
HAL Id: hal-01279437
https://hal.science/hal-01279437v1

Submitted on 26 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance GHASH Function for Long Messages
Nicolas Méloni, Christophe Negre, M. Anwar Hasan

To cite this version:
Nicolas Méloni, Christophe Negre, M. Anwar Hasan. High Performance GHASH Function for Long
Messages. ACNS: Applied Cryptography and Network Security, 2010, Beijing, China. pp.154-167,
�10.1007/978-3-642-13708-2_10�. �hal-01279437�

https://hal.science/hal-01279437v1
https://hal.archives-ouvertes.fr

High Performance GHASH Function for Long
Messages

Nicolas Méloni1, Christophe Négre2 and M. Anwar Hasan1

1 Department of Electrical and Computer Engineering
University of Waterloo, Canada

2 Team DALI/ELIAUS
University of Perpignan, France

Abstract. This work presents a new method to compute the GHASH
function involved in the Galois/Counter Mode of operation for block
ciphers. If X = X1 . . . Xn is a bit string made of n blocks of 128 bits
each, then the GHASH function effectively computes X1H

n +X2H
n−1 +

. . . XnH, where H is an element of the binary field F2128 . This operation
is usually computed by using n successive multiply-add operations over
F2128 . In this work, we propose a method to replace all but a fixed number
of those multiplications by additions on the field. This is achieved by
using the characteristic polynomial of H. We present both how to use
this polynomial to speed up the GHASH function and how to efficiently
compute it for each session that uses a new H.

Keywords: Galois/Counter mode, GHASH function, characteristic polyno-
mial.

1 Introduction

The Galois/Counter mode (GCM) is one of the modes of operation recommended
by the National Institute of Standards and Technology (NIST) [10]. As an au-
thenticated encryption mode, it generates both a cipher text and an authentica-
tion tag for each session. The cipher text is obtained by using the counter mode
of encryption (CRT) with a 128 bit block cipher algorithm (usually AES). The
authentication part is performed by using a universal hashing (GHASH) based
on multiplication in the binary field F2128 [9]. More precisely, if X = X1 . . . Xn

is a bit stream divided into 128 bit blocks, the authentication process computes
X1H

n +X2H
n−1 + · · ·+XnH, where H depends on the encryption key.

High speed GCM designs are usually based on both fast implementations of
the block cipher [2, 4, 6, 16] and bit-parallel multiplier over F2128 [1, 3, 8, 11]. One
can refer to [7, 13–15] for various implementations of the AES-GCM mode of
encryption.

In practice, the F2128 multiplier operates faster than the block cipher. How-
ever, it is easy to speed up the block cipher computation by taking advantage
of the natural parallelism of the CRT mode. In that case, the F2128 multiplier’s

critical path of the GHASH function becomes the bottleneck. To overcome this
problem, it is always possible to parallelize the GHASH computation process as
suggested in [9]. Such solutions imply a proportional increase in the number of
multipliers.

In this paper, we propose a new way to speed up the GHASH function for
long messages, by moving the bottleneck from the multiplier to that of one
XOR and one AND gate. This is achieved by first computing the characteristic
polynomial of H and then performing the computation of the GHASH function
modulo this polynomial. Effectively, we replace the finite field multiplication by
a faster operation. In addition, our method can be parallelized to further reduce
the GHASH computation time.

The remainder of this paper is organized as follow: Section 2 briefly describes
the functioning of GHASH and the implementation of the binary field F2128 . In
section 3, we describe our approach to use characteristic polynomials to compute
GHASH and a parallelization of this operation using multiple polynomial reduc-
tion units. In section 4, we present how to efficiently compute a characteristic
polynomial over F2128 . Finally, a few concluding remarks are made in section 5.

2 GHASH authentication function

GCM uses two main operations: encryption and authentication. Encryption is
performed using a block cipher encryption function whereas the authentication
mainly requires the use of multiplication over F2128 . One can find a full descrip-
tion of the encryption process in [9]. Below we only describe the authentication
part.

