
the calculation of the diffraction efficiencies of each re-
flected and transmitted order along the two directions
of periodicity of the gratings through a double Rayleigh
expansion of the fields, and ii) the calculation of the nor-
malized losses of each part of the diffractive (absorptive)
element of the cell. This energy balance is then used to
check the accuracy and self-consistency of the whole cal-
culation as the sum of the different components of the
energy balance should be equal to 1.

The described method has been implemented into the
following FEM free softwares: Gmsh [16] as a mesh gen-
erator and visualization tool, and GetDP [17] as a Fi-
nite Element Library. Numerous comparisons with the
Fourier Modal Method [9] have been performed to check
the accuracy of the present FEM method.

B. Comparison with measurements

Samples have been fabricated in order to check the
relevance of the numerical tool. We use a commercial
SiO2 substrate covered by a 40 nm ITO layer. This ITO
layer is used to evacuate charges during the lithography
process. On this ITO thin film, a 4 nm titanium adhe-
sion layer and a 30 nm gold film were deposited by elec-
tron beam evaporation. The gold nanocylinders are then
realized by electron beam lithography. Scanning Elec-
tron Microscopy (SEM) imaging of the realized gratings
are then performed and allow measurements of dimen-
sions of the realized elliptical nanocylinders. Three gold
nanocylinders gratings with different square periodicities
have been fabricated: S1 (a = 200 nm), S2 (a = 250 nm)
and S3 (a = 300 nm). The elliptical diameters of

a dx dy

S1 200 nm 91 nm 129 nm

S2 250 nm 87 nm 125 nm

S3 300 nm 84 nm 122 nm

TABLE I. Dimensions of cylinders of the three fabricated
structures.

nanocylinders for the three fabricated structures S1–S2–
S3 are approximately dx ∼ 80 nm and dy ∼ 120 nm
(see table I for the exact dimensions). Figure 3 shows a
scheme and a SEM imaging of one of these gratings.

FIG. 3. Scheme and SEM imaging of the fabricated structures
S1–S2–S3.

The optical characterization of the samples is based
on the measurement of transmission. A polychromatic
source (Xe lamp) illuminates the samples through a
monochromator and a polarizer. The source illuminating
the samples is then almost monochromatic (with a wave-
length from 400 nm to 1100 nm) and is linearly polarized.
The transmission measurement is then performed with a
home-made angulo-spectral optical reflectivity and trans-
missivity bench. Notice that this transmission measure-
ment is normalized with respect to transmission for the
bare SiO2 substrate.

Transmission measurements have been performed for
an incident beam in normal incidence with electric field
polarized along the y-direction (s-polarisation) and the
x-direction (p-polarisation) for wavelengths ranging from
500 nm to 1100 nm. These measurements are compared
with the simulation results, where the gratings transmis-
sion efficiencies have been also normalized by the trans-
mission of the bare SiO2 substrate. Notice that the Au
refractive index considered in these simulations for com-
parison is determined from measurements on the samples
(there is a small difference from datas in [11]). Figure 4

FIG. 4. Comparison between the FEM results (dashed) and
the measurements (line) in transmission for the three fabri-
cated samples S1–S2–S3 .

shows excellent qualitative and quantitative agreement,
and thus the relevance of the numerical tool employed to
design plasmonic filters. The small remaining differences
between the measurements and calculations can be at-
tributed to the deviations in the shape of the fabricated
cylinders, for example slanted walls or rounded corners.
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III. PARAMETRIC ANALYSIS AND DESIGN
OF FILTERING PROPERTIES

In this section, the influence of the different parameters
of the system (nature of the metal, geometric parameters
and illumination polarization) is analyzed in the case of
an illumination with oblique incidence (θ0 = 45◦). This
analysis is used to design an optimized structure for filter-
ing properties. Here, the challenges are to obtain a choice
of resonances in the visible spectrum with a minimum of
optical losses or a maximum of averaged transmission.

