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Abstract: n-dimensional coherent states systems generated by
translations, modulations, rotations and dilations are described.
Starting from unitary irreducible representations of the n-dimen-
sional affine Weyl-Heisenberg group, which are not square-inte-
grable, one is led to consider systems of coherent states labeled
by the elements of quotients of the original group. Such systems
can yield a resolution of the identity, and then be used as alter-
natives to usual wavelet or windowed Fourier analysis. When the
quotient space is the phase space of the representation, different
embeddings of it into the group provide different descriptions of
the phase space.

Résumé: On décrit des systèmes d’états cohérents engendrés
par des translations, dilatations et rotations en n-dimensions.
Partant de représentations unitaires irréductibles du groupe de
Weyl-Heisenberg affine en dimension n, qui ne sont pas de carré
integrable, on est naturellement conduit à considérer des systè-
mes d’états cohérents indexés par les éléments d’un espace quo-
tient. De tels systèmes fournissent des resolutions de l’identitè,
et peuvent ainsi être utilisés comme des alternatives à l’analyse
par ondelettes ou l’analyse de Fourier à fenêtre glissante. Dans
le cas particulier où l’espace quotient en question est isomor-
phe à l’espace des phases associé à la représentation, différents
plongements de celui-ci dans le groupe fournissent différentes
descriptions de l’espace des phases.
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I. INTRODUCTION

Wavelet analysis was originally proposed as an alternative to windowed Fourier anal-
ysis in a signal processing context. It was recognized later on that similar techniques had
been used for a long time in many different communities, such as harmonic analysis and
approximation theory, image analysis, optics and quantum physics.

Since the early days of wavelet analysis, the concept of “wavelet” itself has changed.
The original wavelets were functions generated from a single one (the so-called mother
wavelet) by dilations and translations; the mother wavelet was then a function of vanishing
integral, having good localization properties in both the direct space and the Fourier
space. The term wavelet has now to be understood in a more general sense. The aim of
wavelet analysis is mainly to provide different representations of functions (or signals), as
superpositions of elementary functions. The corresponding representation is then used for
different purposes, such as for instance data compression, feature extraction or pattern
recognition.

An important aspect of such a program is the determination of the possible decom-
positions that are adapted to a given problem. We will focus here on the continuous
decompositions, otherwise stated the coherent states approach. It is well known that an
elegant formulation of the theory of coherent states can be obtained through the language
of group representation theory. More precisely, it was shown in [Gr.Mo.Pa], [As.Kl] that
a system of coherent states is canonically associated with any square-integrable represen-
tation of a separable locally compact group. The simplest examples, namely the wavelets
and Gabor functions (i.e. coherent states associated with windowed Fourier transform)
are obtained from the affine (or ax+ b) group and the Weyl-Heisenberg group respectively.
These two examples have been particularly interesting in a signal analysis context, since
they provide representations of signals in terms of time-frequency (or phase space) variables
(the scale being interpreted as an inverse frequency in the affine case). Actually, in both
cases the time-frequency plane corresponds to the phase space of the group representation,
in the geometric sense. Other examples of groups (more specially semidirect products) are
considered in [Ka].

During the last few years, efforts have been made to construct different time-frequency
representations of the same nature. One of us proposed in [To.1-2]to consider a bigger group
containing both the affine and the Weyl-Heisenberg groups, to interpolate between affine
wavelet analysis and Windowed Fourier analysis. In such a case, it was shown that since
the usual representations of such a bigger group (called the affine Weyl-Heisenberg group)
are not square-integrable, the usual construction does not apply, and must be modified in
a suitable way. More precisely, the restriction of the representation to a suitable quotient
space of the group (the associated phase space in that case) restores square-integrability
(in a slightly modified form) and thus yields systems of coherent states.

We address here the problem of the n-dimensional generalization of such coherent
states systems, and proceed as follows. We consider the extension of the n-dimensional
Weyl-Heisenberg group by dilations and rotations in IRn. The corresponding group, called
the affine-Weyl-Heisenberg group GaWH then also contains as a subgroup the group con-
sidered in [Mu] for the construction of n-dimensional wavelets. GaWH essentially pos-
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sesses two types of representations (called here the Stone-Von-Neumann-type and the
affine-type) representations, none of which is square-integrable. Restricting to the Stone-
Von-Neumann-type representations, we show that they become square-integrable when re-
stricted to an appropriate homogeneous space (such a restriction involves the introduction
of a cross section of the principal bundle GaWH → homogeneous space, and the results
of course depend on the cross section). Moreover, if the homogeneous space contains the
phase space of the representation, one gets systems of coherent states directly from the
group action (i.e. there exists strictly admissible sections in our terminology). This in
turn implies the existence of an associated wavelet transform possessing good covariance
properties. Our goal is to provide wavelet-type phase space description of functions of
L2(IRn), with overcomplete families of functions having different phase space localization
properties. Potential applications include for example local frequency analysis and texture
characterization in images (in the two-dimensional case), and related problems in higher
dimensional situations.

The paper is organized as follows. Section II is devoted to a brief description of clas-
sical results and methods on continuous time-frequency decompositions, coherent states,
and group theoretical approaches to the problem of constructing such decompositions. In
section III, we study the structure of the n-dimensional affine Weyl-Heisenberg group, and
describe its representation theory. We in particular exhibit two main series of represen-
tations, the phase spaces of which are two different quotient spaces of GaWH . Finally,
section IV is devoted to the description of some representation theorems associated which
quotients of GaWH . More precisely, we focus on the problem of finding strictly admissible
sections, since admissible and weakly admissible ones are in general less difficult to obtain.

II. COHERENT STATES, SQUARE-INTEGRABLE GROUP REPRESEN-

TATIONS AND WAVELETS

II.1 Continuous wavelet decompositions

Continuous wavelet decompositions were introduced (or re-introduced, since mathe-
maticians and signal processers have been using similar techniques for quite a long time
[Me.1]) by A. Grossmann and J. Morlet [Gr.Mo] in a signal analysis context. In the
one-dimensional case, the basic idea is to decompose an arbitrary L2(IR) function into
elementary contributions (that we will generically call wavelets for simplicity), generated
from a unique one (the mother wavelet) by applying simple transformations:

f =

∫

Λ

Tf (λ)ψλdµ(λ) (II.1)

Here Λ stands for the above set of simple transformations, assumed to be a measured space
with measure µ. In such a context, the set of coefficients Tf (λ), as a function on Λ, is
interpreted as another representation of the function f itself, in other words a transform
of f . For instance, it is a very usual procedure in signal analysis to study such alternative
representations to extract informations from an analyzed signal.
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The most famous example was proposed in the mid fourties by D. Gabor [Ga], and
has been widely studied and used since Gabor’s original paper. The starting point was
to introduce a notion of locality into Fourier analysis(1), by using appropriate windows.
Letting g ∈ L1(IR)∩L2(IR) be such a window, to any f ∈ L2(IR) is associated its windowed
Fourier transform Gf :

Gf (b, ω) =

∫

IR

f(x)e−iω·(x−b)g(x− b)
∗
dx (II.2)

Simple arguments show that the map

f ∈ L2(IR) → Gf ∈ L2(IR2) (II.3)

is actually an isometry (up to a constant factor), so that f can be expressed as

f(x) =
1

2π||g||2
∫

IR2

Gf (b, ω)e
iω·(x−b)g(x− b)dx (II.4)

(the R.H.S. converging weakly to f), i.e. in a form similar to (II.1). Here the simple
transformations are just modulations and translations, and the associated wavelets are the
so-called Gabor functions(2):

g(b,ω)(x) = eiω·(x−b)g(x− b), b, ω ∈ IR (II.5)

An alternative representation was proposed by A. Grossmann and J. Morlet [Gr.Mo],
in which the modulations were replaced by dilations. This presented the advantage of
enforcing the spatial localization ability of the method. Indeed, since the Gabor functions
are of constant size, the spatial resolution can’t be better than the window’s size. Let
then ψ be a mother wavelet, assumed to be a L1(IR) function such that in addition the
following admissibility condition holds

cψ =

∫ ∞

0

|ψ̂(ξ)|2 dξ
ξ
<∞ (II.6)

To ψ is associated the corresponding family of wavelets, i.e. dilated and shifted copies of
ψ

ψ(b,a)(x) =
1√
a
ψ

(
x− b

a

)
(II.7)

Then any Hardy function f ∈ H2(IR) =
{
f ∈ L2(IR), f̂(ξ) = 0∀ξ ≤ 0

}
can be decomposed

as follows

f(x) =
1

cψ

∫

IR∗

+
×IR

Tf (b, a)ψ(b,a)(x)
da

a

db

a
(II.8)

(1) Our conventions are as follows: the Hermitian product is linear in the left argument,
and the Fourier transform f̂ of f is given by f̂(ξ) =

∫
f(x)e−iξxdx.

(2) Notice that Gf (b, ω) is now the scalar product of f and g(b,ω).
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where the coefficients Tf (b, a) are given by

Tf (b, a) =< f, ψ(b,a) > (II.9)

and form the wavelet transform (or affine wavelet transform) of f . It was recognized
later on that similar decompositions have been used by mathematicians in the context of
Littlewood-Paley theory (see e.g. [Fr.Ja.We]), where (II − 8) was known as Calderón’s
identity. This aspect of wavelet decompositions has been the starting point for the con-
struction of orthonormal bases of wavelets. We will not describe that point here, and refer
to [Me.2],[Da.1] for a self-contained exposition. To describe the L2(IR) space instead of the

H2(IR) space, it is necessary either to assume that |ψ̂(ξ)|2 is an even function (as was done
by Littlewood-Paley theory specialists), or to introduce an additional simple transforma-
tion, namely the symmetry with respect to the origin (or what is equivalent to consider
positive and negative dilation parameters a), in order to describe positive and negative
frequencies.

