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PYRAMIDAL ALGORITHMS FOR LITTLEWOOD-PALEY

DECOMPOSITIONS

M.A. MUSCHIETTI† AND B. TORRÉSANI‡

Abstract. It is well known that with any usual multiresolution analysis of L2(IR) is associated
a pyramidal algorithm for the computation of the corresponding wavelet coefficients. It is shown
that an approximate pyramidal algorithm may be associated with more general Littlewood-Paley
decompositions. Accuracy estimates are provided for such approximate algorithms. Finally, some
explicit examples are studied.

1. Introduction. Wavelet analysis has emerged in the past ten years as a com-
pletely generic methodology for solving problems in many different areas such as math-
ematical analysis and operator theory, numerical analysis, signal and image process-
ing, computer vision, computer musics, turbulence, astrophysics for instance. Among
the advantages of wavelet decompositions, their relative simplicity and the existence
of associated fast algorithms are ones of the most important [1] [6].

There exist essentially two different approaches to wavelets, namely the discrete
and the continuous ones. Roughly speaking, the discrete wavelet decompositions are
most adapted to problems in which it is important to reduce the volume of data, for
instance in signal or image compression, or numerical analysis. On the other hand,
for physical signal analysis problems, one is interested in keeping redundancy on the
wavelet transform, to get a finer analysis.

The main drawback of continuous wavelet decompositions is that there is a priori
no associated fast algorithm for the computation of the corresponding wavelet trans-
form. Some attempts have been made in order to cure such a drawback, mainly by
matching a multiresolution framework to the continuous setting (see for instance [4] [7]).
They are in general associated with limited classes of wavelets.

We describe here a method for associating fast algorithms to continuous wavelet
decompositions, based on the same philosophy. It is in particular shown that starting
from an usual mother wavelet, the scale discretization yields a new wavelet (called the
integrated wavelet) to which is associated a pair or low and high-pass filters. These
filters are in general not discrete, but may in some situations be well approximated
by discrete filters, the localization of which can be directly related to the regularity
of the scaling function.

The paper is organized as follows. Section 2 is devoted to a description the version
of continuous wavelet decompositions that we will use in the sequel. In section 3 we
present the algorithmic aspects we are interested in, and in particular our main result
theorem (3.2). We present some examples in section 4 and section 5 is devoted to
conclusion.

Throughout this paper we shall use the following notations. We shall denote
by || · ||p the Lp(IR), Lp([−π, π]) and the ℓp(ZZ) norms. The Lp([−π, π]) norm is
normalized as:

||f ||p =
(∫

[−π,π]
|f(x)|pdx

) 1
p
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Our conventions for Hermitian product and Fourier transform in L2(IR) are the fol-
lowing ones:

〈f, g〉 =
∫
f(x)g(x)∗ dx ,

where the star denotes complex conjugation, and

f̂(ξ) =

∫

IR

f(x)e−iξxdx

2. Continuous wavelet decompositions. Let us start from standard notions
of continuous wavelet analysis. We will focus on the analysis of L2(IR), and sometimes
describe in a few words the corresponding results in theH2(IR) context (we will denote

here byH2(IR) =
{
f ∈ L2(IR), f̂(ξ) = 0 ∀ξ ≤ 0

}
the complex Hardy space). We shall

be interested here in two “decomposition-reconstruction” schemes, corresponding to
different “reconstruction wavelets”.

2.1. The bilinear scheme. Generically, an infinitesimal wavelet (or mother
wavelet) is a function ψ ∈ L1(IR) such that the following admissibility condition
holds:

cψ =

∫ ∞

0

∣∣∣ψ̂(u)
∣∣∣
2 du

u
=

∫ ∞

0

∣∣∣ψ̂(−u)
∣∣∣
2 du

u
= 1(1)

(in such a case, ψ is in general taken to be a real-valued function). If ψ̂ is say

differentiable, equation (1) basically means that ψ̂(0) = 0, otherwise stated:

∫ ∞

−∞
ψ(x) dx = 0(2)

Such a mother wavelet provides the following analysis of L2(IR): for any (b, a) ∈
IR× IR∗

+, one introduces the wavelet:

ψ(b,a)(x) =
1

a
ψ

(
x− b

a

)
(3)

and one has the following representation theorem, the proof of which is well known
and can be found for instance in [3] or [2].

Theorem 2.1 (Calderón). Let ψ be a mother wavelet. Then any f ∈ L2(IR)
decomposes as follows:

f =
∫
IR×IR∗

+

Tf (b, a) ψ(b,a)
db da
a

Tf (b, a) = 〈f, ψ(b,a)〉
(4)

strongly in L2(IR). Tf ∈ L2(IR × IR∗
+) is called the wavelet transform of f with

respect to the analyzing wavelet ψ. If ψ is sufficiently well localized in time and
frequency (i.e. both ψ and ψ̂ have sufficient decay at infinity), Tf gives informations
on the time-frequency localization of f . Conversely, equation (4) states that the
wavelet transform is invertible on its range, allowing the reconstruction of the analyzed
function from its wavelet transform.
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If one restricts to the Hardy space H2(IR), a weaker admissibility condition (con-
cerning only the positive frequency part of ψ) is sufficient. Simply assuming that:

cψ =

∫ ∞

0

∣∣∣ψ̂(u)
∣∣∣
2 du

u
= 1(5)