From results presented in the previous section, it ap-
pears that structures of Au nanocylinders lead to res-
onances around 700 nm. Hence, Ag nanocylinder are
considered in subsection 3.A to address the whole visible
spectrum for the reflectivity peaks. Next, in subsection
3.B, the presence of absorption is analyzed starting from
the reference structures S1–S2–S3 of Au nanoparticles.
Finally, in subsection 3.C, optimized structures are pro-
posed.

A. Influence of the cylinder diameters and of the
incident polarization on the resonance wavelength.

The geometries considered in this subsection 3.A are
similar to the ones of subsection 2.B (see Fig. 5) with the
same ITO and Ti layers. The differences are: a 300 nm
SiO2 cover layer in order to prevent the oxidation of the
Ag nanocylinders; square periodicity of the gratings fixed
to a = 200 nm; Ag elliptical nanocylinders with axes dx
fixed to 100 nm and dy varying from 100 nm to 180 nm
with a 20 nm pitch (structures of type S4). Here, Ag
nanocylinders have been introduced in order to address
the whole visible spectrum with plasmonic resonances.

FIG. 5. Scheme of the structure S4 for the considered condi-
tions of illumination.

Simulations are performed for a plane wave for a
wavevector lying in the xz-plane (ky = 0), and the angle
of incidence with respect to the normal of the substrate is
θ0 = 45◦. Both polarizations are considered (see Fig. 5).
The simulations are performed for wavelengths spanning
the visible range (380 to 780 nm). Fig. 6 shows the trans-
mission efficiency in the specular order for the various dy

diameters, for p and s polarizations. The corresponding

FIG. 6. Efficiency in the transmission specular order for the
group of structures S4.

efficiencies in the reflexion specular order are reported in
Fig. 7. In the present case of an incident plane wave
with wavevector lying in the xz-plane (ky = 0), when
the plane wave is p-polarized, the electric field “sees” the
small axis dx of the elliptical nanocylinder while, when
the plane wave is s-polarized, the electric field “sees” the
large axis dy. One can observe in Figs. 6 and 7 that the
resonance occuring for p polarization is at lower wave-
length and less efficient that the one that occurs for s
polarization. The more the incident electric field meets
a high quantity of metal, the more the resonance is pro-
nounced and redshifted. Also, in the two cases of po-
larizations, increasing dy broadens the reflexion peaks,
which is coherent with an increasing quantity of metal.
In the same time while increasing dy, one can observe
that the reflexion peak in p polarization is blueshifted
while the one in s polarization is redshifted. Hence the
two resonances in the two polarizations are not totally
independent, but the general tendencies described above
remain valid. These effects may allow us to manipulate
the resonances observed in those elliptical nanocylinders
gratings and to select wavelengths for which the reflexion
peaks occur depending on the plane of incidence of the
waves and their polarization. Hence the first challenge
to obtain a resonance at the desired wavelength in the
whole visible spectrum might be addressed.

FIG. 7. Efficiency in the reflexion specular order for the group
of structures S4.
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B. Absorption and influence of the geometrical
parameters

The second challenge is to reduce the absorption in
order to obtain a high transmission when averaged on the
whole visible spectrum. The influence of the quantity of
metal is thus investigated in detail.

As a preliminary, we observe that, from the simulated
total energy balance obtained for structure S2 (see Fig.
8), losses are important inside the ITO and Ti layers.
Since these materials play no role in the filtering function,

FIG. 8. Decomposition of the total energy balance for s-
polarization for the structure S2.

suppressing ITO and Ti layers should be addressed in
order to reduce Joule losses. From now, the investigation
is performed with gold nanocylinders gratings directly
deposited on the SiO2 substrate.

FIG. 9. Scheme of the structures S5 (left panel) and S6 (right
panel).

The influence of the quantity of metal is investigated by
increasing the filling fraction of metal using two groups of
structures. For the first group of structures S5 (left panel
of Fig. 9), the size of the nanocylinders is increased for a
fixed lattice constant a and, conversely, the second group
of structures S6 (right panel of Fig. 9), the size of the
lattice constant a is increased for a fixed nanocylinder
dimension. Also, to simplify the number of parameters
of influence, nanocylinders with circular cross section are
considered here. The plane wave illuminating the struc-
tures has wavevector lying in the xz-plane (ky = 0) with
an angle of incidence fixed to θ0 = 45◦, and is s polarized.