The generalization of Gabor analysis to arbitrary dimensions is fairly simple. Let
g ∈ L1(IRn) ∩ L2(IRn) be the mother window, and associate with it the following Gabor
functions

g(b,ω)(x) = eiω·(x−b)g(x− b), b, ω ∈ IRn (II.10)

Then any f ∈ L2(IRn) can be decomposed as follows

f(x) =
1

(2π)n||g||2
∫

IR2n

Gf (b, ω)e
iω·(x−b)g(x− b)dx (II.11)

with Gf (b, ω) =< f, g(b,ω) >. Gf is then a function in L2(IR2n). Notice that IR2n is
isomorphic to the phase space of IRn. As we will see, this is far from being a coincidence.

The generalization of affine wavelet analysis to arbitrary dimensions is a little bit
more complex, since the Hardy space H2(IR) is typically a one-dimensional object. There
are essentially two versions of the n-dimensional wavelet analysis. The first one amounts
to consider ψ functions that are rotation invariant and satisfy an admissibility condition
similar to (II.6) (see [Fr.Ja.We]). The second one is based by an extension of the set Λ
of simple transformations by the rotations in IRn (we recall here that the rotations of IRn

form a group denoted by SO(n)). To the mother wavelet ψ ∈ L1(IRn) are then associated
the following wavelets

ψ(b,a,r)(x) =
1

an/2
ψ

(
r−1 · x− b

a

)
(II.12)

where b ∈ IRn, a ∈ IR∗
+, r ∈ SO(n). The admissibility condition then reads

0 < kψ = V ol(SO(n− 1))

∫

IRn

|ψ̂(ξ)|2
dξ

||ξ||n <∞ (II.13)

(We recall here that as a compact group, SO(n) has finite volume). In such a context, any
f ∈ L2(IRn) can be decomposed as

f(x) =
1

kψ

∫

IR∗

+
×IRn×SO(n)

Tf (b, a, r)ψ(b,a,r)(x)
da

a

db

an
dm(r) (II.14)
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where dm(r) is some invariant measure on SO(n) that we will specify later, and the wavelet

transform is now the function of L2(IR∗
+ × IRn × SO(n)) defined by

Tf (b, a, r) =< f, ψ(b,a,r) > (II.15)

The wavelet transform is then in that case a function of n(n+1)/2+1 variable, and can’t
be considered as a function on the phase space. We will come back to that point a little
bit later.

II.2 Coherent states

The term coherent states refers to a quantization technique that grew up from the
theory of canonical coherent states for the quantum harmonic oscillator (see e.g. [Al.Go],
[Pe], [Kl.Sk] for a review). The notion has been widely used and generalized since its
introduction, and there exist now many different versions of generalized coherent states.
As stressed in the introduction of [Kl.Sk], these versions share a set of minimal properties.
We will say that a family of (generalized) coherent states is a set of vectors vλ in a Hilbert
space H, indexed by some measured space Λ with positive measure µ, such that

- vλ is a strongly continuous function of λ.
- there is an associated resolution of the identity, i.e. if vλ denotes the linear form

u→< u, vλ >: ∫
vλ ⊗ vλ = 1 (II.16)

in the weak sense.
Coherent states then provide a functional representation of the Hilbert space H. In-

deed, the map
T : u ∈ H → Tu (II.17)

where
Tu(λ) =< u, vλ > (II.18)

assigns to any finite vector u ∈ H a function on Λ which is square-integrable and continu-
ous. Moreover, T.H does not span the whole L2(Λ, µ). One easily checks that if F ∈ T.H,
then F fulfills a reproducing kernel equation

F (λ) =

∫

Λ

K(λ, ρ)F (ρ)dµ(ρ) (II.19)

where the reproducing kernel is given by

K(λ, ρ) =< vρ, vλ > (II.20)

Many constructions have been proposed to generate coherent states systems. Among those,
we shall be concerned with the square-integrable group representations approach, which
has the advantage of explicitely implementing covariance properties of the T -transform.
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II.3 Square-integrable group representations

It was realized by H. Moscovici and A. Verona [Mo],[Mo.Ve] and A. Grossmann, J.
Morlet and T. Paul independently [Gr.Mo.Pa.1-2] that there is a deep connection be-
tween the usual wavelet decompositions, coherent states theory and the theory of square-
integrable group representations. Indeed, the set of simple transformations used to generate
the wavelets from a single one in general inherits the structure of a group G (as is the case
for instance for translations, modulations or dilations). Moreover, there is in addition a
very important concept in signal analysis, namely that of covariance of the representation.
Let us consider the example of a position-frequency representation of an image. One may
want the representation of a shifted image to be a shifted copy of the representation of
the image, or in other words one may ask for translation covariance. This is actually the
case for both Gabor and affine wavelet analysis. One may also ask for rotation covari-
ance, which is now fulfilled only by affine wavelet analysis. What happens there is simply
that the simple transformations used to generate the wavelets are represented in a simple
way in the transform space. As we will see, this is the consequence of the fact that all
such wavelets are generated from a representation of the group of simple transformations,
and that the representation is unitarily equivalent to a subrepresentation of the regular
representation, i.e. a representation of the group G onto L2(G).

The connexion between time-frequency representation theorems and square-integrable
group representations was realized by A. Grossmann, J. Morlet and T. Paul in [Gr.Mo.Pa.1-
2]. Let us start by briefly describing the construction of [Gr.Mo.Pa.1-2]. Let then G

be a separable locally compact Lie group, and let π be a unitary strongly continuous
representation of G on the Hilbert space H. π is said to be square-integrable (or to belong
to the discrete series of G) if
- π is irreducible.
- There exists at least a vector v ∈ H such that

0 <

∫

G

| < π(g).v, v > |2 dµ(g) < ∞ (II.21)

Such a vector is said to be admissible.
Square-integrable group representations have been extensively studied in the litera-

ture, in particular for compact groups [Bar], locally compact unimodular groups [God]
and non-unimodular locally compact groups [Du.Moo],[Car]. The main result (from the
wavelet point of view of course) is the following.

Theorem:[Du.Moo],[Car]
Let π be a square-integrable strongly continuous unitary representation of the locally
compact group G on H. Then there exists a positive self-adjoint operator C such that for
any admissible vectors v1, v2 ∈ H and for any u1, u2 ∈ H

∫

G

< u1, π(g).v1 >< π(g).v2, u2 > dµ(g) =< C1/2 · v2, C1/2 · v1 > < u1, u2 > (II.22)

Moreover, the set of admissible vectors coincides with the domain of C.⋄
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We will denote as usual by λ the left-regular representation of G. A simple conse-
quence of the previous theorem is that a representation π of G is square integrable if and
only if is is unitarily equivalent to a subrepresentation of the left-regular representation
λ (see [Du.Moo] for instance). The corresponding intertwiners can be realized as follows.
If v is an admissible vector in H, and v′ ∈ H, one can then introduce the corresponding
Schur coefficients, i.e the matrix coefficients of elements of G:

cv,v′(g) =< v′, π(g).v >, g ∈ G (II.23)

Denote by T the map which assigns to any u ∈ H the family of coefficients cv,u(g) g ∈ G

T : u ∈ H → Tu = cv,u(·) ∈ L2(G) (II.24)

T is called the left transform in [Gr.Mo.Pa.1-2]. It realizes the intertwinning between π
and λ as follows.

T ◦ π = λ ◦ T (II.25)

The idea of Grossmann, Morlet and Paul was to use (II.24) and (II.25) for the analysis
of functions, in the case where H is a function space. This was the starting point of
many applications, especially in a signal analysis context. The left transform T is used
to obtain another representation of functions, and (II.25) expresses the covariance of the
transform. Notice that the continuity assumption is fulfilled by construction. Moreover,
the left transform also satisfies a reproducing kernel equation, expressing that the image
of H by T is not the whole L2(G).

Let us consider for example the case of the so-called one-dimensional affine group, or
”ax+ b” group

Gaff = IR× IR∗
+ (II.26)

with group operation
(q, a) · (q′, a′) = (q + aq′, aa′) (II.27)

Simple application of the coadjoint orbits method (see e.g. [Gui]) shows that Gaff has
basically two inequivalent irreducible unitary representations on H2

±(IR), of the form

[π(b, a) · f ] (x) = 1√
a
f

(
x− b

a

)
(II.28)

One easily sees that such a representation is square-integrable, and that the corresponding
left transform is nothing else but the affine wavelet transform described in (II.8) and
(II−9). The covariance equation (II.25) simply expresses that the affine wavelet transform
of a dilated and shifted copy of a function f(x) is nothing else but a dilated and shifted
version of the wavelet transform of f(x). Finally, the admissibility of a vector ψ ∈ L2(IR)
reduces to (II.6). In a signal analysis context, the translation parameter is interpreted
as a position (or time) parameter, and the scale parameter a as a frequency parameter
(more precisely the inverse of a frequency parameter). One is then led to a time-frequency
representation.
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To generalize the previous construction to the n-dimensional case, one faces an ir-
reducibility problem. The n-dimensional affine group Gaff = IRn × IR∗

+ doesn’t act
irreducibly on L2(IRn), so that no square-integrability is possible. The solution proposed
by R. Murenzi [Mu] is to take the semi-direct product of the affine group by SO(n). The
resulting group, denoted by IG(n) then yields the wavelets described in (II.12)-(II.15).
Notice that in such a case, the covariance by translation and dilation is extended with a
rotation covariance.