Theorem 2.1 holds for any f ∈ H2(IR).
Let then ψ(x) be an infinitesimal wavelet, and let Φ(x) be such that

∣∣∣Φ̂(ξ)
∣∣∣
2

=

∫ ∞

|ξ|

∣∣∣ψ̂(u sgn(ξ))
∣∣∣
2 du

u
.(6)

In other words,
∣∣∣ψ̂(uξ)

∣∣∣
2

= −u ∂u
∣∣∣Φ̂(uξ)

∣∣∣
2

for all ξ ∈ IR, and lim
ξ→∞

∣∣∣Φ̂(ξ)
∣∣∣
2

= 0. Φ is

called a scaling function, and one associates to it the corresponding:

Φ(b,a)(x) =
1

a
Φ

(
x− b

a

)
.(7)

To any f ∈ L2(IR) associate its smoothing (with respect to Φ) at scale a:

sa(x) =

∫

IR

〈f,Φ(b,a)〉Φ(b,a)(x) db(8)

that is:

sa(x) =

∫ ∞

a

du(x)
du

u
.(9)

where da(x) stands for the details of f(x) at scale a:

da(x) =

∫

IR

〈f, ψ(b,a)〉ψ(b,a)(x)db(10)

Then sa ∈ L2(IR), and one has the following decompositions, whose proofs are imme-
diate from that of theorem 2.1:

Corollary 2.2. Let ψ an infinitesimal wavelet, and Φ an associated scaling
function. Then any f ∈ L2(IR) can be expressed as:

f = lim
a→0

sa = sa0 +

∫ a0

0

da
da

a
(11)

(for any a0 ∈ IR∗
+) strongly in L2(IR). The corollary also holds in the H2(IR)

context. Let us now set

Dj(x) =

∫ 2−j

2−j−1

da(x)
da

a
.(12)

Then Dj ∈ L2(IR) represent the details of f(x) visible at scale 2j+1 and not at scale
2j , and

D̂j(ξ) = f̂(ξ)

∫ 2−j

2−j−1

∣∣∣ψ̂(aξ)
∣∣∣
2 da

a
a.e.(13)
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Introducing the function Ψ(x), such that:

∣∣∣Ψ̂(ξ)
∣∣∣
2

=

∫ 1

1
2

∣∣∣ψ̂(aξ)
∣∣∣
2 da

a
(14)

one then has:

D̂j(ξ) = f̂(ξ)
∣∣∣Ψ̂(2−jξ)

∣∣∣
2

.(15)

We will refer to the Ψ(x) function as the (global or integrated) wavelet. Notice that
equation (14) does not completely define the wavelet Ψ. Once again, one can restrict
to wavelets with positive-valued Fourier transform, but this is not necessary. By
construction, the integrated wavelets lead to a partition of unity in the Fourier space
as follows:

+∞∑

j=−∞

∣∣∣Ψ̂(2jξ)
∣∣∣
2

=
∣∣∣Φ̂(2j0ξ)

∣∣∣
2

+

j0∑

j=−∞

∣∣∣Ψ̂(2jξ)
∣∣∣
2

= 1(16)

for all ξ ∈ IR. We also have:

|Ψ̂(ξ)|2 = |Φ̂(ξ/2)|2 − |Φ̂(ξ)|2 .(17)

Defining the dilates and translates of the Φj and Ψj as

Φjb(x) = 2−jΦ
(
2−j(x− b)

)

Ψjb(x) = 2−jΨ
(
2−j(x− b)

)(18)

we then have:

Theorem 2.3. Let ψ an infinitesimal wavelet, and let Ψ and Φ be associated
integrated wavelet and scaling functions as in equations (14) and (6). Then any
f ∈ L2(IR) can be decomposed as:

f =

∫

IR

〈f,Φj0b 〉 Φj0b db +

j0∑

j=−∞

∫

IR

〈f,Ψjb〉 Ψ
j
b db(19)

strongly in L2(IR).
We shall use the following notations

Tjf(b) = 〈f,Ψjb〉
Sjf(b) = 〈f,Φjb〉

(20)

2.2. The linear scheme. It is well known that the reconstructing and the an-
alyzing wavelets can be decoupled i.e. one can use different infinitesimal wavelets for
the computation of the coefficients and for the reconstruction of the analyzed function
from the coefficients. In such a case, the admissibility condition (1) has to be modified
accordingly.

A particular example of such a decoupling, which has been known for a long
time, consists in taking formally a Dirac distribution for the reconstructing wavelet.
Assuming instead of equation (1) that

kψ =

∫ ∞

0

ψ̂(u)
du

u
=

∫ ∞

0

ψ̂(−u) du
u

= 1 ,(21)
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one has the following decomposition of any f ∈ L2(IR):

f(x) =

∫

IR∗

+

〈f, ψ(x,a)〉
da

a
(22)

strongly in L2(IR). This is the so-called Morlet reconstruction formula of f from
its wavelet coefficients. Such a linear analysis (linear in the ψ function) generates a
continuous multiresolution analysis as follows: introduce the linear scaling function
ϕ ∈ L1(IR), defined by:

ϕ̂(ξ) =

∫ ∞

|ξ|
ψ̂(u sgn(ξ))

du

u
.(23)