2.1 Authentication function

Let X = X1X2 . . . Xn be a bit string divided into 128 bit blocks (Xn might be
padded with 0’s) and H the 128 bit hash sub-key. The GHASH function performs
as follow:

Algorithm 1 GHASH function
Require: X, H
Ensure: GHASHH(X)
Y ← 0
for i = 1 to n do
Y ← (Y +Xi)×H

end for
return Y

One can verify that Algorithm 1 computes X1H
n+X2H

n−1 + · · ·+XnH. In
practice,X is obtained as the concatenation of the cipher text, the authentication
data and the length of those two data, and H is generated by applying the

block cipher to the zero block. Note that Algorithm 1 requires n multiplications
and n additions on the field F2128 . Assuming that we have only one multiplier
and one adder, these operations would be performed in sequence and the total
computation time for GHASH is approximately n times the combined delay of
a multiplication and an addition over the field. On binary fields, the delay of an
addition is exactly that of a bitwise XOR operation. In Table 1, we summarize
various bit-parallel multiplication methods and their space and time complexities
in terms of gate counts and gate delays.

Multiplier #AND #XOR Gate delay (DM)

CRT [1] O(m1.6) O(m1.6) O(m)DX + 4m0.4DA

Karatsuba [11] O(m1.58) O(m1.58) (3 log2(m) + 1)DX +DA

Fan-Hasan [3] O(m1.58) O(m1.58) (2 log2(m) + 1)DX +DA

Mastrovito [8] O(m2) O(m2) log2(m)DX +DA

Table 1. Complexities of various multipliers over F2m where DX (resp. DA) is the
delay of a two-input XOR (resp. AND) gate.

2.2 Underlying computations

In GCM specifications, the binary field F2128 is defined as F2[x]/(x128 + x7 +
x2 + x + 1). That is to say, the set of residues of polynomials with coefficients
in F2 modulo x128 + x7 + x2 + x + 1. An element A of this field can be easily
represented as a vector of length 128 with coefficient in F2.

In that case, addition is very simple as it just consists of a bitwise XOR
between the two summands. Multiplication can be performed by a succession of
shifts and additions. Depending on the platform on which GCM is implemented,
it is possible to improve this operation, as shown in [9] or [3] for instance.

One common feature among several of the previously reported methods for
improving GCM is that all efforts are made to optimize the field multiplication
only. In this work, we propose a way to improve the efficiency of the overall
computation of GHASHH(X) = X1H

n +X2H
n−1 + · · ·+XnH.

3 Computing GHASH using a characteristic polynomial

In order to easily present our method, here we consider a bit string, divided
into n blocks: X1X2 . . . Xn and an element H of F2128 . Our goal is to compute
GHASHH(X) = X1H

n + X2H
n−1 + · · · + XnH. As H ∈ F2128 there exists

a polynomial χH of degree 128 (at most), with coefficients in F2, such that
χH(H) = 0, called the characteristic polynomial of H in F2. This section shows
how to use such a polynomial to limit the number of field multiplications involved
in the polynomial evaluation.

3.1 Using χH

Let H ∈ F2m and χH(T) = Πm−1
i=0 (T +H2i

) be a polynomial in T of degree m.
The polynomial χH(T) is called the characteristic polynomial of H and satisfies
χH(H) = 0 and has its coefficients in F2.

Hence P = X1H
n +X2H

n−1 + · · ·+XnH = X1H
n +X2H

n−1 + · · ·+XnH
mod χH is considered as a polynomial in H with coefficients in F2m . Let us now
write χH as

∑m
i=0 ciT

i. It can be shown that cm = c0 = 1. Using the fact that
Hm =

∑m−1
i=0 ciT

i, it is possible to reduce a polynomial in H of degree n to a
polynomial of degree m− 1. As an example, let P = X1H

128 +X2H
127 + · · ·+

X128H with Xi ∈ F2m , where m = 128. Then P = (X2 + c127X1)H127 + (X3 +
c126X1)H126 + · · ·+ (X128 + c1X1)H + c0X1. It is important to note that all the
ci’s are in F2, which means that computing (Xm−i+1 + ciXi) is just an addition
over F2128 or a simple parameter assignment. Moreover, all these additions are
independent and can all be performed in parallel. Figure 1 shows a diagram
of a possible implementation of this operation in hardware. The output of the
polynomial reduction unit (PRU) is a polynomial of degree m− 1 in H. We can
take the output of the PRU to an multiply-and-add unit to apply the Horner
scheme and eventually obtain the desired GHASH value, which is an element of
F2128 (see Figure 2).