Finally, let us consider the case of the n-dimensional Weyl-Heisenberg group GWH .
We will only consider now the case of the so-called polarized Weyl-Heisenberg group G

pol
WH

G
pol
WH = IR2n × S1 (II.29)

with group operation

(q, p, ϕ) · (q′, p′, ϕ′) = (q + q′, p+ p′, ϕ+ ϕ′ + p.q′ [mod 2π]) (II.30)

By the Stone-Von-Neumann theorem, all the irreducible unitary representations are uni-
tarily equivalent to one of the following form (see [Mac],[Sch]). If f ∈ L2(IRn)

[
π(q, p, ϕ) · f

]
(x) = eiµ(ϕ−p.(x−q))f(x− q) (II.31)

for some µ ∈ IZ∗. Set µ = 1 for simplicity. The representation is square-integrable, and
the corresponding left transform is the Gabor transform described in (II.2)-(II.5), up to a
phase factor eiϕ. This can be interpreted as a square-integrable projective representation
of the abelian group IR2n. Notice that in such a case, one does not have full covariance
by position-frequency shifts, precisely because of this phase factor. One then speaks of
twisted covariance.

II.4 Square-integrability modulo a subgroup

Let us just start this section by exhibiting simple examples for which the square-
integrable group representation approach does not seem convenient. The first example is
that of the full (i.e. unpolarized) Weyl-Heisenberg group

GWH = IR2n × IR (II.32)

with a group operation (almost the same as before) given by:

(q, p, ϕ) · (q′, p′, ϕ′) = (q + q′, p+ p′, ϕ+ ϕ′ + p.q′) (II.33)

Again, it follows from Stone-Von-Neumann theorem that all unitary irreducible represen-
tations are given by (II.31), but now any µ ∈ IR∗ is convenient. Anyway, such a simple
change (which does not basically change the structure of the group) dramatically turns the
representation (II.31) into a non square-integrable representation (essentially because the
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compact subgroup S1 has been replaced by the non-compact IR, that leads to divergent
integrals).

Another interesting example is that of the n-dimensional affine wavelets, i.e. the
wavelets associated with the so-called IG(n) group [Mu]. For n = 2, IG(2) ∼= IR4, but for
n > 2, the dimension of IG(n) equals n(n + 1)/2 + 1, and then IG(n) is not isomorphic
to the phase space of IRn. Nevertheless, a simple calculation shows that the whole group
is not necessary to characterize functions through their wavelet transform. Indeed, let
f ∈ L2(IRn); parametrizing SO(n) by the associated Euler angles, and setting to zero the
Euler angles corresponding to the factor SO(n−1), it is still possible to reconstruct f from
the restricted wavelet transform. The reconstruction formula is the same as (II.14), except
that the integral is now taken over the coset space IG(n)/SO(n−1) ∼= IR2n× IR∗

+×Sn−1,
and that the admissibility constant kψ has now to be replaced by kψ/V ol(SO(n−1)). This
is the simplest case of wavelets associated with an homogeneous space. Notice that is such
a case, the covariance has been replaced by a twisted covariance.

From such examples arises the notion of square-integrability modulo a subgroup
[Al.An.Ga]. Indeed, in both cases one is interested to drop the extra factor (here IR
or SO(n− 1)), either to recover square-integrability or to reduce the number of variables
of the representation. Given a representation π of a group G on a Hilbert space H such
that all integrals of the type (II.22) diverge, one may wonder whether such integrals might
converge or diverge when restricted to an appropriate homogeneous space G/H for some
closed subgroup H ⊂ G. Of course π is not defined directly on G/H, and it is necessary
to first embed G/H in G. This is realized by using the canonical fiber bundle structure
of G.

Π : G → G/H

Let σ be a Borel section of this fiber bundle (it is well known that such sections always
exist [Mac]), and introduce

πσ = π ◦ σ (II.34)

Let µ be some quasi-invariant measure on G/H. It then makes sense to study the operator

A : u ∈ H →
∫

G/H

< u, πσ(x) > πσ(x) dµ(x) (II.35)

Depending on the properties of the A operator, it may be possible to associate with it an
isometry

T : H → L2(G/H)

similar to wavelet transforms for H ∼= L2(IR). Such a program was carried out in particular
cases, namely for special groups: in particular the Poincaré group [Al.An.Ga.1-2] or the
one-dimensional affine Weyl-Heisenberg group [To.1-2].

It is important to notice that in such a context the covariance properties of the rep-
resentation are lost. We will see that it is still possible to obtain some twisted covariance
properties.
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III. THE AFFINE WEYL-HEISENBERG GROUP AND ITS COADJOINT

ORBITS

The main tool we will use throughout this study is the group generated by translations,
modulations, dilations and rotations in IRn. It is the n-dimensional generalisation of the
one-dimensional affine Weyl-Heisenberg group considered in [To.1], and we will also call
it the n-dimensional affine Weyl-Heisenberg group GaWH . This section is devoted to the
study of this group and of its representation theory.

III.1 Structure of GaWH

The affine Weyl-Heisenberg group is topologically isomorphic to

GaWH
∼= IR2n+1 × IR∗

+ × SO(n) (III.1)

and has a structure of semi-direct product of the n-dimensional Weyl-Heisenberg group by
IR∗

+ × SO(n).
The corresponding generic element is of the form

g = (q, p, a, r, ϕ), q, p ∈ IRn, a ∈ IR∗
+, ϕ ∈ IR, r ∈ SO(n) (III.2)

with group operation

(q, p, a, r, ϕ) ·(q′, p′, a′, r′, ϕ′) = (q+ar ·q′, p+a−1r ·p′, aa′, r ·r′, ϕ+ϕ′+p ·(ar ·q′)) (III.3)

It is readily verified that the inverse of g ∈ GaWH is given by:

(q, p, a, r, ϕ)−1 = (−a−1r−1 · q,−ar−1 · p, a−1, r−1,−ϕ+ p · q) (III.4)

It is easy to see that GaWH is unimodular, that is that the following measure is both left
and right invariant:

dµ(q, p, a, r, ϕ) = dq dp
da

a
dm(r) dϕ (III.5)

where dm(r) is the Haar measure on SO(n), normalized so that m(SO(n)) = 1. The
rotation group SO(n) is conveniently described by means of the corresponding Euler angles
(see [Vil] for instance) as follows. Let e1, e2, ...en ∈ IRn be a fixed orthonormal frame. Then
the stabilizer of en is isomorphic to an SO(n−1) subgroup of SO(n), and the decomposition
SO(n) = Sn−1 × SO(n− 1) (where Sn−1 ∼= SO(n)/SO(n− 1) is the (n− 1)-dimensional
sphere embedded into IRn) yields the following decomposition of elements of r ∈ SO(n):

r = r(n−1) · r(n−2)... · r(1) (III.6)

where
r(k) = r

1
(θk1 ) · ... · rk(θ

k
k) (III.7)
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and r
k
(θ) is the rotation of angle θ in the oriented plane defined by ek and ek+1 if k =

1, ...n − 1 and en and e1 if k = n. Here, θkj runs over [0, π] when j 6= k and over [0, 2π]
when j = k. The corresponding form for the Haar measure on SO(n) reads

dm(r) = dm(θ11, ...θ
n−1
n−1) = A(n)−1

n−1∏

k=1

k∏

j=1

[
sinj−1

(
θkj
)
dθkj

]
(III.8)

for some constant A(n) only depending on the dimension (see [Vil]). The n-dimensional
Weyl-Heisenberg group can be realized as a matrix group as follows. The generic element
g = (q, p, a, r, ϕ) ∈ GaWH is realized as the matrix:

g =




1 t
[
ar−1.p

]
ϕ

0
[
ar

] [
q
]

0 0 1


 (III.9)

the group law being represented by matrix multiplications. Here, t
[
ar−1.p

]
stands for the

transpose of the vector ar−1.p.
The Lie algebra GaWH of GaWH can also be represented as a Lie algebra of matrices,

as follows. For λ ∈ IR and R ∈ so(n), the Lie algebra of SO(n), set Rλ = R+ λK, where
K is the unit matrix. Then

GaWH
∼=








0 tξ t

0 Rλ x
0 0 0


 , ξ, x ∈ IRn, λ, t ∈ IR,R ∈ so(n)



 (III.10)

GaWH is then spanned by the following set of (n + 2) × (n + 2) matrices, which form a
basis of GaWH .

T =




0 . . . 0 1
0 . . . 0 0
. . . . . .
. . . . . .
0 . . . . 0


 ,K =




1 . . . 0 0
0 1 . . 0 0
. . . . . .
. . . . . .
0 . . . 0 1




Pi =




0 . 1 . 0 0
0 . . . . 0
. . . . . .
. . . . . .
0 . . . . 0


 ,

(
Pi

)ν
µ
= δµ,0δν,i+1

Qi =




0 . . . . 0
0 . . . . .
. . . . . 1
. . . . . .
0 . . . . 0


 ,

(
Qi

)ν
µ
= δν,0δµ,i+1
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J ij =




0 . . . . 0
. . . . . .
. . . −1 . .
. . 1 . . .
0 . . . . 0


 ,

(
J ij

)ν

µ

= δν,j+1δµ,i+1 − δµ,j+1δν,i+1

Then any element in X ∈ GaWH can be written in the form

X = xi ·Qi + ξi · Pi + λK +Rji · J ij + tT (III.11)

where λ, t ∈ IR, x, ξ ∈ IRn and the Rji are the coefficients of a so(n) matrix, denoted in
the sequel by R.