ϕ is also such that ψ̂(uξ) = −u ∂uϕ̂(uξ) for all ξ ∈ IR. Associate to ϕ the following
functions:

ϕ(b,a)(x) =
1

a
ϕ

(
x− b

a

)
.(24)

Finally introduce:

δa(x) = Tf (x, a) = 〈f, ψ(x,a)〉(25)

and

σa(x) = 〈f, ϕ(x,a)〉 .(26)

One then has the linear analogue of Theorem 2.1 and the corresponding corollary:

Theorem 2.4. Let ψ ∈ L1(IR) be a mother wavelet, such that equation (21)
holds, and let ϕ be

the associated linear scaling function. Then any f ∈ L2(IR) can be decomposed
as:

f = lim
a→0

σa

= σa0 +
∫ a0
0
δa

da
a , a0 ∈ IR∗

+

=
∫∞
0
δa

da
a

(27)

strongly in L2(IR).
The integrated wavelets are then defined as:

Θ̂(ξ) =

∫ 1

1
2

ψ̂(aξ)
da

a
(28)

and yield a partition of unity in the Fourier space:

+∞∑

j=−∞
Θ̂(2jξ) = ϕ̂(2j0ξ) +

∑

j≤j0
Θ̂(2jξ) = 1(29)

The linear wavelets still appear as differences of smoothings at two consecutive scales,
as:

Θ̂(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ)(30)
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and every f ∈ L2(IR) decomposes as:

f(x) =

∞∑

j=−∞
〈f,Θjx〉 = 〈f, ϕj0x 〉+

∑

j≤j0
〈f,Θjx〉(31)

where Θjb(x) = Θj(x− b).

3. Associated approximate filters.

3.1. Pyramidal algorithms. Let us recall the usual algorithmic structure asso-
ciated with a multiresolution analysis. Let φ and ψ be respectively a scaling function
and a wavelet associated with the multiresolution analysis, and set, ∀f ∈ L2(IR)

Tjf(n) = 〈f, ψjn〉 = 2−j
∫
IR
f(x)ψ(2−j(x− n))∗dx

Sjf(n) = 〈f, φjn〉 = 2−j
∫
IR
f(x)φ(2−j(x− n))∗dx

(32)

Notice that for any value of the scale parameter a = 2j , we sample the corresponding
wavelet and scaling function transform at unit sampling frequency.

Then if ψ and φ are related by

φ̂(2ξ) = m0(ξ)φ̂(ξ)

ψ̂(2ξ) = m1(ξ)φ̂(ξ)
(33)

where m0 and m1 are the 2π-periodic low-pass and high-pass filters

m0(ξ) =
∑
k hke

ikξ

m1(ξ) =
∑
k gke

ikξ(34)

then the coefficients may be computed using the following pyramidal algorithm

Tjf(n) =
∑
k g

∗
kSj−1f(n− k2−j−1)

Sjf(n) =
∑
k h

∗
kSj−1f(n− k2−j−1)

(35)

The algorithm is called pyramidal since scaled copies of the same filters are used
throughout the calculation, and the coefficients are obtained by successive convolu-
tions with such filters. It is easy to see that the total number of multiplications
necessary to process N samples of say S0f is proportional to N log(N). It is schemat-
ically described in figure 1 (in the particular situation where the m0(ξ) filter has only
3 non vanishing coefficients).

h-1

h-1 h-1

h-1

h-1

h1 h1

h1

h1

h0

h0 h0

h0

h0

h1

j=0

j=1

j=2

j=3

Figure 1: QMF algorithm associated with the wavelet transform on a fine grid
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3.2. Approximate filters. We address now the problem of discretization of the
previous wavelet decompositions. Up to now, we have only obtained decompositions
that are discrete with respect to the scale, and continuous with respect to the position.
The problem is that no discrete filters are “a-priori” available.

We shall work with both the linear and the bilinear analysis-reconstruction schemes
at the beginning, and specify our choice later on. We shall assume from now on that
a pair of functions

m0(ξ) =
Φ̂(2ξ)

Φ̂(ξ)
(36)

m1(ξ) =
Ψ̂(2ξ)

Φ̂(ξ)
(37)

can be defined almost everywhere in IR. This is clearly the case in the bilinear scheme,
where |Φ̂| is monotonic for both ξ ≥ 0 and ξ ≤ 0. The problem is that in general, such
a m0-function is not 2π-periodic, and thus cannot be used in a pyramidal algorithm.

Nevertheless, a modification is possible. Indeed, if Φ̂(ξ) is “concentrated” around

the origin, in say the interval [−π, π]1, then one may expect that Φ̂ “does not see too

much” the non-periodicity of m0(ξ), and that m0(ξ)Φ̂(ξ) can be well approximated

by ma
0(ξ)Φ̂(ξ), for some 2π-periodic function ma

0(ξ)
2.