First the influence of the nanocylinder diameter on the
total energy balance spectrum is analyzed. Notice that
the propagative diffraction efficiencies higher than the

(0, 0) specular orders are omitted since they are found
to be negligible. The square pitch of the grating is fixed
with a = 250 nm, the gold nanocylinder height is fixed to
h = 30 nm, and their diameters vary from 30 to 200 nm
with 10 nm pitch (group of structures S5). The left panel
of Fig. 10 shows the reflexion efficiency in the specu-
lar order on the visible range (380 nm – 780 nm) as a
function of the nanocylinder diameter. One can observe

FIG. 10. Left panel: Reflexion efficiency in the specular order
for structures S5. Right panel: Reflexion efficiency in the
specular order for structures S6.

that as the nanocylinder diameter increases, the reflexion
peak intensity is magnified, redshifted and broadened.
Again, one can check the possibility to choose the oper-
ating wavelength of the filter by selecting the appropriate
diameter.

Second, the influence of the lattice constant a on
the total energy balance spectrum is analyzed. The
nanocylinder geometry is then fixed with a height h =
20 nm and a diameter dx = dy = 120 nm. The square pe-
riodicity a is now spanning the range (150 nm – 300 nm)
with a 25 nm pitch (group of structures S6). The con-
figuration of illumination remains unchanged (incident
angle of 45◦, ky = 0, s polarization). The right panel of
Fig. 10 presents the spectrum of the reflexion efficiency
in the specular order over the visible range (380 nm –
780 nm) as a function of the lattice constant a. For fixed
nanocylinder dimensions, increasing the grating square
periodicity leads to slight variations of the central wave-
length of the reflectivity peaks, which confirms that the
resonance frequency is mainly governed by the particle
diameter. Moreover, the intensity decreases and the peak
is sharpened with the increase of the gratings periodic-
ity. This result is fully consistent with the study of the
influence of diameter.

Combination of these two parametric investigations
leads to the following conclusions: i) the resonance fre-
quency is mainly governed by the nanocylinder dimen-
sions; ii) the ratio of the nanocylinder cross section sur-
face over the lattice unit cell surface a2 mainly governs
the resonance intensity and absorption.

Before to present optimized structures, it is stressed
that, in the configurations S5 and S6, efficient reflectiv-
ity peaks occurs for wavelengths around 650 nm. If the
structure is embedded into SiO2 (like for structures S2
in section 2), then the observed peak in reflexion is red-
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shifted and will occur only in the extreme red part of
the visible spectrum, around 700 nm (for structures S2).
Thus, as conclusion iii), it appears necessary to consider
the solution based on Ag proposed in the subsection 3.A
to blueshift the resonances, since plasma frequency of Ag
occurs at lower wavelengths. Finally, as pointed out in
the preliminaries of this subsection 3.B, high absorption
appears in ITO and Titanium layers (Fig. 8) and thus
the optimization should be performed for nanocylinders
standing directly on SiO2 substrate (conclusion iv).

C. Optimized design with silver elliptical
nanocylinders

In this section, we propose two different designs of sil-
ver elliptical nanocylinders gratings embedded in SiO2

leading to peaks in the specular reflectivity in the visible
range. The elliptical cross section of the nanocylinders
allows two different peaks at two different wavelengths
for a unique structure, depending on the polarization of
illumination. The proposed filters possess also properties
of global transparency on the visible spectrum.

FIG. 11. Schemes of the optimized filters F1 (left panel) and
F2 (right panel).

The first proposed filter F1 is constituted of nanocylin-
ders of 30 nm height (left panel of Fig. 11). The ellipse
diameters are dx = 80 nm and dy = 60 nm. The grating
is embedded into SiO2 (the substrate is SiO2 and a SiO2

cover layer of 200 nm is added) and the square periodicity
a of the grating is fixed to 200 nm. The incident wavevec-
tor lies either in the xz-plane (ky = 0) or in the yz-plane
(kx = 0), with an angle of incidence fixed to θ0 = 45◦,
and both p and s polarizations are considered. Figure
12 shows the different components of the energy balance
for the filtering structure F1. This geometry leads to
reflexion peaks in the specular order centered at two dif-
ferent wavelengths (525 nm and 590 nm) depending on
the incidence plane and polarization.