The matrix realization of GaWH and GaWH are useful to specify the form of the expo-
nential mapping. Indeed, if X is the element of GaWH defined in (III.10), and expressing
exp(X) as in (III.9), a simple calculation shows that:





a = eλ

r = exp
(
R
)

q =
(
Rλ

)−1 [
exp

(
Rλ

)
− 1

]
· x

p =tRλ
[
exp

(
−tRλ

)
− 1

]
· ξ

ϕ = t+ ξ ·Rλ−2 [
exp

(
Rλ

)
−Rλ − 1

]
· x

(III.12)

III.2 The one-dimensional case: classification of unitary irreducible repre-

sentations

The one-dimensional affine Weyl-Heisenberg group has a much simpler structure than
the multidimensional ones. Indeed, in such a case the group is solvable, so that its unitary
dual can be characterized by the method of orbits (see [Aus.Ko]; our discussion of coadjoint
orbits will closely follow [Kir] and [Sch]). Moreover, the unitary representations that can be
obtained in the one-dimensional case are simple prototypes of the ones encountered in the
multidimensional cases. The first step is the computation of the adjoint action of GaWH

on GaWH . Let (q, p, a, ϕ) ∈ GaWH and (x, ξ, λ, t) be the coordinates of some x ∈ GaWH in
the previous basis, namely the basis {Q,P ,K, T}. A simple calculation shows that

Ad(g).X = g.X.g−1 = (ax− λq, a−1ξ + λp, λ, t+ apx− a−1qξ − pqλ) (III.13)

so that Ad(g) has the following matrix realization in the above basis:

Ad(g) =



a 0 −q 0
0 a−1 p 0
0 0 1 0
ap −a−1q −pq 1


 (III.14)
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It is then simple [Kir] to derive the matrix form of the coadjoint action, with respect to
the contragredient basis {Q∗, P ∗,K∗, T ∗}

Ad∗(g) =tAd
(
g−1

)
=



a−1 0 0 −p
0 a 0 q

a−1q −ap 1 −pq
0 0 0 1


 (III.15)

Let then
F = x∗0Q

∗ + ξ∗0P
∗ + λ∗0K

∗ + t∗0T
∗ ∈ G∗

aWH (III.16)

The associated coadjoint orbit reads:





x∗0 → x∗ = a−1x∗0 − pt∗0
ξ∗0 → ξ∗ = aξ∗0 + qt∗0
λ∗0 → λ∗ = λ∗0 − pqt∗0 + a−1qx∗0 − apξ∗0
t∗0 → t∗ = t∗0

(III.17)

There are then three distinct families of orbits.

III.2.a Degenerate orbits
These are the orbits corresponding to the case

x∗0 = ξ∗0 = t∗0 = 0 , λ∗ = λ∗0 (III.18)

In such a case, the only possible polarization is

H = GaWH (III.19)

and the corresponding unitary irreducible representations are characters of GaWH .

III.2.b Affine-type (or hyperboloidal) orbits
The affine-type orbits are characterized by a vanishing center, i.e.

t∗0 = 0

The orbits are then completely characterized by the following real number

x∗ξ∗ = x∗0ξ
∗
0 = µ ∈ IR (III.20)

and λ∗ runs over the real line. Consider for instance the following element in the orbit OF
characterized by µ

F = Q∗ + µP ∗ (III.21)

They then have the shape of an hyperboloid in the three-dimensional space. Let GF be
the stability subgroup of F for the coadjoint representation. Clearly, since

Ad∗(q, p, a, ϕ).F = a−1Q∗ + µaP ∗ +
(
qa−1 − aµp

)
K∗ (III.22)
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GF is given by
GF = {(q, q/µ, 1, ϕ), q, ϕ ∈ IR} (III.23)

The only possible polarization is

H = IRQ⊕ IRP ⊕ IRT (III.24)

Such a polarization fulfills the Pukanszky condition (i.e. Ad∗(eH).F = F + H
⊥). Indeed,

let X = xQ+ ξP + tT . Then

Ad∗(eX) · F = F + (x− µξ)K∗ (III.25)

which proves the assertion. Notice that H\GaWH
∼= IR∗

+.
Let us now look for the associated representations. Let then F be defined by (III.21),

and let h = (q, p, 1, ϕ) = exp(X) ∈ H = exp(H ). Then the coordinates ofX are (q, p, 0, ϕ−
pq/2). F defines a character χF of H as follows

χF (h) = ei<F,X> (III.26)

and because Pukanszky condition is satisfied, the representation U of GaWH unitarily
induced from χF is irreducible. U is obtained as follows. Consider the Hilbert space

H =

{
f : GaWH → IC ,

∫

H\GaWH

|f(x)|2 dµ(x) <∞, and f(h.g) = χF (h)f(g), ∀h ∈ H

}

(III.27)
Here µ is a quasi-invariant measure on H\GaWH , for example the Lebesgue measure on
the half-line (another choice would lead to unitarily equivalent representations [Mac]). Let
∆ be the square root of the corresponding Radon-Nikodym derivative. Then U acts on H
as follows

[U(q, p, a, ϕ) · f ] (0, 0, u, 0) = ∆(q, p, a, ϕ)f [(0, 0, u, 0) · (q, p, a, ϕ)]

= ∆(q, p, a, ϕ)f
[
(uq, u−1p, 1, ϕ·)(0, 0, au, 0)

]

= ∆(q, p, a, ϕ)ei[uq+µu
−1p]f(0, 0, au, 0)

Then, identifying H with L2(IR∗
+) and taking into account the explicit form of ∆(q, p, a, ϕ),

the resulting representation is

[U(q, p, a, ϕ) · f ] (u) = √
a ei[uq+µpu

−1] f(au) (III.28)

U is the direct generalization of the usual representation of the affine group used in
[Gr.Mo.Pa.1-2].
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III.2.c Stone-Von-Neumann-type (or saddle) orbits
These are orbits characterized by a nonzero value of the t∗ parameter:

t∗ 6= 0 (III.29)

In such a case, for any initial value x∗0, ξ
∗
0 , one can find values of p, q, a such that x∗ = ξ∗ =

0. One can then choose without loss of generality

x∗0 = ξ∗0 = 0 (III.30)

so that the coadjoint orbits read




x∗ = −pt∗
ξ∗ = qt∗

λ∗ = λ∗0 +
x∗.ξ∗

t∗

(III.31)

Such orbits then have a saddle shape, and are characterized by t∗ ∈ IR∗, λ∗0 ∈ IR. Let then

F = t∗T ∗ + λ∗K∗ (III.32)

and let OF be the corresponding orbit. The stability subgroup of F in the coadjoint
representation reads:

GF =
{
(0, 0, a, ϕ), a ∈ IR∗

+, ϕ ∈ IR
}

(III.33)

It is not very difficult to see that the only possible polarizations are

H =

{
IRQ⊕ IRK ⊕ IRT or

IRP ⊕ IRK ⊕ IRT
(III.34)

which correspond to symmetric choices. A simple calculation also shows that they both
satisfy the Pukanszky condition. Let us choose

H = IRQ⊕ IRK ⊕ IRT (III.35)

H\GaWH is then isomorphic to the real line. Let

X = xQ+ λK + tT (III.36)

be an arbitrary element of H . Then

exp{X} = (x
eλ − 1

λ
, 0, eλ, t) (III.37)

Then F defines the following character χF of H:

χF (q, 0, a, ϕ) = exp {i (λ∗ ln(a) + t∗ϕ)} (III.38)
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The representation U unitarily induced from χF then acts on

H =

{
f : GaWH → IC ,

∫

H\GaWH

|f(x)|2 dµ(x) <∞, and f(h · g) = χF (h)f(g), ∀h ∈ H

}

(III.39)
where µ is some quasi-invariant measure on H\GaWH , for example the Lebesgue measure
on the real line. U takes the form:

[U(q, p, a, ϕ) · f ] (0, ξ, 1, 0) = ∆(q, p, a, ϕ)f [(0, ξ, 1, 0) · (q, p, a, ϕ)]

= ∆(q, p, a, ϕ)f [(q, 0, a, ϕ+ ξq) · (0, a(ξ + p), 1, 0)]

= ∆(q, p, a, ϕ)ei[λ
∗ ln(a)+t∗(ϕ+ξq)]f(0, 0, a(ξ + p), 0)

Then, identifying H with L2(IR) and taking into account the explicit form of ∆(q, p, a, ϕ),
the resulting representation is

[U(q, p, a, ϕ) · f ] (ξ) = √
aei[λ

∗ ln(a)+t∗(ϕ+ξq)]f (a(ξ + p)) (III.40)

The case t∗ = 1, λ∗ = 0 precisely corresponds to the representation of the affine Weyl-
Heisenberg group studied in [To.1-2].

III.2.d Summary
The results of this section can be summarized in the following theorem

Theorem:

The characters, together with the affine-type and the Stone-Von-Neumann-type represen-
tations listed in (III.28) and (III.40) exhaust all possible irreducible unitary representations
of the one-dimensional affine Weyl-Heisenberg group. None of them is square-integrable.⋄

The theorem follows from the application of Kirillov-Pukanszky coadjoint orbits me-
thod (for solvable Lie groups) [Kir],[Pu] to the affine Weyl-Heisenberg group and from the
above discussion. The last assertion follows from a simple calculation.