Let us introduce here for convenience the following subspace of L2(IR):

U0 =
{
f ∈ L2(IR), f =

∑
αkΦ(x− k), {αk} ∈ ℓ2(ZZ)

}
(38)

We will assume that the collection
{
Φ(x − k), k ∈ ZZ} is a Riesz basis of U0, or,

equivalently, there exists two finite and nonzero constants A and B such that

A ≤
∑

k

|Φ̂(ξ + 2πk)|2 ≤ B almost everywhere(39)

Then it follows from general results that there exists a function χ ∈ L2(IR) such that
the sequence {χ(x−k), k ∈ ZZ} is the basis of U0) biorthogonal to {Φ(x−k), k ∈ ZZ}.
χ is given by its Fourier transform

χ̂(ξ) =
Φ̂(ξ)

∑
k |Φ̂(ξ + 2πk)|2

(40)

Consider now the discretization of the functions Tjf(x) and Sjf(x), that we shall
denote by T dj f(n) and S

d
j f(n) respectively:

Sdj f(n) = Sjf(n) ∀n ∈ ZZ
T dj f(n) = Tjf(n) ∀n ∈ ZZ

(41)

1 This assumption is motivated by the fact that we will sample the wavelet transform and the
scaling function transform at unit sampling frequency

2 A natural candidate for ma

0
(ξ) is the periodization

∑
k
m0(ξ + 2πk) of m0(ξ), but as we shall

see, there are many other choices.



8 M.A. MUSCHIETTI AND B. TORRESANI

Let ma
0(ξ) ∈ L2([−π, π]) and ma

1(ξ) ∈ L2([−π, π]) be two (2π-periodic) candidates
for approximate filters, and denote by {hak, k ∈ ZZ} and {gak , k ∈ ZZ} their respective
Fourier coefficients. We will then set:

{
T a1 f(n) =

∑
k g

a∗
k S

d
0f(n− k)

Sa1f(n) =
∑
k h

a∗
k S

d
0f(n− k)

(42)

and for j > 1
{

T aj f(n) =
∑
k g

a∗
k S

a
j−1f(n− 2j−1k)

Saj f(n) =
∑
k h

a∗
k S

a
j−1f(n− 2j−1k)

(43)

Our purpose is to compare such “algorithmic expressions”3 with the exact expressions
Sdj f and T dj f , and to find “best approximants” for the ma

0 and ma
1 filters.

The first remark is the following
Proposition 3.1.
1. Ker(Sd0 ) = U⊥

0 .
2. Saj · U⊥

0 = T aj · U⊥
0 = 0 For any j = 1, ....

Proof: The first part is a direct consequence of the definition of U0, and implies
the second part by definition (43).

Our main result is the following.
Theorem 3.2. Let Φ(x) and Ψ(x) be the scaling function and the integrated

wavelet respectively associated with the infinitesimal wavelet ψ(x), and let m0(ξ) and
m1(ξ) be the associated low-pass and high-pass filters. For i = 0, 1 set

µ(mi,m
a
i ) =

[ ∫

IR

∣∣(ma
i (ξ)−mi(ξ))Φ̂(ξ)

∣∣2dξ
]1/2

(44)

Then the following properties are satisfied
1. There exists a unique pair of 2π-periodic filters ma

i (ξ) = m̃i(ξ) minimizing
µ(mi,m

a
i ), given by:

m̃0(ξ) =

∑
k∈ZZ Φ̂(ξ + 2πk)∗Φ̂(2(ξ + 2πk))

∑
k∈ZZ |Φ̂(ξ + 2πk)|2

(45)

m̃1(ξ) =

∑
k∈ZZ Φ̂(ξ + 2πk)∗Ψ̂(2(ξ + 2πk))

∑
k∈ZZ |Φ̂(ξ + 2πk)|2

(46)

2. For the above choice of filters, and setting

Ci = ess sup
ξ∈IR

|m̃i(ξ)| , i = 0, 1(47)

the following inequalities hold:

||Saj f − Sdj f ||∞ ≤ µ(m̃0,m0)2
1−j

2
1− (C0

√
2)j

1− C0

√
2

||f ||2(48)

||T aj f − T dj f ||∞ ≤ 2
1−j

2

(
µ(m̃1,m1) + C1µ(m̃0,m0)

√
2
1− (C0

√
2)j−1

1− C0

√
2

)
||f ||2(49)

3 because this is precisely what is numerically computed in practice
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3. For any f ∈ U0

Sa1f = Sd1f
T a1 f = T d1 f

(50)

Before giving the proof of the theorem, let us give the following immediate corol-
lary:

Corollary 3.3. Assume that the infinitesimal wavelet ψ(x) is associated with
a linear “analysis-reconstruction” scheme. Then the associated approximate QMFs
m̃i(ξ) given by equations (45) and (46) satisfy

m̃0(ξ) + m̃1(ξ) = 1(51)

so that we have the “reconstruction algorithm”

S0f(n) =
∑

j≥0

T aj (n)(52)

This reconstruction formula is the discrete counterpart of Morlet’s reconstruction
formula (22). It was also obtained in a slightly different context by Beylkin and
Saito [5].