A generalized description of the operation of the structure of Figure 2 is
given in Algorithm 2, where a polynomial P of degree n ≥ m can be computed
using at most m− 1 field multiplications, replacing each of the remaining n−m
multiplications by a maximum of m parallel field additions.

c1 cm−1

m m

Y1Y0 Ym−2 Ym−1
Xj+1

m

cm−2

m m

χ
.

.

Η Y = X mod

Fig. 1. Implementation of the Polynomial Reduction Unit (PRU).

Algorithm 2 computes P in two steps:

– first it computes the remainder of P modulo χH using a shift-and-add algo-
rithm,

– then it effectively calculates P using the Horner scheme.

Complexity: For long messages, the value of n is expected to be much longer
than that of m, e.g. if the size of X is 1 MBytes, then n = 216, and in Algorithm
2, the upper for loop will dominate in terms of computational cost. As noted

Bit parallel

multiplier

H

Y

PRU
GHASHX

Fig. 2. Implementation of the GHASH function using a PRU.

Algorithm 2 GHASHH(X) using χH
Require: X = X1X2 . . . Xn and χH(T) =

Pm
i=0 ciT

i

Ensure: GHASHH(X) = X1H
n +X2H

n−1 + · · ·+XnH
Ym−1 . . . Y0 ← X1 . . . Xm, GHASH = 0
for j = m to n do
C = Ym−1

Yi ← Yi−1 + ciC, 1 ≤ i ≤ m− 1
Y0 = Xj+1 + c0C

ff
(in parallel)

end for
for i = m− 1 down to 1 do
GHASH = (GHASH + Yi)×H

end for
return (GHASH + Y0)

previously, one important feature of Algorithm 2 is that all the additions involved
in the upper for loop are independent. Moreover, the ci’s are elements of F2,
which means that the operation Yi−1 + ciC is just a bitwise XOR operation. In
the end, each step of this loop requires m bitwise XOR operations. Thus, our
method trades n−m multiplications by H over F2m against m(n−m)(WH − 1)
bit level XOR operations, where WH is the number of non-zero coefficients of
χH .

In the case of a hardware implementation, on a parallel architecture, a step of
the loop would require m2 XOR gates, all used in parallel, and the gate delay is
DX+DA (delay of one XOR and one AND gates). In the end, the implementation
of the GHASH function as shown in Figure 2 has a space complexity of O(m2)
and the total time delay for the upper loop is (n − m)(DX + DA). The final
m− 1 field multiplications can be performed using any of the already available
methods as listed in Table 1.

Comparison: Let n be the length of the message to be treated (considered
as a sequence of m bit blocks). Implementations based on Algorithm 1 performs,
at each step of the algorithm, one field multiplication and one block bitwise XOR
operation. Denoting DM as the delay of a field multiplication, the total delay is:

n(DM +DX).

On the other hand, Algorithm 2 first requires the computation of the charac-
teristic polynomial. We denote the cost of this computation asDχ. It is important
to remark that this cost is constant, i.e. independent of n. Then, Algorithm 2
performs m2 parallel bitwise XOR operations in each pass of the upper loop.
Finally, the algorithm ends by computing (m − 1) field multiplications and m
bitwise XOR operations on m bit blocks. Assuming that the m Y -registers of
the PRU can be initialized in parallel, the total delay can then be approximated
as:

Dχ + (n−m)(DX +DA) + (m− 1)(DM +DX).

Asymptotically (i.e. for large n), the new method reduces the critical path
delay of the GHASH function to that of one XOR plus one AND operation
(i.e. O(1)), whereas that of the traditional method is due to the multiplier, i.e.
O(logm) for bit-parallel implementations. This reduction in the critical path
is obtained at the cost of a PRU. However, the number of multiplications in
the final Horner scheme being constant, using a smaller but slower multiplier
can greatly reduce the additional cost, in terms of space, without changing the
overall asymptotic complexity.