The consequence of such a result is that the coherent states construction of [Gr.Mo.-
Pa.1-2] does not apply to the considered group, and it is necessary to go to coset spaces
as in [To.1-2].

III.3 Coadjoint orbits of GaWH

In the case n ≥ 2, the affine Weyl-Heisenberg group has a much more complex struc-
ture than in the one-dimensional case. In particular, it is not solvable, due to the presence
of the SO(n) subgroup. Thus the method of orbits can’t be directly applied to classify the
irreducible unitary representations as in the solvable case. Nevertheless, it is interesting
to study carefully the coadjoint orbits, that exhibit a behaviour similar to what happens
in one dimension. The orbit structure is then more complicated, but the coadjoint orbits
essentially fall into two classes, n-dimensional generalizations of the affine-type and the
Stone-Von-Neumann-type orbits appearing in one dimension. We then study such orbits
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in this section, and we will consider in more details at the end of the section the case n = 2,
which is a little bit simpler because SO(2) is abelian.

To study the orbits, we will use the matrix realization of GaWH and GaWHdescribed
in (III.9− 10). Let then

g =




1 t
[
ar−1.p

]
ϕ

0
[
ar

] [
q
]

0 0 1


 ∈ GaWH (III.41)

X =




0 tξ t

0 Rλ x
0 0 0


 = xi ·Qi + ξi · Pi + tT + λK +Rji · J ij ∈ GaWH (III.42)

Then Ad(g) ·X = g ·X · g−1 is given by the following matrix:




0 t
[
a−1r ·ξ + r ·tRλ ·r−1 · p

]
t+ a

(
r−1 ·p

)
·x− a−1ξ ·

(
r−1 ·q

)
−p·

(
r ·Rλ ·r−1 ·q

)

0
[
r ·Rλ · r−1

]
ar · x− r ·Rλ · r−1 · q

0 0 0




(III.43)
Since

r ·Rλ · r−1 = λK +Rji r · J ij · r−1 = λK +
(
r ·R · r−1

)j
i
J ij (III.44)

one deduces the adjoint action of GaWH

Ad(g)





x0 → x = ar · x0 − λ0q − (R
0
)ji r · J ij · r−1 · q

ξ
0
→ ξ = a−1r · ξ

0
+ λ0p− (R

0
)ji r · J ij · r−1 · p

λ0 → λ = λ0

(R
0
)ji → Rji =

(
r ·R

0
· r−1

)j
i

t0 → t = t0 + a(r−1 · p) · x0 − a−1ξ
0
· (r−1 · q)

− λ0p · q − (R
0
)jip ·

(
r · J ij · r−1 · q

)

(III.45)

Then

Ad(g−1)





x0 → x = a−1r−1 · x0 + λ0a
−1r−1 · q + (R

0
)jia

−1r−1 · J ij · q
ξ
0
→ ξ = ar−1 · ξ

0
− λ0ar

−1 · p+ (R
0
)jiar

−1 · J ij · p
λ0 → λ = λ0

(R
0
)ji → Rji =

(
r−1 ·R

0
· r
)j
i

t0 → t = t0 − p · x0 + ξ
0
· q − λ0p · q − (R

0
)jip ·

(
J ij · q

)

(III.46)
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and then the coadjoint action

Ad∗(g)





x∗0 → x∗ = a−1r · x∗0 − pt∗0
ξ∗
0
→ ξ∗ = ar · ξ∗

0
+ qt∗0

λ∗0 → λ∗ = λ∗0 + (a−1r · x∗0) · q − (ar · ξ∗
0
) · p− p · qt∗0

(R∗

0
)ji → (R∗)ji =

(
r ·R∗

0
· r−1

)j
i
+ (a−1r · x∗) · (J ij · q)

+ (ar · ξ∗) · (J ij · p)− t∗0p · (J ij · q)
t∗0 → t∗ = t∗0

(III.47)

Again three distinct sets of coadjoint orbits can be distinguished.

III.3.a Degenerate or semi-degenerate orbits
Such orbits correspond to the choice

x∗0 = ξ∗
0
= 0, t∗0 = 0 (III.48)

Then λ∗ is constant, and the coadjoint orbits are nothing else but SO(n)-orbits. We
will not consider the associated representations, since they don’t fall in the category of
time-frequency representation theorems we are interested in.

III.3.b Affine-type orbits
These orbits generalize the affine-type orbits encountered in the one-dimensional case.

As we will see, the structure of the orbits is now more complicated, because of the SO(n)
subgroup.

The affine-type orbits are defined by

t∗0 = 0 (III.49)

and are then of the form




x∗ = a−1r · x∗0
ξ∗ = ar · ξ∗

0
λ∗ = λ∗0 + x∗ · q − ξ∗ · p
(R∗)ji = (r ·R∗

0
· r−1)ji + x∗ · (J ij · q) + ξ∗ · (J ij · p)

(III.50)

Let us assume for simplicity that x∗0//ξ
∗

0
: set ξ∗

0
= µx∗0. Let Γ(x

∗
0) be the stability SO(n)-

subgroup of x∗0. Then Γ(x∗0)
∼= SO(n− 1). Let F be the element of G∗

aWH , of coordinates
(x∗0, ξ

∗

0
, λ∗0, R

∗

0
). Denote by Γ(R∗

0
) the stability Γ(x∗0)-subgroup of R∗

0
. Then the stability

GaWH -subgroup of F for the coadjoint action reads:

GF =

{
(q, p, 1, s, ϕ), s ∈ Γ(R∗

0
), q, p ∈ IRn, with q − µp, J ij · (q + µp) ⊥ x∗0 ∀i, j = 1, ..n

}

(III.51)
and

OF ∼= GaWH/GF (III.52)
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Let us now specify a little bit more the considered orbit, by assuming that R∗

0
is Γ(x∗0)-

invariant, so that Γ(R∗

0
) = Γ(x∗0). It is then easier to construct the associated represen-

tation of GaWH . Here GF
∼= IRn+1 × so(n − 1), so that the phase space is isomorphic

to
OF ∼= IRn × IR∗

+ × Sn−1 ∼= IR2n (III.53)

We consider the following polarisation (which of course contains the Lie algebra of GF )

H =

⊕∑
IRQi ⊕

⊕∑
IRPi ⊕ IRT ⊕ so(n− 1) (III.54)

Let X ∈ H and h = exp(X) ∈ H = exp(H).

h = (q, p, 1, s, ϕ) (III.55)

and the components of X read:

X = (ln(s) · (s− 1)−1 · q, ln(s) · (s− 1)−1 · p, 1, s, t) (III.56)

Notice that, since s · x∗0 = x∗0, one has

x∗0 · ln(s) · (s− 1)−1 · q = x∗0 · q (III.57)

and
ξ∗
0
· ln(s) · (s− 1)−1 · p = ξ∗

0
· p (III.58)

F then defines the following character of H

χF (h) = eix
∗

0
·(q+µp) (III.59)

Introduce then the following representation space

H =

{
f : GaWH → IC ,

∫

H\GaWH

|f(x)|2 dµ(x) <∞, and f(h · g) = χF (h)f(g), ∀h ∈ H

}

(III.60)
Here µ is a quasi-invariant measure on H\GaWH , for example the Lebesgue measure on
the half-line times the quotient of the Haar measure on SO(n) by the Haar measure on
SO(n − 1). Let ∆ be the square root of the corresponding Radon-Nikodym derivative.
Then the representation U induced from χF acts on H as follows.

[
U(q, p, a, r, ϕ) · f

]
(0, 0, u, ρ, 0) = ∆(q, p, a, r, ϕ)f

[
(0, 0, u, ρ, 0) · (q, p, a, r, ϕ)

]

= ∆(q, p, a, r, ϕ)f
[
(uρ · q, u−1ρ · p, 1, s

1
, ϕ) · (0, 0, au, r

1
, 0)

]

= ∆(q, p, a, r, ϕ)e
i[uρ·q+µu−1ρ·p]

f(0, 0, au, r
1
, 0)
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Here, r
1
is a representative element of its equivalence class in SO(n− 1)\SO(n), and one

has written ad(r) · ρ = s
1
· r

1
. Then, identifying H with L2(IR∗

+ × Sn−1) and taking into

account the explicit form of ∆(q, p, a, r, ϕ), the resulting representation is

[
U(q, p, a, r, ϕ) · f

]
(u, ρ) = an/2e

i[uρ·q+µu−1ρ·p]
f(au, r

1
) (III.61)

The case where x0 is not parallel to ξ
0
and R∗

0
is not invariant can also be handled

explicitely. The difference is that it is there necessary to carefully study the stability
group GF .

III.3.c Stone-Von-Neumann-type orbits
Unlike the affine-type orbits, the Stone-Von-Neumann-type orbits have a nonvanishing

t∗ element. As in the one-dimensional case, we are then free to choose x∗0 = ξ∗
0
= 0, so

that the coadjoint orbits read:





x∗ = −pt∗
ξ∗ = qt∗

λ∗ = λ∗0 +
x∗·ξ∗

t∗

(R∗)ji = (r ·R∗

0
· r−1)ji +

x∗·Ji
j ·ξ

∗

t∗

(III.62)

The coadjoint orbits are then fully characterized by t∗ and Rλ
∗

0
= R∗

0
+ λK.