Proof of the theorem: Using the inequality ||f ||∞ ≤ ||f̂ ||1/2π, we shall directly
work in the Fourier space. First of all, we clearly have

||Ŝa1f − Ŝd1f ||1 ≤ ∑
k∈ZZ

∫ 2π

0

∣∣[ma
0(ξ)−m0(ξ + 2πk)]Φ̂(ξ + 2πk)f̂(ξ + 2πk)

∣∣dξ
≤

∫
IR

∣∣[ma
0(ξ)−m0(ξ)]Φ̂(ξ)f̂(ξ)

∣∣dξ

≤ 2π||f ||2
[ ∫

IR
[ma

0(ξ)Φ̂(ξ)− Φ̂(2ξ)
∣∣2dξ

]1/2
= 2πµ(ma

0 ,m0)||f ||2
(53)

(the last inequality coming from the Cauchy-Schwartz inequality). This explains the
occurence of such a term in our formulation. The minimization of this term is a
classical problem, and leads to

∫

IR

Φ(x+ k)∗
[∑

l

hal Φ(x+ l)− 1

2
Φ
(x
2

)]
dx = 0 ∀k ∈ ZZ(54)

or, otherwise stated
∫ 2π

0

eikξ
[
ma

0(ξ)
∑

l∈ZZ
|Φ̂(ξ + 2πl)|2 −

∑

l∈ZZ
Φ̂(ξ + 2πl)∗Φ̂

(
2(ξ + 2πl)

)]
dξ = 0 ∀k ∈ ZZ(55)

The unique solution is precisely that given in equation (45). The estimation of
||T a1 f − T d1 f ||∞ is completely similar, and leads to the approximate filter given in
equation (45). The details are left to the reader.

Let us now consider larger scales. Before going into the details, let us introduce
for convenience the following “intermediate” sequences:

{
T ijf(n) =

∑
k g

a∗
k S

d
j−1f(n− 2j−1k)

Sijf(n) =
∑
k h

a∗
k S

d
j−1f(n− 2j−1k)

(56)

Then clearly

||Ŝaj f − Ŝdj f ||1 ≤ ||Ŝaj f − Ŝijf ||1 + ||Ŝijf − Ŝdj f ||1
||T̂ aj f − T̂ dj f ||1 ≤ ||T̂ aj f − T̂ ijf ||1 + ||T̂ ijf − T̂ dj f ||1

(57)
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Again we focus on the approximations Saj f , the proof for the details T aj f being com-
pletely similar.

||Ŝijf − Ŝdj f ||1 =
∫ 2π

0

∣∣∑
k∈ZZ m0

(
2j−1(ξ + 2πk)

)
Φ̂
(
2j−1(ξ + 2πk)

)
f̂(ξ + 2πk)

−∑
k∈ZZ m

a
0

(
2j−1ξ)Φ̂

(
2j−1(ξ + 2πk)

)
f̂(ξ + 2πk)

∣∣dξ

2π ≤ ||f ||2
[ ∫

IR

∣∣ma
0

(
2j−1ξ

)
Φ̂
(
2j−1ξ

)
− Φ̂

(
2jξ

)∣∣2dξ
]1/2

≤ 2π||f ||22
1−j

2

[ ∫
IR

∣∣ma
0(ξ)Φ̂(ξ)− Φ̂(2ξ)

∣∣2dξ
] 1

2

= 2π2
1−j

2 µ(ma
0 ,m0)||f ||2

(58)
The second term is estimated as follows

||Ŝaj f − Ŝijf ||1 ≤
∫
IR

∣∣ma
0

(
2j−1ξ

)∣∣∣∣ ̂Saj−1f(ξ)− ̂Sdj−1f(ξ)
∣∣dξ

≤ ess supξ∈IR |ma
0 ||| ̂Saj−1f − ̂Sdj−1f ||1

(59)

Summarizing, for ma
0(ξ) = m̃0(ξ) we have

||Ŝaj f − Ŝdj f ||1 ≤ 2π2
1−j

2 µ(m̃0,m0)||f ||2 + C0|| ̂Saj−1f − ̂Sdj−1f ||1
≤ 2π2

1−j

2 µ(m̃0,m0)
(
1 + C0

√
2 + (C0

√
2)2 + ...+ (C0

√
2)j−1

)
||f ||2

≤ 2π2
1−j

2 µ(m̃0,m0)
1−(C0

√
2)j

1−C0

√
2

||f ||2
(60)
The same kind of estimates yields the error estimate for the T aj f coefficients. This
achieves the proof of the two first items of the theorem.

Let us turn to the third part of the theorem. Let us then assume that f ∈ U0.
This means that in the Fourier space, f is of the form

f̂(ξ) = F (ξ)Φ̂(ξ)(61)

for some 2π-periodic function F ∈ L2([−π, π]). Then an explicit computation of

Ŝa1f − Ŝd1f yields

Ŝa1f − Ŝd1f =
∑
k∈ZZ

(
ma

0(ξ)
∗ −m0(ξ + 2πk)∗

)∣∣Φ̂(ξ + 2πk)
∣∣2F (ξ)

= 0 if ma
0 = m̃0.

(62)

This concludes the proof of the theorem.

Remark: asymptotic behaviour:

It is interesting to see what is the asymptotic behaviour of the estimates when
j → ∞. Consider for instance the estimate of ||Saj f − Sdj f ||∞, the coefficient of ||f ||2
goes as:

||Saj f − Sdj f ||∞ ∼j→∞ µ(m̃0,m0)
√
2Cj0/(C0

√
2− 1) ||f ||2(63)

(for C0

√
2 6= 1) in the limit. The limit is finite for C0 = 1 and zero for C0 < 1, while

it diverges for C0 > 1. In the two first cases, this means that the accumulation of
errors due to the approximate algorithm is compensated by the fact that Sjf , lying
at larger and larger scales, is all the time sampled at the same frequency. This shows
that “redundancy implies stability”.
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3.3. Decay of approximate filter coefficients. The localization properties of
the {hk} (and thus {gk}) approximate filters can be directly related to the regularity
properties of the scaling function, as follows.