3.2 Delay reduction with multiple PRUs

Let n = 2n′ be an even integer (in order to simplify notations). Then one can
write

P = X1H
n +X2H

n−1 + · · ·+XnH (1)

=
(
X1(H2)n

′−1 +X3(H2)n
′−2 + · · ·+Xn−1

)
H2

+
(
X2(H2)n

′−1 +X4(H2)n
′−2 + · · ·+Xn

)
H

≡ P1H
2 + P2H. (2)

Now assume that we have two PRUs whose feedback connections are defined
by the characteristic polynomial of H2 over F2. Then these PRUs can process
even and odd numbered blocks of X in parallel in n

2 −m steps. Referring to (2),
the outputs of PRUs are P1 mod χH2 and P2 mod χH2 , that we call partial
GHASH. One can then simply multiply and add according to the equality P ≡
P1H

2 + P2H.
More generally, let us assume that we have r PRUs whose feedback connec-

tions are defined by the characteristic polynomial of Hr over F2. For simplicity,
we also assume that n is a multiple of r (we pad zeros to X if needed). Then we
can decompose X into r different sets P1, P2, . . . , Pr such that

P = P1H
r + P2H

r−1 + · · ·+ PrH. (3)

where for 1 ≤ i ≤ r we have used Pi = Xi(Hr)
n
r−1 + Xi+r(Hr)

n
r−2 + · · · +

Xn−r+i(Hr)0.
Let P ′i = Pi mod χHr . Using r PRUs operating concurrently, we can reduce

Pi mod χHr to obtain the corresponding P ′i , ∀i, in n
r iterations as shown in the

left part of Fig. 3. (The number of iterations reduces to n
r −m if each PRU can

be initialized with m coefficients in parallel at the beginning of its operation.)
We now write (3) in terms of P ′i as follows:

P ≡ P ′1Hr + P ′2H
r−1 + · · ·+ P ′rH. (4)

Since each P ′i is a degree m − 1 polynomial in Hr, one can verify that the
sum of the products in (4) is nothing but a degree rm polynomial in H (with
the constant term being zero). We can then use one more PRU whose feed-
back connection is defined by the characteristic polynomial of H and reduce
the polynomial in H from degree rm to degree m − 1. Note that computing
this characteristic polynomial, unlike that of Hr, can be done in parallel with
obtaining P ′i . Moreover, if r is a power of two, then Hr and H share the same
characteristic polynomial and hence the latter does not need to be computed a
second time. We obtain the final result by applying the Horner scheme to the
output of the final PRU and this requires m− 1 multiply-and-add operations.

Hence, given χHr and using r + 1 PRUs and one multiplier (see Fig. 3), the
GHASH computation of X has the following time delay

(n
r

+ rm+ 1
)

(DX +DA) + (m− 1) (DM +DX). (5)

...

χΗP mod

1 P’

2 P’

r P’

2 P

r P

1 P PRU

PRU

PRU

PRU

multiplierY

GHASH

H

Fig. 3. Implementation of the GHASH function using multiple PRUs.

Comparison: As noted in [9], the conventional method of computing GHASH
can also be parallelized. Assume that we have r field multipliers. Then all Pi,
for 1 ≤ i ≤ r, can be computed in n

r − 1 iterations, assuming that we have
H,H2, . . . ,Hr, and the time delay of each iteration is DM + DX . With one
additional delay of DM , one can compute PiHr−i+1, 1 ≤ i ≤ r. Finally P is ob-

tained as
r∑
i=1

PiH
r−i+1, which incurs a delay of (log2 r)DX , assuming additions

are done in parallel in a binary tree fashion. Thus, given Hi, 1 ≤ i ≤ r, using r
field multipliers and r−1 adders, one can compute GHASH based on Algorithm
1 with the following time delay:

(n
r
− 1
)

(DM +DX) +DM + (log2 r)DX (6)

In hardware implementation, DX is normally larger than DA, and more
importantly, for bit parallel implementation we have DM ≥ (log2m)DX . For
example, as mentioned in Table 1, the Karatsuba algorithm based bit-parallel
multiplier over F2128 has DM > 7DX . Thus for a large n (i.e., long messages), it
is clear that (5) is considerably smaller than (6).

4 Computation of the characteristic polynomial over F2128

In this section, we first recall a method from Gordon [5] that determines the
characteristic polynomial of an element of a finite field and requires, in our
context, 127 multiplications and 127 squarings. We then propose a new method
taking advantage of the tower structure of F2128 that can be faster than the first
one depending on the representation of the finite field.

Gordon’s method: Let A ∈ F2m . Then the characteristic polynomial of A is
given by

χA(T) =
m−1∏
i=0

(T +A2i

).