The second proposed filter F2 is made of nanocylinders
with 40 nm height (right panel of Fig. 11). The ellipse
diameters are dx = 100 nm and dy = 60 nm. The grating
is embedded into SiO2 (cover layer of 200 nm and sub-
strate). The square periodicity a of the grating remains
200 nm, and the illumination conditions are the same
than for F1. Figure 13 shows the different components of
the energy balance for grating F2. Here, reflexion peaks

FIG. 12. Reflexion (left panel) and transmission (right panel)
efficiencies in the specular order for the structure F1.

FIG. 13. Reflexion (left panel) and transmission (right panel)
efficiencies in the specular order for the structure F2.

are obtained at the two different wavelengths 520 nm and
633 nm. In both cases the averaged transmission over the
whole visible spectrum is above 64%, which ensures cor-
rect transparency. This is confirmed by the absorption
spectra of the two structures reported on Fig. 14.

FIG. 14. Absorption in the nanocylinders for structures F1
(left panel) and F2 (right panel).

IV. HOMOGENIZATION OF
NANOCYLINDERS STRUCTURES

In this section, the properties of nanoparticles grat-
ings are modeled using Maxwell-Garnett homogeniza-
tion. A detailed discussion on this homogenization of
elliptic nanoparticles can be found in [18], and more re-
cently in [19].

In the present case, we consider anisotropic inclusions
for which the effective permittivity components εj (j =
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x, y, z) are given by:

εj−εm = εm
f(εp − εm)

εm + Lj(εp − εm)

[
1− Lj

f(εp − εm)

εm + Lj(εp − εm)

]−1
.

(2)
Here, εp and εm are the permittivity of particles and sur-
rounding medium respectively, f is the filling fraction
of metal, and Lj are the components of the depolariza-
tion dyadic in the corresponding axis (j = x, y, z). We
consider a cylindrical inclusion of elliptical cross section
oriented in the z-direction embedded into a rectangular
box. The height of the rectangular box is equal to the
height 2h of the cylinder (see Fig. 15). The basis of the
rectangular box is the square unit cell of lattice. Hence
the filling fraction f is just the ratio of the cylinder sec-
tion (an ellipse of radius Rx = dx/2 and Ry = dy/2) with
respect to a2, i.e. f = πRxRy/a

2.

FIG. 15. Scheme of the considered unit cell.

The calculation of the depolarization components is
reported in the appendix, in the both cases of cylin-
ders with circular (appendix A) and elliptic (appendix
B) cross section. After computing the different depolar-
ization factors, the effective permittivity components are
calculated from Eq. (2).

This effective model has been applied to a square
unit cell (a = 200 nm) composed of a silver cylinder
of elliptical cross section with radii Rx = 40 nm and
Ry = 30 nm and height 2h=30 nm. The considered
background medium is SiO2. Hence, this unit cell repre-
sents the one of the grating corresponding to the struc-
ture F1. The following depolarization components are
obtained using Eqs. (18,22): Lx = 0.16, Ly = 0.24 and
Lz = 0.60. The corresponding effective anisotropic rel-
ative permittivity components are reported in left panel
Fig. 16. One can check that the effective permittivity
components show resonances around 480 nm and 575 nm.
Next the multilayer corresponding to the structure F1 is
considered. The multilayer is composed of (from top to
bottom): 1) an incident medium (air); 2) a 200 nm SiO2

layer corresponding to the cover layer; 3) a 30 nm homog-
enized layer of effective permittivity given in left panel
of Fig. 16 corresponding to the grating; 4) a SiO2 sub-
strate. The reflexion and transmission coefficients have
been calculated for an incident plane wave with incident
wavevector that lies either in the xz-plane (ky = 0) either
in the yz-plane (kx = 0), with an angle of incidence fixed
to θ0 = 45◦, and for wavelengths spanning the visible
range. Both p and s polarizations have been considered

FIG. 16. Effective anisotropic relative permittivity compo-
nents for the unit cell of structures F1 (left panel) and F2
(right panel).

and compared to the rigorous FEM calculation of sub-
section 3.III C. This comparison is shown in Fig.17.