Let us focus first on the case R∗

0
= 0. In such a simple case, the stability group GF

is given by

GF =
{
(0, 0, a, r, ϕ), a ∈ IR∗

+, r ∈ SO(n), ϕ ∈ IR
}

(III.63)

and the phase space reads

OF ∼= GaWH/GF
∼= IR2n (III.64)

Choose the following polarization

H = IRT ⊕ IRK ⊕ so(n)⊕
⊕∑
IRQi (III.65)

F defines a character of H = exp(H) as follows. If X ∈ H, and if h = exp(X) then

χF (h) = ei(t
∗t+λ∗λ) (III.66)

The representation space is then the Hilbert space

H =

{
f : GaWH → IC ,

∫

H\GaWH

|f(x)|2 dµ(x) <∞, and f(h · g) = χF (h)f(g), ∀h ∈ H

}

(III.67)
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for some quasi-invariant measure µ on the coset space H\GaWH , We will take µ to be the
Lebesgue measure on IRn. Let ∆ be the square root of the corresponding Radon-Nikodym
derivative. Then the representation U unitarily induced from χF acts on H as follows.

[
U(q, p, a, r, ϕ) · f

]
(0, ξ, 1, 1, 0) = ∆(q, p, a, r, ϕ)f

[
(0, ξ, 1, 1, 0) · (q, p, a, r, ϕ)

]

= ∆(q, p, a, r, ϕ)f
[
(q, 0, a, r, ϕ+ p · ξ) · (0, ar−1 · (ξ + p), 1, 1, 0)

]

= ∆(q, p, a, r, ϕ)ei[λ
∗ ln(a)+t∗(ϕ+ξ·q)]f(0, ar−1 · (ξ + p), 1, 1, 0)

Using the isomorphism H ∼= L2(IRn, dµ) and the explicit form of the modulus ∆, we then
get the following unitary representation on L2(IRn, dµ):

[
U(q, p, a, r, ϕ) · f

]
(ξ) = an/2ei[λ

∗ ln(a)+t∗(ϕ+ξ·q)]f(ar−1 · (ξ + p)) (III.68)

The case R∗

0
6= 0 is also interesting, because the representation space involves addi-

tional internal degrees of freedom. Indeed, one then has to take into account the normalizer
N (R∗

0
) of R∗

0
in SO(n). Then

OF ∼= IR2n × SO(n)/N (R∗

0
) (III.69)

It turns out that because SO(n) is a simple compact group, the normalizers N (R∗

0
) can

be completely classified by means of Dynkin diagram techniques (see [Bo.Fo.Ro]). Then
the stability group GF reads

GF =
{
(0, 0, a, n, ϕ), a ∈ IR∗

+, n ∈ N (R∗

0
), ϕ ∈ IR

}
(III.70)

The corresponding quotient is an homogeneous Kahler manifold, that takes the form

SO(n)/N (R∗

0
) ∼= Tk × SU(l1)× ...× SU(lm)× SO(p) (III.71)

for some integral numbers k, l1, ...lm, p. The phase space is then isomorphic to

OF ∼= IR2n × SO(n)/N (R∗

0
) (III.72)

and is of course of even dimension, as a symplectic manifold.

III.3.d The two-dimensional case
Although the two-dimensional affine Weyl-Heisenberg group is not solvable, the two-

dimensional case is much simpler than the general case because SO(2) is one-dimensional
and then abelian. Then the above discussion can still be performed, and the main difference
is that the phase space possesses here a group structure.

Indeed, let θ ∈ [0, 2π[ parametrize SO(2). Then as an application of the previous
formulas, one is led to the following coadjoint orbits:

Ad∗(q, p, a, r, ϕ)





x∗ → a−1r−1 · x∗ − pt∗

ξ∗ → ar−1 · ξ∗ + qt∗

λ∗ → λ∗ − p · qt∗ + a−1x∗ · r−1 · q − aξ∗ · r−1 · p
θ∗ → θ∗ + p× qt∗ − a−1x∗ × (r−1 · q)− aξ∗ × (r−1 · p)
t∗ → t∗

(III.73)
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The coadjoint orbits structure is then the same as before.
- Degenerate orbits: x∗ = ξ∗ = 0, t∗ = 0, λ∗ = λ∗0, θ

∗ = θ∗0 . Such orbits lead to
extensions of representations of SO(2) to GaWH .

- Affine-type orbits: Such orbits are characterized by t∗ = 0, ξ∗ = µr
α
· x∗/||x∗||2

where x∗ ∈ IR, and λ∗, θ∗ ∈ IR, for some constants µ 6= 0, α ∈ [0, 2π[. The associated
phase space is as follows. Let F be an element of the considered coadjoint orbit. GF ={
(q, µ−1r

α
· s

1
· q, 1, 1, ϕ), q ∈ IR, ϕ ∈ IR

}
where s

1
is the matrix s

1
=

(
−1 0
0 1

)
.

- Stone-Von-Neumann-type orbits: now t∗ 6= 0, and the orbits are characterized by
t∗, x∗, ξ∗ ∈ IR2 and λ∗ = λ∗0 +

(
x∗ · ξ∗/t∗

)
, θ∗ = θ∗0 −

(
x∗ × ξ∗/t∗

)
. The corresponding

phase space has the following structure. If F is an element of a given coadjoint orbit, then
GF =

{
(0, 0, a, r, ϕ), a ∈ IR∗

+, r ∈ SO(2), ϕ ∈ IR
}
. The phase space is the quotient of

GaWH by GF .

IV. TIME-FREQUENCY REPRESENTATION THEOREMS

In this section, we will describe representation theorems of the type (II.1) that can be
obtained from group representations restricted to homogeneous spaces. As we will see, one
can derive a lot of such theorems, and we will then not try to get any classification or partial
classification. We will only focus on a particular representation among those we obtained
in the previous chapter, namely the Stone-Von-Neumann type representation. In other
words, we will restrict our attention to the representation of GaWH obtained in (III.68).
Moreover, we choose to set λ∗ = 0 and t∗ = 1 (since the λ∗-parameter does not seem
relevant to us in the context of time-frequency representations). In addition, we will not
consider the central extension ofGaWH , and then consider U as a projective representation.
Finally, to make the connection with standard notations in wavelet analysis and Gabor
analysis, it is convenient to change the signs of the p and q variables. Summarizing, we

will then consider the following family of functions: if f ∈ L2(IRn):

f(q,p,a,r)(x) =
[
π(q, p, a, r, 0) · f

]
(x) = a−n/2eip·(x−q)f

(
r−1 ·

x− q

a

)
(IV.1)

One trivially checks that this is indeed a projective irreducible representation of GaWH/IR.
One also easily obtain the following

Lemma:

π is not square-integrable.⋄

It is then necessary to consider restrictions of π to coset spaces. We will then work in
the following general setting. Let Γ ∈ GaWH be a closed subgroup of GaWH , and let

X = GaWH/Γ (IV.2)

GaWH then canonically inherits a structure of principal bundle

Π : GaWH → X (IV.3)
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Let then σ be a Borel section of this principal bundle. We will denote by πσ : X →
U
(
L2(IRn)

)
the restriction of π to the homogeneous space defined by

πσ = π ◦ σ (IV.4)

Definition:

The section σ is said to be admissible if there exists a bounded positive invertible operator
A, with bounded inverse, and a function ψ ∈ L2(IRn) such that for all f ∈ L2(IRn)

∫

X

| < πσ(x) · ψ, f > |2 dµ(x) = < f,A · f > (IV.5)

σ is said to be strictly admissible if there exists a function ψ ∈ L2(IRn) such that for all
f ∈ L2(IRn) ∫

X

| < πσ(x) · ψ, f > |2 dµ(x) = K||f ||2 (IV.6)

for some positive constant K.
σ is said to be weakly admissible if there exists a continuous field T (x), x ∈ X, and a
function ψ ∈ L2(IRn) such that for all f ∈ L2(IRn)

∫

X

| < T (x) · πσ(x) · ψ, f > |2 dµ(x) = K||f ||2 (IV.7)

for some positive constant K. ⋄

Otherwise stated, the section σ is strictly admissible if and only if σ is admissible and
the A operator is a multiple of the identity. Admissible sections generate a continuous
frame in the terminology of [Al.An.Ga.1-2]. In any case, we will denote by ψx the function
πσ(x) ·ψ when σ is strictly admissible, and the function A·πσ(x) ·ψ (resp. T (x) ·πσ(x) ·ψ)
in the admissible (resp. weakly admissible) case. Given a weakly admissible section, there
is then an associated resolution of the identity if and only if the orbit of X through ψ is
total in L2(IRn). In such cases, one can then construct an associated wavelet transform.
However, depending on whether the section is weakly admissible, strictly admissible or
just admissible, the covariance properties of the wavelet representation will be different.

Indeed, let us assume that we are given a resolution of the identity associated with a
group representation, as described in [Gr.Mo.Pa.1-2]. Then X = G, and π is a true group
representation. Let h ∈ G, and let f ∈ H ∼= L2(IRn). Then clearly

Tπ(h)·f (g) = Tf (h
−1 · g), g ∈ G (IV.8)

which is nothing else but a paraphrase of (II.20), i.e. a consequence of the embedding of
the representation π as an irreducible summand in the left regular representation of G.

Consider now the case of a representation π ofG, square integrable modulo a subgroup
H. Then σ(G) needs not be a group, and (IV.8) no longer holds. However, if the section
σ of G is strictly admissible, there remains a partial covariance, expressed as:

Tπσ(x)·πσ(y)−1·f (x) = Tf (y), x, y ∈ X (IV.9)
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Of course, in the simple case where σ(G) is a subgroup of G, the partial covariance reduces
to a full covariance with respect to the action of σ(G).