Theorem 3.4. Let φ ∈ L1(IR) be a p-times differentiable scaling function, and
let m̃0(ξ) =

∑
k hke

ikξ be the low-pass filter defined according to equation (45). Then
if for any m = 0, 1, ...p

∣∣∣∣∣
dmφ̂(ξ)

dξm

∣∣∣∣∣ ≤
Km

(1 + |ξ|) 1
2
+ǫ

(64)

for some positive constants Km, ǫ, then

hk = O
(
k−p

)
(65)

Proof: Assume that φ̂(ξ) is p times differentiable. Then after p differentiations,
equation (45) yields

dpm̃0(ξ)

dξp
=

∑
kG(ξ + 2πk)[∑

k |φ̂(ξ + 2πk)|2
]p(66)

where G(ξ) is a finite linear combination of terms of the form

dmφ̂(ξ)

dξm
dp−mφ̂(ξ)∗

dξp−m

and

dmφ̂(ξ)

dξm
dp−mφ̂(2ξ)∗

dξp−m

and their complex conjugates. Then the estimate (66) gives

dpm̃0(ξ)

dξp
∈ L∞([0, 2π])(67)

and

dpm̃0(ξ)

dξp
∈ C(IR)(68)

Moreover,

kphk =
i−p

2π

∫ 2π

0

dpm̃0(ξ)

dξp
e−ikξdξ(69)

leads to

|k|p|hk| ≤
1

2π

∫ ∣∣∣∣
dpm̃0(ξ)

dξp

∣∣∣∣ dξ ≤ ||d
pm̃0

dξp
||∞(70)

which proves the theorem.
Thus, under some weak assumptions on the scaling function, it is possible to get

well localized filters. However, this problem is completely independent of the accuracy
problem addressed in the previous section.

Notice also that theorem 3.4 is to be compared with similar results in the case of
classical multiresolution analysis, which led to the notion of r-regular multiresolution
analysis (see [6]).
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3.4. The bilinear scheme. We have seen in the corollary of the previous sub-
section that the approximate filters m̃0 and m̃1 given in (45) and (46) are ideally
adapted to the linear analysis-reconstruction scheme. However, in the bilinear case,
m̃0 and m̃1 cannot be directly used to “reconstruct” the analyzed function from the
approximate coefficients, since they do not fulfill the QMF condition:

|m̃0(ξ)|2 + |m̃1(ξ)|2 6= 1 in general(71)

A possibility is then to use different filters for the reconstruction, for instance m̃0 as
low-pass filter, and

m̃r
1(ξ) =

1− |m̃0(ξ)|2
m̃1(ξ)

(72)

as high-pass filter. One has in such a case to be careful with the zeros of the m̃1(ξ)
filter.

As an alternative, the same kind of analysis as before can be performed in the
bilinear “analysis-reconstruction” scheme. The previous arguments have to be applied
to the details and approximations instead of the wavelet coefficients themselves.

ŝj(ξ) =
∣∣Φ̂(2jξ)

∣∣2f̂(ξ)
(73)

Using again approximate filters to evaluate the coefficients, one is then naturally led
to the quantity:

ŝaj (ξ) = |ma
0(ξ)|2 ̂saj−1f(ξ)(74)

At the first step for instance, one has to evaluate

||sa1 − sd1||∞ ≤ ||f ||2
∫

IR

∣∣∣
[
|ma

0(ξ)|2 − |m0(ξ)|2|Φ̂(ξ)|2
]∣∣∣

2

dξ(75)

The minimization of such a quantity naturally leads to

|ma
0(ξ)|2 =

∑
k∈ZZ |Φ̂(ξ + 2πk)|2|Φ̂(2ξ + 4πk)|2

∑
k∈ZZ |Φ̂(ξ + 2πk)|4

(76)

and similarly

|ma
1(ξ)|2 =

∑
k∈ZZ |Φ̂(ξ + 2πk)|2|Ψ̂(2ξ + 4πk)|2

∑
k∈ZZ |Φ̂(ξ + 2πk)|4

(77)

It is worth noticing that in such a case, the bilinear scheme is well suited for this pair
of filters, and ensures the validity of the usual QMF relation:

|ma
0(ξ)|2 + |ma

1(ξ)|2 = 1(78)

Moreover, it is easy to derive the “bilinear counterpart” of theorem 3.4, relating the
length of the approximate filters to the regularity of the scaling function.
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3.5. Some complementary remarks.

1. The algorithm described above is actually adapted to the problem of find-
ing approximate discretization of Littlewood-Paley decompositions, and is a priori
independent of the linear or bilinear schemes derived from continuous wavelet decom-
positions. In other words, there is no connection between the b discretization problem
and the scale discretization (which is not a true discretization in the method reported
in section 2). Corollary 3.3 simply states that if one considers the filters m̃0 and m̃1,
the choice of the linear scheme yields simpler reconstruction formulas.

2. Throughout this paper, we have implicitely fixed a reference scale by the
choice of a sampling frequency equal to one for all the voices of the wavelet transform.
A change of this sampling frequency is equivalent to a global scaling of L2(IR).