FIG. 17. Reflexion (left panel) and transmission (right
panel) efficiencies of structure F1 obtained with the rigorous
FEM calculation (line) and with the homogenization model
(dashed).

The same reasoning has been applied to the structure
F2 and leads to the following depolarization components:
Lx = 0.16, Ly = 0.32 and Lz = 0.52. The correspond-
ing effective relative permittivity is plotted in right panel
of Fig.16, and presents resonances around 440 nm and
575 nm. The reflexion and transmission coefficients for
the effective multilayer are compared to FEM results in
Fig.18.

One can observe that the homogenization leads to res-
onances which are in relative agreement with the rigorous
FEM results, except a shift about 50 nm for the resonance
wavelength. This shift can be attributed to the effect of
the finite size of particles, since it can be checked numer-
ically that this shift decreases together with the particle
size. These resonances are both present in the effective
permittivity components and the spectra of transmis-
sion and reflexion. Hence these homogenization results
provide useful tendencies with much faster computation
time, and can be used to design filtering properties.

Notice that a similar homogenization model can be de-
rived in the more complex situation were the particles
stand directly on a substrate, without cover layer (for
instance structures S5 or S6). For such case, the calcula-
tion of the depolarization factors is given in the appendix
C.
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FIG. 18. Reflexion (left panel) and transmission (right
panel) efficiencies of structure F2 obtained with the rigorous
FEM calculation (line) and with the homogenization model
(dashed).

V. DIFFRACTION BY A SINGLE
NANOCYCLINDER

In this last section, the contribution of the single
nanoparticle to the electromagnetic behavior of the grat-
ing is analyzed. To that end, the problem of plane wave
scattering by a single nanoparticle is solved numerically
using the FEM via an approach similar to Sec. II.A
changing Bloch-Floquet boundary conditions to perfectly
matched layers. Finally, a multipole expansion of the
diffracted field is performed and discussed.

Consider a non magnetic scatterer of arbitrary shape,
relative permittivity εbs embedded in a transparent non
magnetic homogeneous background of relative permittiv-
ity εbr. We denote by εr(x) the piecewise constant func-
tion equal to εbs within the scatterer and εbr elsewhere.
The scatter is enlighten by a plane wave of arbitrary in-
cidence and polarization E0. This incident field, i.e. the
field in absence of the scatterer is the solution of the
vector Helmholtz propagation equation in the resulting
homogeneous medium:

∇×∇×E0(x) + k20 ε
b
rE0(x) = 0 . (3)

We are looking for the total field E, resulting from the
electromagnetic interaction of the scatterer and the inci-
dent field, which is the solution of the Helmholtz equa-
tion:

∇×∇×E(x) + k20 εr(x)E(x) = 0 . (4)

The field diffracted or scattered by the object is defined
as Ed := E−E0. Combining Eqs. (3, 4) allows to refor-
mulate scattering problem to a radiation problem. The
scattered field now Ed satisfies the following propagation
equation :

∇×∇×Ed(x) + k20 εr(x)Ed(x) = k20 (εr(x)− εbr)E0(x)
(5)

such that Ed satisfies a radiation condition. The right
hand side can be viewed as a volume (current) source
term with support the scatterer itself, εr(x) − εbr being
equal to εbs − εbr inside the scatterer and 0 elsewhere.