In the case of an admissible section or a weakly admissible section σ, the situation is
a little bit different.Consider the weakly admissible case for instance. Then the covariance
equation can be written as

TT (x)−1·πσ(x)·πσ(y)−1T (x)−1·f (x) = Tf (y), x, y ∈ X (IV.10)

If σ is admissible, the covariance is a twisted covariance, with global twist. If not, the
covariance is a twisted covariance, with local twist.

We will examine in this section the problem of existence of admissible and strictly
admissible sections in the case of the following subgroups

Γ1 = {(0, 0, a, 1, ϕ) ∈ GaWH} (IV.11)

Γ2 =
{
(0, p, 1, 1, ϕ) ∈ GaWH

}
(IV.12)

Γ3 =
{
(0, 0, a, r, ϕ) ∈ GaWH

}
(IV.13)

In any case, we will proceed as follows (our method was refered to as the direct approach
in [To.1-2]). We first choose a Borel section of the fiber bundle (IV.3), then write the
associated wavelet transform, and examine whether it is admissible, strictly admissible or
not. Let us start with the description of strictly admissible sections.

IV.1 Strictly admissible sections

We show here the existence of strictly admissible sections in the three above mentioned
cases. Throughout this section, we will need the following technical result

Lemma:

Let k, p be respectively a covector and a vector in Rn, and consider their tensor product
k ⊗ p. Then

Det
[
k ⊗ p− 1

]
= (−1)n(1− < k, p >) (IV.14)

⋄
Proof: Assume first that tk and p are linearly independent, and restrict to the 2-

dimensional subspace spanned by tk and p. Then a simple computation shows that the
corresponding restricted determinant equals (1− < k, p >). On the complementary sub-

space, the determinant equals (−1)n−2, which yields (IV.14). If tk and p are proportional,

then the determinant is the product of < k, p > −1 by (−1)n−1, still leading to (IV.14).⋄

IV.1.a Γ = Γ1

We then consider the case Γ = Γ1
∼= IR∗

+ × IR. Let

X1 = GaWH/Γ1 (IV.15)
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X1 can be parametrized by elements of the form (q, p, r) ∈ IR2n × SO(n). X1 is provided
with the following left and right invariant measure

dµ(q, p, r) = dq dp dm(r) (IV.16)

Let σ0 be the flat section of the fiber bundle Π1 : GaWH → X1

σ0(q, p, r) = (q, p, 1, r, 0) ∈ GaWH (IV.17)

and let σβ be the Borel section defined by

σβ(q, p, r) = (q, p, β(q, p, r), r, 0) (IV.18)

where β is a piecewise differentiable Borel mapping of X1 into Γ1.
Let ψ ∈ L1(IRn) ∩ L2(IRn), and set

ψ(p,q,r)(x) = |β(p, q, r)|−n/2eip·(x−q)ψ
(
β(p, q, r)−1r−1.(x− q)

)
(IV.19)

Let f ∈ L2(IRn); associate with it its transform

Tf (p, q, r) =< f, ψ(p,q,r) > (IV.20)

Tf is bounded, and by Plancherel equality

Tf (p, q, r) = (2π)−n|β(p, q, r)|n/2
∫

IRn

f̂(ξ)eiξ·q ψ̂
[
kξ(p, q, r)

]∗
dξ (IV.21)

where
kξ(p, q, r) = β(p, q, r) r−1 · (ξ − p) (IV.22)

Since our aim is just to provide examples of strictly admissible sections, we will only
focus on the case β(p, q, r) = β(p, r) (i.e. no dependence on q). Let now

F (x) =

∫

X1

Tf (p, q, r)ψ(p,q,r)(x)dµ(p, q, r) (IV.23)

F̂ (ξ) = f̂(ξ)

∫

SO(n)

dm(r)

∫

IRn

dp|β(p, r)|n|ψ̂
[
kξ
]
|2 (IV.24)

Let
Jξ = |Det

[
∇p · k

]
| (IV.25)

denote the Jacobian of the transformation p → kξ. Then a straightforward calculation
leads to

∇p · k = βr−1
[
β−2(∇ · β)⊗ (r · kξ) − 1

]
(IV.26)
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so that

Jξ = |β(p, r)|n|Det
[
β−2(∇ · β)⊗ (r · kξ) − 1

]
(IV.27)

Let Ξ be a constant

(
0
1

)
tensor. The second determinant does not depend on p and ξ

explicitely if
1

β(p, r)2
∇ · β = −Ξ (IV.28)

otherwise stated

β(p, r) =
1

< Ξ, p > +f(r)
(IV.29)

where f is some (regular) function of r. In such a case, it follows from the previous
technical lemma that

Jξ = |β(p, r)|n|1− < Ξ, r · k > | (IV.30)

and then

F̂ (ξ) = f̂(ξ)

∫

SO(n)

dm(r)

∫

IRn

|ψ̂(k)|2 dk

|1− < Ξ, r · k > | (IV.31)

Such sections are strictly admissible. Indeed, if the constant multiplying f̂(ξ) is finite and
nonzero, we are in the case describe by (IV.6). Moreover, we directly have a resolution

of the identity. The convergence of the corresponding integral is obtained as soon as ψ̂
has sufficient decay at infinity, and vanishes on the sphere k = r−1 ·t Ξ, r ∈ SO(n). This
generalizes the admissibility condition of the usual wavelet analysis. Notice that Ξ = 0 (i.e.
constant β) corresponds to N -dimensional Gabor analysis, and the admissibility condition
reduces to ψ ∈ L2(IRn), which we have by assumption.

This result generalizes the one obtained in [To.1] in the one-dimensional case. In
particular, assuming that ψ is radial suppresses the angular dependence, and yields a
radial n-dimensional wavelet analysis close to that used by Littlewood-Paley specialists
(see [Fr.Ja.We] for instance).

IV.1.b Γ = Γ2

Consider now the case Γ = Γ2
∼= IRn. Let then

X2 = Γ2\GaWH (IV.32)

be parametrized by elements of the form (q, a, r) ∈ IRn×IR∗
+×SO(n). Notice that GaWH

now acts on the coset space X2 on the right. X2 is provided with the following right
invariant measure

dµ(q, a, r) = dq
da

a
dm(r) (IV.33)

Consider the flat section σ0 of the fiber bundle Π2 : GaWH → X2 defined by

σ0(q, a, r) = (q, 0, a, r, 0) ∈ GaWH (IV.34)
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and let σβ be the Borel section associated with the piecewise differentiable Borel mapping
β : X2 → Γ2.

σβ(q, a, r) = (q, β(q, a, r), a, r, 0) (IV.35)

We will use the parametrization of SO(n) with Euler angles as in (III.6− 8): set

r ∼= (Θ,Ψ) (IV.36)

where Θ and Ψ are sets of angular variables, globally representing Euler angles for r
0
∈

Sn−1 and s ∈ SO(n − 1) respectively. We will denote by dm′(s) a Haar measure on
SO(n− 1) and by dν(r

0
) the quotient measure on the sphere:

dm(r) = dν(r
0
)dm′(s) (IV.37)

Let also k be the element of IRn of spherical coordinates (a−1,Θ). If dk is the Lebesgue
measure on IRn, then

da

a
dm(r) = andk dm′(s) (IV.38)

Let ψ ∈ L1(IRn) ∩ L2(IRn), and set

ψ(q,a,r)(x) = a−n/2e
iβ(q,a,r)·(x−q)

ψ

(
r−1 ·

x− q

a

)
(IV.39)

Remark: Observe that the usual n-dimensional wavelets developed by R. Murenzi [Mu]
do not appear as a particular case of the above analysis. This is due to the fact that in
our case, GaWH acts of the coset space X2 on the right, contrary to what happens on
Murenzi’s analysis. We are then naturally led to use the right-invariant measure on X2

instead of the left-invariant one. As a result, the flat section σ0, that would lead to usual
n-dimensional wavelets, is not strictly admissible.

Let f ∈ L2(IRn); associate with it its transform

Tf (q, a, r) =< f, ψ(q,a,r) > (IV.40)

Tf is bounded, and it follows from the Plancherel equality that

Tf (q, a, r) = (2π)−nan/2
∫

IRn

f̂(ξ)eiξ·q ψ̂
[
uξ(q, a, r)

]∗
dξ (IV.41)

where
uξ(q, a, r) = ar−1 · (ξ − β(q, a, r)) (IV.42)

We now restrict to the case where β is only a function of a and r: β(q, a, r) = β(a, r). At
that point, let us notice that the flat sections β(q, a, r) = Cst, among which lies the section
β = 0, are not strictly admissible. From now on, we will assume that ∇.β 6= 0. Let

Jξ = |Det
[
∇k · uξ

]
| (IV.43)
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Introduce for simplicity the

(
1
1

)
-tensor

R = ar−1 (IV.44)

and the

(
1
2

)
-tensor S, defined by

Sνµρ = ∂µR
ν
ρ (IV.45)

Then
Jξ = |Det

{
S · (ξ − β)−R · ∇ · β

}
| (IV.46)

= |Det
[
R · (∇ · β)

]
| · |Det

[
(∇ · β)−1 · S′ · uξ − 1

]
| (IV.47)

where
S′ν
µρ = ∂µ

(
R−1

)ν
ρ

(IV.48)

Then, following the same procedure as in the last section, assume that

[∇ · β] · v = S′ (IV.49)

for some fixed nonzero

(
0
1

)
-tensor v (for simplicity we will also denote by v the transpose

tensor). A simple calculation shows that the corresponding β function is of the form

β(a, r) =
R−1 · v
||v||2 + f(s) (IV.50)

for some (smooth) function f on SO(n− 1). Then, it follows from (IV.14) that

Jξ = |Det(R)| · |Det(∇ · β)| · |v · uξ − 1| (IV.51)

Clearly Det(R) = an. Moreover, let us choose the coordinate system so that v = ||v||en,
the unit vector SO(n− 1)-invariant. Then R−1 · v = ||v||k, and

Det[∇ · β] = ||v||−n (IV.52)

Summarizing, the sections defined by (IV.50) are strictly admissible. Indeed, if ψ is such
that

0 <

∫

IRn

|ψ̂(u)|2 du

|1− v · u| <∞ (IV.53)

i.e. if ψ̂ has sufficient decay at infinity, and vanishes continuously on the affine hyperplane
defined by < v, u >= 1, then there is an associated resolution of the identity. Of course,
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the choice of β in (IV.49) is far from unique. A more general choice would lead to an
admissibility condition similar to (IV.60) (see below).