3. Assume that we are in the case of a scaling function with exponential decay
in the Fourier space (i.e. Φ̂(ξ) ≤ Cφe

−α|ξ| for some positive α). Then it is not very
difficult to show that (in the case of a unit sampling frequency) the approximation of
the filters obtained by sampling the inverse Fourier transform of m0 leads to an error
on the scaling function coefficients of the order e−απ. In the same way, defining the
approximate 2π-periodic high-pass filter by the QMF-relation leads to the same kind
of error estimate for the wavelet coefficients.

4. Obviously, it follows from the expressions of the approximate filters (both
in the linear and bilinear schemes) that if Φ and Ψ are associated with an usual
multiresolution analysis, with 2π-periodic filters, one recoversma

0 = m0 andm
a
1 = m1.

5. It was shown in [2] how to use Calderón’s formula to get descriptions of the
Fourier space different from the Littlewood-Paley one, by replacing the powers of 2 by
an arbitrary monotonic sequence of scale parameters. It sounds reasonable to think
of corresponding approximate algorithms similar to the one described above, at least
for rational scale parameters. However this has not been done at the present time.

4. Examples. There are many examples of continuous wavelets for which an
efficient algorithm is needed. We describe here some very simple examples (the filters
coefficients have been computed using the Mathematica Package).

4.1. The LOG and DOG wavelets. The LOG wavelets are widely used in the
context of computer vision. LOG stands for “Laplacian Of Gaussians”. As stressed
in [2], in the linear “decomposition-reconstruction” scheme, if

ψ(x) =
1√
π
(1− x2)e−x

2/2(79)

the associated scaling function and integrated wavelet are given by

ϕ(x) =
1

2
√
2π
e−x

2/2(80)

and

Θ(x) =
1

2
√
2π

(
e−x

2/2 − 2e−2x2)
(81)

The integrated wavelet is then a DOG wavelet (“Difference Of Gaussians”), and there
is no problem to derive the details coefficients T dj f form the approximations Sdj f . But
one clearly need an efficient algorithm to compute the approximations. In general, the
scaling function and wavelet have to be scaled properly in order that the corresponding
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transforms can be accurately sampled at unit sampling frequency. We shall then
consider more general scaling functions

ϕ̂(ξ) = e−ξ
2/α(82)

with the corresponding integrated wavelets. We give as examples the plots of the
approximate low-pass filters m̃0(ξ) (the high-pass filter m̃1(ξ) is easy to deduce) ,
and the coefficients of m̃0(ξ) and m̃1(ξ) for α = 4 and α = 6 respectively. It is
worth noticing that in both cases (and in fact for any positive α), the {hk} and {gk}
sequences are rapidly decreasing, as a consequence of theorem 3.4.

-10 -5 0 5 10

0.2

0.4

0.6

0.8

1

Figure 2: Approximate low-pass filter for the DOG wavelet with α = 4
4.1.1. α = 4. hk coefficients

{0.3256327400276189, 0.23348983204217, 0.085798244731082,
0.01625749135447543, 0.0015489926732795, 0.0000922406284932685,
−6.3294 10−6, 5.04664 10−6,−3.0372 10−6,
1.84053 10−6,−1.11595 10−6, 6.76772 10−7,
−4.10463 10−7, 2.48954 10−7,−1.50997 10−7, 9.15844 10−8}

(83)

gk coefficients

{0.6743672599723812,−0.2334898320421699,−0.085798244731082,
−0.01625749135447542,−0.00154899267327945,−0.000092240628493343,
6.3294 10−6,−5.04664 10−6, 3.0372 10−6,
−1.84053 10−6, 1.11595 10−6,−6.76772 10−7,
4.10463 10−7,−2.48954 10−7, 1.50997 10−7,−9.15844 10−8}

(84)
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Figure 3: Approximate low-pass filter for the DOG wavelet with α = 6
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4.1.2. α = 6. The corresponding hk coefficients read

{0.3972771041574456, 0.2433136948393599, 0.05323383400865474,
0.004788125238023543,−0.00002934485917262438,
0.00007751303939803943,−0.00003576989742401233,
0.00001688424764446744,−7.97394 10−6,
3.76645 10−6,−1.77913 10−6, 8.40398 10−7,
−3.96976 10−7, 1.87518 10−7,−8.85773 10−8, 4.18409 10−8}

(85)

and the gk coefficients are

{0.6027228958425545,−0.2433136948393598,−0.05323383400865478,
−0.004788125238023527, 0.00002934485917263695,
−0.00007751303939808579, 0.00003576989742395847,
−0.00001688424764445047, 7.97394 10−6,
−3.76645 10−6, 1.77913 10−6,−8.40398 10−7,
3.96976 10−7,−1.87518 10−7, 8.85773 10−8,−4.18409 10−8}

(86)

4.1.3. Precision of the algorithm:. As we have seen, the estimate of the ac-
curacy of the approximate algorithm is governed by the functional µ(m0, m̃0). We
present here numerical estimation of this quantity for the DOG wavelets, for vari-
ous values of the α parameter. For instance, µ(m0, m̃0) = 1.03632 10−17 for α = 1,
µ(m0, m̃0) = 1.63909 10−6 for α = 3 and µ(m0, m̃0) = 0.0012859 for α = 6. Figure 4
represents the logarithm of µ(m0, m̃0) as a function of α.