We want to find the polynomial in the form
m∑
i=0

BiT
i, with Bi ∈ F2. Gordon’s

method is based on the observation that χA(x) =
m−1∏
i=0

(x + A2i

) =
m∑
i=0

Bix
i. In

other words, the coefficients of the representation of field element χA(x) corre-
spond to those of the polynomial χA(T) mod χx(T). As χA(T) has degree 128,
we have χA(T) = (χA(T) mod χx(T))+χx(T). This can be easily evaluated by
adding χA(x) to χx(x) modulo 2. Evaluating χA(x) can be done using 127 field
multiplications and 127 fields squaring.

Gordon’s method is quite general and can be applied to any binary field. We
now propose a new method that takes into account that F2128 has a very special
structure. We will use the following lemma to compute the polynomial χA. Let
P =

∑d
i=0 piT

i be a polynomial in F2n [T] and k an integer. We denote

σk(P) =
d∑
i=0

p2k

i T
i.

Lemma 1. Let F2m be a binary field, and let F22m a degree 2 field extension of
F2m . The following assertions hold

1. If P,Q ∈ F2m [T] and k an integer then

σk(PQ) = σk(P)σk(Q).

2. If P ∈ F22m [T] satisfies P (A) = 0, then the polynomial Q = Pσm(P) satisfies

Q(A) = 0 and Q ∈ F2m [T].

Proof. 1. Let us write P =
∑d
i=0 piT

i and Q =
∑d′

i=0 qiT
i then

PQ =
d∑
i=0

d′∑
j=0

piqiT
i+j .

Then, we apply σk to PQ

σk(PQ) = σk

(∑d
i=0

∑d′

j=0 piqiT
i+j
)

=
∑d
i=0

∑d′

j=0(piqi)2
k

T i+j

=
∑d
i=0

∑d′

j=0 p
2k

i q
2k

i T
i+j

= σk(P)σk(Q)

which proves the assertion.

2. We now prove the second assertion of the lemma. Let Q = Pσ2m(P). We
first check that Q(A) = 0, we have

Q(A) = P (A)σq(P)(A) = 0× σq(P)(A) = 0

In order to show that Q ∈ F2m [T] we have to prove that σm(Q) = Q, since
this would mean that each coefficient of Q is in F2m . We compute

σm(Q) = σm(P)σm(σm(P))

But σm((σm(P)) = σ2m(P) = P since P ∈ F22m [T]. Finally

σm(Q) = Pσm(P) = Q

This completes the proof.

Let us now see, how to use the above result to compute the characteristic
polynomial of an element A ∈ F28 over F2. We begin with the polynomial P0 =
T +A which satisfies P (A) = 0 and P ∈ F28 [T].

– Now we apply the lemma for the field extension F28/F24 to obtain a poly-
nomial P1 = P0σ4(P0) which satisfies

P1(A) = 0 and P1 ∈ F24 [T]

Moreover we have P1 = (T +A)(T +A24
).

– We apply again the lemma for the field extension F24/F22 to obtain a poly-
nomial P2 = P1σ2(P1) which satisfies

P1(A) = 0 and P1 ∈ F22 [T].

Moreover we also have P2 = (T +A)(T +A24
)(T +A22

)(T +A26
).

– Finally we apply the lemma a third time for the field extension F22/F2 to
the polynomial P2. We get

P3 = P2σ1(P2)
= (T +A)(T +A24

)(T +A22
)(T +A26

)︸ ︷︷ ︸
P2

× (T +A2)(T +A25
)(T +A23

)(T +A27
)︸ ︷︷ ︸

σ2(P2)

,

and P3 ∈ F2[T] and satisfies P3(A) = 0. If we look at the expression of P3

we can see that it is equal to the characteristic polynomial of A.

This method is generalized for binary field F2m where m = 2k is a power of
2 in Algorithm 3.

Proposition 1. Algorithm 3 returns the characteristic polynomial of A over F2.

Algorithm 3 Computing the characteristic polynomial of A
Require: A ∈ F

22k

Ensure: PA (the minimal polynomial of A)
P ← T +A
for i = k − 1 to 0 do
P ← P × σ2i(P)

end for
return (P)

Proof. Applying Lemma 1, for successive extension field of degree 2 shows that
the returned polynomial P satisfies P (A) = 0 and P ∈ F2m . Let us now prove
that the polynomial P is the characteristic polynomial of A, i.e., we show that
the returned P satisfies

P (T) =
m−1∏
i=0

(T +A2i

).

Specifically, we will show by induction on the index of the loop that the computed
P in the jth loop is the characteristic polynomial of A over the field F2k−j .