The scattered field Ed can be expanded on the ba-

sis of outgoing vector partial waves (M
(+)
n,m,N

(+)
n,m) built

upon the vector spherical harmonics (Xn,m,Yn,m,Zn,m)
following the framework and conventions described in de-
tail in [20, 21]:

M(+)
n,m(kr) = h(+)

n (kr)Xn,m(θ, ϕ) (6)

N(+)
n,m(kr) =

1

kr

[√
n(n+ 1)h(+)

n (kr)Yn,m(θ, ϕ) (7)

+ ξ′(kr)Zn,m(θ, ϕ)

]
The so-called multipole expansion is finally given by :

Ed(r) =

nmax∑
n=1

m∑
m=−n

f (h)n,mM(+)
n,m(kr)+f (e)n,mN(+)

n,m(kr) (8)

where f
(h)
n,m and f

(e)
n,m can be numerically computed on

any sphere of radius R englobing the scatterer :

f (e)n,m=
kR

ξ′(kR)

∫ 2π

0

∫ π

0

Ed(R, θ, ϕ) · Z?n,m(θ, ϕ) dθ dϕ (9)

f (h)n,m=
kR

h
(+)
n (kR)

∫ 2π

0

∫ π

0

Ed(R, θ, ϕ) ·X?
n,m(θ, ϕ) dθ dϕ(10)

Note that Ed in Eqs. (9) and (10) is expressed from the
FEM inherited cartesian coordinates to spherical coor-
dinates. This expansion is the classical way to obtain
the far field radiation pattern of antennas. It would re-
quire major adjustments to take into account the sub-
strate and superstrate. First of all, let us state that
the resonant phenomena described in the previous sec-
tion do not depend on the close vicinity of the inter-
face. Figure 19 shows the reflectivity of silver nanocylin-
ders grating of the optimized structure F1, when em-
bedded in an homogeneous infinite SiO2 background. In
this simplified model, the θ0 incidence is adjusted to
compensate for the missing refraction at SiO2 interface
θ0 = arcsin(sin(45◦)/nSiO2

) ≈ 29◦. The same four reso-
nances as in Fig. 14 are obviously excited with θ = 29◦

depending on the plane of incidence (compare dashed
and plain lines in Fig. 19). The only noticeable differ-
ence in s-polarization case (see green and cyan lines in
Fig. 19) can be partly explained by the fact that at 45◦

incidence, reflexion on a bare silica diopter is ∼ 8.3% in
s-polarization (while only ∼ 0.5% in p-polarization, due
to the Brewster effect).

Consider now the single scatterer case. First of all,
the only non negligible terms in expansion Eq. (8) cor-
respond to electric dipoles whatever the considered inci-
dence. All higher electric orders and all magnetic orders
are at least 50 fold lower in magnitude than the dipo-
lar electric ones over the whole visible spectrum. As
shown in Fig. 20(a) and 20(b) for ky = 0, i.e. when
the plane of incidence contains the rx-axis of the ellipse,
two resonant scenarii occur depending on the incident
polarization. With p-polarization [Fig. 20(a)], the inci-
dent electric field lies within the plane of incidence, and



9

400 450 500 550 600 650 700 750
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R
ef

le
xi

on
ef

fi
ci

en
cy

(N
.U

)
ky =0 / p − homogeneous

ky =0 / s − homogeneous

kx =0 / p − homogeneous

kx =0 / s − homogeneous

ky =0 / p − substrate

ky =0 / s − substrate

kx =0 / p − substrate

kx =0 / s − substrate

FIG. 19. (Dashed lines) Reflexion efficiency in the specular or-
der for the structure F1 (same as left panel of Fig. 12). (Plain
lines) Grating of silver nanocylinders of same dimensions as in
optimized structure F1, but embedded in homogeneous SiO2

background. Reflexion peaks in both panels are very similar.

two electric multipoles dominate the far field scattered
power, corresponding to induced electric dipoles of mo-

ments along Ox (see f
(e)
1,±1) and Oz (see f

(e)
1,0 ). Heuristi-

cally, the incident electric field indeed only sees two char-
acteristic dimensions of the scatterer, i.e. the height h of
the elliptic nanocylinder and its greater diameter 2rx.
With s-polarization, the only induced dipole present is
along Oy, corresponding to the fact that the electric field
now only sees the smaller diameter 2ry. The larger radius
[Fig. 20(a)] leads to a redshifted resonant response of the
particle, as already observed for gold circular cylinders
(see Fig. 10). The same considerations hold for kx = 0
as depicted in Fig. 20(c) and 20(d). Electric field maps
of the periodic and isolated cases are very similar in spite
of the rather small 200 nm bi-period, which further con-
firms the weak coupling between the elliptic nanocylin-
ders. Above 450 nm, the subwavelength bi-periodicity
selects only the specular propagation direction among all
by constructive interferences.