IV.1.c Γ = Γ3

Let us finally consider the case of the Γ3 subgroup. Notice that Γ3 is nothing but the
phase space associated with the considered representation. Let then X3 = GaWH/Γ3. X3

is provided with a left and right invariant measure, which reads

dµ(p, q) = dpdq (IV.54)

Let β : X3 → IR∗
+ and ρ : X3 → SO(n) be two piecewise differentiable Borel functions,

and denote by σ the corresponding Borel section of GaWH . For simplicity we will assume
that both functions only depend on p.

σ(q, p) = (q, p, β(p), ρ(p)) (IV.55)

Let ψ ∈ L1(IRn) ∩ L2(IRn), and set

ψ(q,p)(x) = β(p)−n/2eip·(x−q)ψ

(
ρ(p)−1 ·

x− q

β(p)

)
(IV.56)

To any f ∈ L2(IRn) associate its transform

Tf (q, p) =< f, ψ(q,p) > (IV.56)

Tf is bounded, and

Tf (q, p) = (2π)−nβ(q, p)n/2
∫

IRn

f̂(ξ)eiξ·qψ̂
[
uξ(p)

]∗
dξ (IV.57)

where
uξ(p) = β(p)ρ(p)−1 · (ξ − p) = R(p) · (ξ − p) (IV.58)

Again by arguments similar to the previous ones, it can be shown that if β and ρ are

such that
β(p)−1ρ(p) = K · p+ F (IV.59)

for some fixed

(
1
2

)
-tensor K and some fixed

(
1
1

)
-tensor F then one gets a resolution of

the identity for any ψ such that

∫

u
ξ
(IRn)

|ψ̂(u)|2 du

|Det(K · u− 1)| (IV.60)

is bounded from below and above as a function of ξ. There does not seem to exist a simpler
formula for the determinant (at least we don’t know how to get such a formula). The strict
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admissibility of the section depends on the choices of K and F through the integration

domain uξ(IR
n). Nevertheless, there clearly exist choices for which strict admissibility holds

i.e. for which uξ(IR
n) = IRn. For instance, the case β = 1, ρ = 1 (i.e K = 0, F 6= 0) yields

the usual n-dimensional Gabor analysis. More generally, the sections corresponding to
constant ρ’s are strictly admissible, and are the direct generalizations of the one described

in [To.1] in the one-dimensional case.

IV.2 Admissible sections

If one does not ask for strict admissibility, there is of course much more possible
choices for the sections of GaWH/Γ. Indeed, consider anyone of the previously considered
homogeneous spaces (or other ones) X, and let σ be a Borel section of GaWH → X.

Then let ψ ∈ L1(IRn) ∩ L2(IRn), and consider the operator

A : f ∈ L2(IRn) → A · f =

∫

X

< f, πσ(x) · ψ > πσ(x) · ψ dµ(x) (IV.61)

Then the section σ is admissible only if one can find a ψ such that A is bounded from
below and above.

The general structure of admissible sections has been discussed in great details in
[Al.An.Ga.1]. In particular, it is shown there that admissibility implies the existence of
reproducing kernel subspaces of L2(X), to which the wavelet transform belongs.

One of the difficulties of the method comes from the fact that the A operator defined
by (IV.61) might be difficult to control. Nevertheless, let us assume that A is bounded
from below and above. Then it is theoretically possible to invert the associated wavelet
transform, that is to recover f(x) from its transform Tf (x) =< f, πσ(x) >, by using the
inverse of A. Unfortumately there does not exist in general an explicit formula for A−1,
so that explicit computations are difficult to perform. The best that can be expected is
that A−1 can be expressed as a small perturbation of the identity (up to a multiplica-
tive constant). Then an approximate inversion is possible, the precision of which can be
controlled.

There is actually a quite simple way to exhibit weakly admissible sections, proposed
in [To.2]. The idea is the following. The previous discussions were based on a careful study
of the Jacobian of the map

x→ uξ(x)

where x globally represents a set of variables in X = GaWH/Γ. A possibility is to absorb
such a Jacobian in a redefinition of the wavelets (corresponding to the introduction of the
field of operators T (x) described in the last definition). Let us consider in more details
the example of the X1 coset space discussed in section IV.1.a. To the wavelet ψ(p,q,r)(x)

associate the function Ψ(p,q,r)(x), defined as follows by its Fourier transform

̂Ψ(p,q,r)(ξ) = ̂ψ(p,q,r)(ξ) ·
√

Jξ
β(p, r)

(IV.62)
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where Jξ is the Jacobian introduced in eq. (IV.25). Using the same arguments as before,
it is not difficult to see that if the section β(p, r) is such that

χ(ξ) =

∫

k
ξ
(IRn)

|ψ̂(k)|2dk (IV.63)

is strictly positive and bounded almost everywhere as a function of ξ (i.e. is the multiplier
of an invertible convolution operator Cχ), then eq. (IV.7) holds, with A = Cχ.

The interesting point in such a procedure is that since ψ is square-integrable by as-
sumption, the admissibility of the section now only depends on β, through the set kξ(IR

n),
and can be analyzed in a rather simple way. Such an analysis was done in the one-
dimensional case in [To.2].

The construction can of course be applied to the other coset spaces previously studied.

IV.3 Remark: the case of coadjoint orbits

It turns out that in the case where the coset space X is isomorphic to the phase space
associated with the GaWH action on L2(IRn), there is a simple corresponding geometrical
picture. Indeed, let us consider a separable locally compact Lie group G, assumed to be
exponential and solvable for simplicity. Consider also an irreducible unitary representation
π of G, then associated with a coadjoint orbit OF . Pick F ∈ OF , and let H be a cor-
responding polarization, fulfilling the Pukanszky condition. Then by general results (see
[Kir],[Gui] for a review) the coadjoint orbit (or phase space) OF is given by

OF = Ad∗(G) · F ∼= G/GF (IV.64)

where GF is the stability G-subgroup of F .

GF = {g ∈ G, Ad∗(g) · F = F} (IV.65)

The isomorphism is given by the map [ϕF ] : G/GF → OF , quotient of

ϕF : g ∈ G → Ad∗(g) · F ∈ OF (IV.66)

by its radical. Under this isomorphism, the coadjoint action of G on OF is then equivalent
to

[Ad∗(g) · [ϕF ]]([h]) = [ϕF ]([λ(g) · h]) (IV.67)

(here [h] ∈ G/GF denotes the equivalence class of h ∈ G).
The corresponding wavelet transform

T : L2(G/H) → L2(G/GF ) (IV.68)

then maps functions on the configuration space (or wave functions in a quantum mechanical
terminology) into functions on the phase space (i.e. classical objects). In such a particular

32



case, the wavelet transform appears as the inverse of a quantization map, in the language
of geometric quantization. There is here an interesting aspect, that should be carefully
studied in the general case. The special case where G is a semidirect product has already
been investigated in [DB], in which a method is described for finding strictly admissible
sections.

CONCLUSIONS

We have studied in this paper various constructions leading to time-frequency repre-
sentations theorems, generalizing the approach of [To.1-2] to the n-dimensional situation.
The basic tool was the representation theory of the affine Weyl-Heisenberg group GaWH ,
defined as the extension of the n-dimensional Weyl-Heisenberg group by IR∗

+ (scale param-
eter) and SO(n) (rotations).

The main goal was to provide decompositions of functions in L2(IRn) into elementary
contributions that are ”well localized” in some parameter space (in general the phase
space), and to control their localization properties.

Since the considered representations of the affine Weyl-Heisenberg group are not
square-integrable, the corresponding Schur coefficients do not directly provide families
of coherent states. Nevertheless, their restriction to adequate homogeneous spaces can be
considered as coherent states (except that the covariance with respect to the action of the
group is lost).

We have investigated in this paper coherent states systems associated with the Stone-
Von-Neumann-type representation of the affine-Weyl-Heisenberg group, for three different
coset spaces. When the considered coset space contains the phase space of the represen-
tation (i.e. in cases 1 and 3), there is no problem to find strictly admissible sections. The
trivial section is actually strictly admissible. However, this is no longer true when the coset
space does not contain the phase space of the representation. It would be interesting to
know if such a property generalizes to arbitrary representations.
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Math. 3 (1985) 303-346.
[He.Wa]: C. Heil, D. Walnut, Continuous and discrete wavelet transforms, SIAM

Reviews 31 (1989) p.628.
[Ka]: C. Kalisa, Ondelettes canoniques, Galiléennes et relativistes multidimension-
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