– For j = 0 this is clear that P = T +A is the characteristic polynomial of A
over F2k .

– For j = 1 we have P = (T +A)(T +A2k−1
), thus the assertion is true.

– Suppose that P =
∏j−1
i=0 (T +Ad

i

) where d = 2k−j , then

Pσj+1(P) =

(
j−1∏
i=0

(T +Ad
2i

)

)(
j−1∏
i=0

(T +Ad
2i+1

)

)

where d = 2k−(j+1). This completes the proof.

Complexity.
Let us now evaluate the complexity of Algorithm 3. We suppose that each

polynomial multiplication is done using the Karatsuba method, and each expo-
nentiation to 2k is done by computing k successive squares.

First, we make two observations:

– Let us first check that the degree of P after j iterations of the for loop has
degree 2j . This is true when j = 0 since P is initialized by T + A. In each
loop the degree of P is multiplied by 2, thus after j loop, the degree of P
must be equal to 1× 2j .

– At the end of the j-th iteration of the for loop, the polynomial P belongs
to F2k−j . Indeed, for j = 1, P = (T + A)σ

22k−1 (T + A) with A ∈ F
22k , so

P ∈ F22k−1 [T] from Lemma 1. If we suppose that after j iterations P ∈
F

22k−j [T], then, at step j + 1 we compute P = P × σ2k−(j+1)(P), which
belongs to P ∈ F

22k−(j+1) [T].

From the above two remarks, we can now evaluate the complexity of Algo-
rithm 3.

– At the j-th iteration of the for loop, P is a monic polynomial of degree 2j

(and thus has 2j coefficients). As its coefficients are in F
22k−j+1 and that

we need to compute the 2k−j-th power of each of them, we have to perform
2j×2k−j squarings over F

22k−j+1 to compute σ2k−j (P). Let us denote S2k as
the cost of a squaring over F

22k , we assume that S2k = 2S2k−1 (squaring is
linear over binary fields). Then, the total complexity of computing σ2k−j (P)
is

k∑
j=1

2j2k−jS2k−j+1 =
k∑
j=1

2k
S2k

2j−1

= 2kS2k

k∑
j=1

1
2j−1

= 2kS2k(2− 2−(k−1))
= 2k+1S2k(1− 2−k)
∼ 2k+1S2k

– In the same manner, at the j-th iteration, after computing σ2k−j (P), the
algorithm computes Pσ2k−j (P). Thus, we multiply two degree 2j polynomi-
als. Performing this multiplication using the Karatsuba algorithm requires
3j multiplications of fields elements. Let us denote M2k as the cost of a multi-
plication over F22k , we assume that M2k = 3M2k−1 . Then, the computational
cost is equal to

∑k
j=1 3jM2k−j+1 , so we obtain

k∑
j=1

3jM2k−j+1 =
k∑
j=1

3j
M2k

3j−1

=
k∑
j=1

3M2k

= 3kM2k

In the end, the overall cost of computing the characteristic polynomial of
an element of F

22k over F2 is, in terms of number of operations over F
22k is

3kM2k + 2k+1S2k .
In the case of GCM, k = 7 and thus the number of field operations is 21

multiplications and 256 squarings over F2128 .

Remark 1. It is not always suitable to decompose the field F
22k into k extensions

of degree 2. As a example, F2128 can be seen as a degree 4 extension of F232 and
F232 a degree 32 extension of F2. In that case, multiplying two elements of F264

is performed on the extension field F2128 , which means that M27 = M26 . In the

end, the total complexity would be:

2∑
j=1

3jM27 +
6∑
j=3

3jM25 + 3jM27 = 12M27 + 1080M25 + 2187M2

= 135M27

This shows that depending on the representation, the computational cost
might vary. However, this computation is done once and for all at the beginning
of a GCM session. As such a session can involve thousands of field multiplications
(the plain text can have up to 239 bits, i.e. 231 128 bit blocks), this additional
cost can be considered as negligible for long sessions.

Remark 2. For large values of n, the computation of GHASH using the char-
acteristic polynomial is expected to be several times faster than traditional
methods that use n field multiplications. For example, consider n = 10, 000
and the FPGA based bit parallel multiplier from [12], which has a delay of
DM = 6.637 ns. This multiplier is based on the Karatsuba algorithm and hence
DM = 3(log2(27))DX + DA, i.e., ignoring the delay due to the single level of
AND gates, we have DM/DX ≈ 21. Thus, the traditional method for computing
GHASH will require 10, 000 × (DX + DM) ≈ 69.6 µs. On the other hand, the
characteristic polynomial based GHASH using the same multiplier will require
approximately 10, 000× (DX +DA) + 128× (DM +DX) + 135×DM ≈ 8.1 µs,
resulting in more than 8 fold reduction in the computation time.