VI. CONCLUSIONS

We have shown the possibility to design efficient re-
flective filters with selective wavelength mirror properties
together with global transparency over the visible range.
A numerical tool based on the FEM has been used to
analyze the behavior of nanoparticles gratings, and com-
parison between numerical and experimental results has
been performed. Two optimized filters with two operat-
ing wavelengths depending on the polarization have been
proposed. It has been shown that Maxwell-Garnett ho-
mogenization can be used to model the considered struc-

tures. Also, the calculation of the radiation by a single
nanoparticle has shown that the diffractive properties of
the considered systems are governed by a single isolated
particle.

Whereas the main principle has been demonstrated,
the full structure can be improved by several manners in
order to increase the reflectivity and transmission. Es-
pecially, fabrication can be done now without ITO con-
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FIG. 20. reflexion of the periodic structure compared to
multipolar coefficients of the isolated scatterer for incidence
θ0 = 29◦, with (a) ky = 0 and p-polarization, (b) kx = 0 and
p-polarization , (c) ky = 0 and s-polarization , (d) kx = 0 and
s-polarization.

ductive layer and without Ti attaching layer. This should
significantly reduce absorption. Besides, since the diffrac-
tive properties are governed by a single isolated particle,
the same properties can be obtained with periodic or ape-
riodic structures as along as the size and the density of
the nanoparticles are the same. This may also consider-
ably ease the fabrication on large surfaces.

These promising results pave the way of smart windows
and could find some innovative applications in transport
industry such as automotive or aeronautic sectors for dis-
plays, human-machine interfaces and sensors.
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Centrale Marseille, Institut Fresnel, 2014).

[10] M. J. Weber, Handbook of optical materials, vol. 19 (CRC
press, 2002).

[11] P. B. Johnson and R. W. Christy, “Optical constants of
the noble metals,” Phys. Rev. B 6, 4370 (1972).

[12] E. D. Palik, Handbook of optical constants of solids, vol. 3
(Academic press, 1998).
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VII. APPENDIX

A. Depolarization dyadic for circular cylinders

The calculation of depolarization dyadic components
associated with a finite circular cylinder is recalled. Let
V be the volume of a cylinder of height 2h and radius
R, and let r be the vector of coordinates (x, y, z) with
the origin r = 0 at the center of the cylinder. Then, the
dimensionless depolarization dyadic at the center of the
cylinder is formally given by

L = −
∫
V

dr∇∇ 1

4π|r|
. (11)

This expression has to be considered carefully since a
singularity is present at the origin. This difficulty is fixed
by splitting the integral above into a first integral over a
small sphere B0 and a second integral over the remaining
volume V \ B0. Next, using that the integral over B0 is
just 1/3 of the unit dyadic U , we have

L =
1

3
U −

∫
V \B0

dr∇∇ 1

4π|r|
. (12)

Now, the Green-Ostrogradski theorem can be applied.
Let S and S0 be the surfaces of the cylinder V and the
sphere B0 respectively. The expression above becomes

L =
1

3
U −

∫
S

dsn∇ 1

4π|r|
+

∫
S0

dsn∇ 1

4π|r|
. (13)

where ds is the infinitesimal surface element and n is the
outgoing normal of the surfaces. Since the last term is
just U/3, the expression reduces to

L = −
∫
S

dsn∇ 1

4π|r|
=

∫
S

dsn
r

4π|r|3
. (14)

Finally, using the symmetries of the cylinder, it is found
that the component Lz ≡ Lzz of the dyadic is given by
the integration over the two horizontal disks at the top
and bottom of the cylinder:

Lz = 2

∫ R

0

dr

∫ 2π

0

rdφ
h

4π(h2 + r2)3/2
= 1−cos θ . (15)