2 3 4 5 6

-35

-30

-25

-20

-15

-10

Figure 4: Logarithm of µ(m0, m̃0) as a function of α

4.2. “Exponential-type” wavelets. These wavelets are real-valued wavelets,
characterized by their exponential decay in the Fourier space. Let

ψ̂n(ξ) =
1

(n− 1)!

|ξ|n
αn

e−|ξ|/α(87)

n = 1, ...∞ then controls the number of vanishing moments, and ψ̂n(ξ) has exponential
decay for all n. A direct computation yields the corresponding scaling function

ϕ̂n(ξ) = e−|ξ|/α
n−1∑

p=0

1

p!

|ξ|p
αp

(88)

Notice that φ̂n(ξ) ∼ξ∼0 1 + O(|ξ|n). Then φ̂n ∈ Cn−1(IR) and |dmφ̂/dξm| has expo-
nential decay ∀m = 0, ...n− 1, which implies that hk = O(k1−n).
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The integrated wavelets are easy to deduce, and the associated low-pass filter is
represented in figure 5, in the case n = 1 (with α = .3).
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Figure 5: Approximate low-pass filter for “exponential-type” wavelet with 1 vanishing moment
The case n = 1 is not very interesting numerically because ϕ̂ is nondifferentiable

at ξ = 0 and the m0 filter has slow decay. We shall then show the case n = 5, α = .3
for which the low-pass filter is shown in figure 6.
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Figure 6: Approximate low-pass filter for “exponential-type” wavelet with 5 vanishing moments
and the 16 top low-pass and high-pass filter coefficients are given by:

hk coefficients:

{0.2608909, 0.21193501, 0.11802165, 0.047464751,
0.012065044,−0.001261182,−0.004691885,−0.004500855,
−0.0034217616,−0.0023426834,−0.0015318216,−0.00096772754,
−0.00060530854,−0.00037287531,−0.00023103465,−0.00014240093}

(89)

gk coefficients:

{0.7391091,−0.21193501,−0.11802165,−0.047464751,
−0.012065044, 0.001261182, 0.004691885, 0.004500855,
0.0034217616, 0.0023426834, 0.0015318216, 0.00096772754,
0.00060530854, 0.00037287531, 0.00023103465, 0.00014240093}

(90)

It is worth noticing that all such coefficients are easy to obtain numerically.

4.3. The Cauchy wavelets. The same filters as before can be used to work
with the wavelets that were used by T. Paul in a quantum mechanical context (they
are canonically associated with the radial Schrodinger equation for the Hydrogen atom
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for instance). They are of the form

ψ̂n(ξ) =

{ 1
(n−1)!ξ

ne−ξ for positive values of ξ

0 otherwise
(91)

n = 1, ...∞ then controls the number of vanishing moments, and ψ̂n(ξ) has exponential
decay for all n. A direct computation yields the corresponding scaling function

ϕ̂n(ξ) =

{
e−ξ

∑n−1
p=0

1
p!ξ

p for positive values of ξ

0 otherwise
(92)

The first one is particularly interesting since it is canonically related with the Cauchy
kernel. Indeed, the scaling function coefficients of a function f(x) ∈ H2(IR) form an
analytic function of z = b + ia, that is the analytic continuation f(z) of f(x) to the
upper half-plane. The corresponding wavelet transform is then (up to a factor a) the
derivative of f(z) with respect to its imaginary part: Tf (b, a) = −a∂af(b+ ia).

The previous filters can then be used to get a fast approximate algorithm for
wavelet transform with such wavelets. Of course, adapted filters can also be obtained
by using directly the formula yielding the m̃i filters. However, φ̂n being discontinuous
at the origin for any n, such filters are not suitable for numerical use since they have
slow decay.

5. Conclusions. We have described in this paper a method that associates a pair
of (2π-periodic) filters with a Littlewood-Paley (or dyadic wavelet) decomposition,
yielding a pyramidal algorithm for the computation of a corresponding approximate
transform.

We have in particular shown that in the case where the Littlewood-Paley decom-
position comes from a “linear scheme” of infinitesimal wavelet analysis (as described
in [2]), such filter fulfill a kind of “linear” QMF relation, leading to simple reconstruc-
tion formulas from the approximate coefficients. Our main result was an estimate
of the accuracy of the approximate algorithm. The problem of finding approximate
filters was transformed into a minimization problem having a unique solution. Of
course when there already exist a pair of 2π-periodic filters naturally associated with
the wavelet, this solution coincides with it.

In the case of the “linear scheme” of infinitesimal wavelet analysis, we also got
explicit expressions for approximate filters. It is to be noticed that in some cases, the
error estimates go to zero as the scale becomes larger and larger. This is due to the fact
that the wavelet transform is sampled at a fixed sampling frequency, independently of
the scale. In such cases, the redundancy of the wavelet transform implies the stability
of the algorithm.

As in the case of usual multiresolution analysis, the localization (i.e. decay prop-
erties) of the approximate filters is directly related to the regularity of the scaling
function.

We also have discussed some simple examples, in particular those of the LOG
and DOG wavelets in the linear scheme, familiar to computer vision specialists, and
wavelets of exponential type. If the corresponding scaling functions are sufficiently
well localized in the Fourier space, good error estimates are obtained.

Let us notice that n-dimensional generalizations of our method with the tensor-
product construction of filters are straightforward.
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