5 Conclusions

In this paper we have proposed a new way to improve the performance of the
GHASH function of GCM. Our method is based on the use of the characteristic
polynomial of the authentication data. It has allowed us to trade most of the field
multiplications involved during the authentication tag computation by a series
of 128 independent fields additions. This is very attractive for high performance
implementations where all such additions can be performed in parallel. This
allows us to reduce the delay of each of the first n − 128 multiplications over
F2128 to that of one XOR and one AND operation. To illustrate the effectiveness
of the proposed method, we have considered n = 10, 000 and the Karatsuba
algorithm based bit parallel multiplier on FPGA from [12], which has a delay
of DM = 6.637 ns and DM/DX ≈ 21, and we have estimated that compared
to the traditional method, the new method can significantly reduce the GHASH
computation time, that it to say, eight times.

In this paper, we have also shown the flexibility of our method in terms of
parallelization. Using multiple polynomial reduction units allows us to efficiently
parallelize the computations and improve the performance of GHASH even fur-
ther. Finally, we have also proposed a method, specific to F2128 , to compute the
initial characteristic polynomial efficiently.

References

1. J.-C. Bajard, L. Imbert, and G. A. Jullien. Parallel Montgomery multiplication
in GF(2k) using trinomial residue arithmetic. In Proc. 17th IEEE Symposium on
Computer Arithmetic (ARITH), pages 164–171, 2005.

2. P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy. Im-
plementation of the AES-128 on virtex-5 FPGAs. In Progress in Cryptology -
AFRICACRYPT, volume 5023 of LNCS, pages 16–26. Springer, 2008.

3. H. Fan and M.A. Hasan. A new approach to subquadratic space complexity par-
allel multipliers for extended binary fields. IEEE Transactions on Computers,
56(2):224–233, 2007.

4. T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest. In
Cryptographic Hardware and Embedded Systems - CHES, volume 3659 of LNCS,
pages 427–440. Springer, 2005.

5. J. A. Gordon. Very simple method to find the minimum polynomial of an arbitrary
nonzero element of a finite field. Electronics Letters, 12(25):663–664, December
1976.

6. K. U. Jarvinen, M. T. Tommiska, and J. O. Skyttae. A fully pipelined memoryless
17.8 Gbps AES-128 encryptor. In International symposium on Field programmable
gate arrays - FPGA, pages 207–215. ACM, 2003.

7. S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli. Multi-gigabit GCM-
AES architecture optimized for FPGAs. In Cryptographic Hardware and Embedded
Systems - CHES, volume 4727, pages 227–238. Springer, 2007.

8. E.D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhD
thesis, Dept. of Electrical Eng., Link ping Univ., Sweden, 1991.

9. D. A. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM),
2005.

10. NIST. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, November 2007.

11. C. Paar. A new architecture for a parallel finite field multiplier with low complexity
based on composite fields. IEEE Transactions on Computers, 45(7):856–861, July
1996.

12. P. Patel. Parallel multiplier designs for the Galois/counter mode of operation. Mas-
ter’s thesis, Electrical and Computer Engineering, University of Waterloo, 2008.

13. A. Satoh. High-speed hardware architectures for authenticated encryption mode
gcm. In IEEE International Symposium on Circuits and Systems - ISCAS, pages
4831–4834, 2006.

14. A. Satoh. High-speed parallel hardware architecture for Galois counter mode. In
IEEE International Symposium on Circuits and Systems - ISCAS, pages 1863–
1866, 2007.

15. A. Satoh, T. Sugawara, and T. Aoki. High-speed pipelined hardware architecture
for Galois counter mode. In 10th International Conference - ISC, volume 4779 of
LNCS, pages 1863–1866. Springer, 2007.

16. F. X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D Legat. Efficient implemen-
tation of Rijndael encryption in reconfigurable hardware: Improvements and design
tradeoffs. In Cryptographic Hardware and Embedded Systems - CHES, volume 2779
of LNCS, pages 334–350. Springer, 2003.