As to the components Lx ≡ Lxx and Ly ≡ Lyy (Ly = Lx
by symmetry), they are provided by the integration over
the vertical face of the cylinder:

Lx =

∫ h

−h
dz

∫ 2π

0

Rdφ
R cos2 φ

4π(z2 +R2)3/2
=

1

2
cos θ . (16)

Hence the well known expressions [22, 23] have been re-
trieved.
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B. Depolarization dyadic for elliptic cylinders

In this subsection, V and S are the volume and the
surface respectively of a cylinder with elliptic cross sec-
tion of height 2h and radii Rx and Ry. All the proce-
dure performed in the circular case remains correct until
equation (14). Similarly to the previous case, using the
symmetries of the elliptic cylinder, it is found that the
component Lz is given by the integration over the two
horizontal surfaces Se defined by

Se = {(x, y) |x2/R2
x + y2/R2

y ≤ 1 } . (17)

Then the depolarization component in the z direction is

Lz = 2

∫
Se

dx dy
h

4π(h2 + x2 + y2)3/2
, (18)

which requires numerical integration to determine its
value. Again using the symmetries of the cylinder, it
is deduced that the depolarization factors Lx and Ly are
provided by the integration over the vertical face of the
cylinder. The vector r describing this surface is (the third
component z can be omitted)

r =

(
Rx cosφ

Ry sinφ

)
=⇒ dr

dφ
=

(
−Rx sinφ

Ry cosφ

)
(19)

and the unit normal n, orthogonal to dr/dφ, is then

n =
1√

R2
x sin2 φ+R2

y cos2 φ

(
Ry cosφ

Rx sinφ

)
. (20)

Then the tensor product of the two vectors n and r is
given by

nr =
1√

R2
x sin2 φ+R2

y cos2 φ

(
RxRy cos2 φ R2

x cosφ sinφ

R2
y cosφ sinφ RxRy sin2 φ

)
.

(21)
Finally, since ds = dzdφ× |dr/dφ|, the obtained expres-
sions for the depolarization are:

Lx =

∫ h

−h
dz

∫ 2π

0

dφ
RxRy cos2 φ

4π(z2 +R2
x cos2 φ+R2

y sin2 φ)3/2
,

Ly =

∫ h

−h
dz

∫ 2π

0

dφ
RxRy sin2 φ

4π(z2 +R2
x cos2 φ+R2

y sin2 φ)3/2
.

(22)

Numerical integration is required to obtain the values of
these components.

C. Depolarization dyadic for circular cylinders on a
substrate

The case of a circular cylinder lying on a substrate is
considered. The notations are the same as in the ap-
pendix A, with the origin r = 0 at the center of the
cylinder of height 2h. In addition, a substrate of rela-
tive permittivity ε− is located in the half space z < −h
with its plane interface at the bottom circular face of the
cylinder. Let ε(r) be the relative permittivity defining
the environment of the cylinder: ε(r) = 1 if z > −h and
ε(r) = ε− if z < −h. The electrostatic potential Φ(r)
created by a point source is the solution of

∇ · ε(r)∇Φ(r) = δ(r) (23)

Denoting r0 = 2hez, the solution of the equation above
is

z > −h : Φ(r) = − 1

4π|r|
− 1− ε−

1 + ε−
1

4π|r + r0|
,

z < −h : Φ(r) = − 2

1 + ε−
1

4π|r|
.

(24)
The depolarization dyadic is then given by an expression
equivalent to equation (14):

L = −
∫
S

dsn∇Φ(r) . (25)

Next, the calculation is similar to the one in the appendix
A, with an additional term corresponding to the reflexion
part of Φ(r). The resulting expression for the vertical
component of the depolarization dyadic is

Lz = 1− cos θ +
1− ε−

1 + ε−
cos θ − cos θ1

2
, (26)

where

cos θ =
h√

h2 +R2
, cos θ1 =

3h√
(3h)2 +R2

. (27)

The other components of the dyadic are

Lx = Ly =
cos θ

2
− 1− ε−

1 + ε−
cos θ − cos θ1

4
. (28)

This calculation can be extended to cylinders with elliptic
cross section by following the procedure of appendix B.
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