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In this paper we propose to take one step back in the use of double base number systems for elliptic curve point scalar multiplication. Using a modified version of Yao's algorithm, we go back from the popular double base chain representation to a more general double base system. Instead of representing an integer k as P n i=1 2 b i 3 t i where (bi) and (ti) are two decreasing sequences, we only set a maximum value for both of them. Then, we analyze the efficiency of our new method using different bases and optimal parameters. In particular, we propose for the first time a binary/Zeckendorf representation for integers, providing interesting results. Finally, we provide a comprehensive comparison to state-ofthe-art methods, including a large variety of curve shapes and latest point addition formulae speed-ups.

Introduction

In order to compute elliptic curve point multiplication, that is to say kP where P is a point on an elliptic curve, defined over a prime field, and k is an integer, a lot of effort has been made to adapt and optimize generic exponentiation methods (such as Nonadjacent form (NAF), window NAF and fractional window NAF). In 1995, Dimitrov and Cooklev [START_REF] Dimitrov | Two algorithms for modular exponentiation using nonstandard arithmetics[END_REF] have introduced the use the double base number system (DBNS) to improve modular exponentiation speed. The idea is to represent k as a sum of terms of the form c i 2 bi 3 ti with c i = 1 or -1. The main advantage of this representation is the fewer number of terms it requires. A very interesting case is when the base element x is fixed, so that one can precompute all the x 2 b i 3 t i mod p. The DBNS seems to be not that efficient in the case of a randomly chosen element. In order to overcome this problem and adapt the DBNS to elliptic curve point multiplication, Dimitrov, Imbert and Mishra have introduced the concept of double base chains, where the integer k is still represented as a sum of c i 2 bi 3 ti but with the restriction that (b i ) and (t i ) must be two decreasing sequences [START_REF] Imbert | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF]. The restriction causes the number of terms to increase, but allows to perform the scalar multiplication using a Horner like scheme. Allowing c i to belong to a larger set than {-1, 1} as well as choosing optimal parameters based on the ratio of the number of doublings to that of triplings also helped to achieve better results.

The original double base representation has probably not been utilized as much as it should have been for developing improved exponentiation algorithms. To the end, our contribution is to show that the use of a modified version of Yao's algorithm allows to partly overcome the drawbacks of the DBNS. By imposing a maximum bound on b i 's and t i 's, that is clearly less restrictive than the double base chain condition, we show that our method provides significant improvement even when compared to the most recently optimized double base methods. Moreover, we introduce a binary/Zeckendorf method which, on the classical Weierstrass curve, provides similar results.

Background

In this section, we give a brief review of the materials used in the paper.

Elliptic curves

Definition 1. An elliptic curve E over a field K denoted by E/K is given by the equation

E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6
where a 1 , a 2 , a 3 , a 4 , a 6 ∈ K are such that, for each point (x, y) on E, the partial derivatives do not vanish simultaneously.

In this paper, we only deal with curves defined over a prime finite field (K = F p ) of characteristic greater than 3. In this case, the equation can be simplified to

y 2 = x 3 + ax + b
where a, b ∈ K and 4a 3 + 27b 2 = 0. Points are affine points (x, y) satisfying the curve equation and a point at infinity. The set of points E(K) defined over K forms an abelian group. There exist explicit formulae to compute the sum of two points that involves field inversions. When the field inversion operation is considerably costlier than a field multiplication, one usually uses a projective version of the above equation. In this case, a point is represented by three, or more, coordinates, and many such projective coordinate systems have been proposed to speed up elliptic curve group operations. For a complete overview of those coordinates, one can refer to [START_REF]Handbook of Elliptic and Hyperelliptic Cryptography[END_REF][START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF].

Another feature of the elliptic curve group law is that it allows fast composite operations as well as different type of additions. To take full advantage of our point scalar multiplication method, and in addition to the classical addition (ADD) and doubling (DBL) operations, we consider the following operations:

-tripling (TPL): point tripling -readdition (reADD): addition of a point that has been added before to another point -mixed addition (mADD): addition of a point in affine coordinate (i.e. Z = 1) to another point

In addition to those coordinate systems and composite operations, many curve shapes have been proposed to improve group operation formulae. In this paper, we will consider a variety of curve shapes including:

tripling oriented Doche-Icart-Kohel curves (3DIK) [START_REF] Doche | Efficient scalar multiplication by isogeny decompositions[END_REF] -Edwards curves (Edwards) [START_REF] Edwards | A normal norm for elliptic curves[END_REF][START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF] with inverted coordinates [START_REF] Bernstein | Inverted Edwards coordinates[END_REF] -Hessian curves [START_REF] Chudnovsky | Sequences of numbers generated by addition in formal groups and new primality and factorization tests[END_REF][START_REF] Hisil | New formulae for efficient elliptic curve arithmetic[END_REF][START_REF] Hisil | An intersection form for jacobiquartic curves[END_REF] -Extended Jacobi Quartics (ExtJQuartic) [START_REF] Chudnovsky | Sequences of numbers generated by addition in formal groups and new primality and factorization tests[END_REF][START_REF] Sylvain Duquesne | Improving the arithmetic of elliptic curves in the Jacobi model[END_REF][START_REF] Hisil | New formulae for efficient elliptic curve arithmetic[END_REF] -Jacobi intersections (JacIntersect) [START_REF] Chudnovsky | Sequences of numbers generated by addition in formal groups and new primality and factorization tests[END_REF][START_REF] Liardet | Preventing SPA/DPA in ECC systems using the Jacobi form[END_REF] -Jacobian coordinates (Jacobian) with the special case a 4 = -3 (Jacobian-3). Finally, some more optimizations can be found in [START_REF] Mishra | Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation[END_REF][START_REF] Longa | New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields[END_REF] for the quintupling formulae. In section 4, we use the specific formulae from [START_REF] Meloni | New point addition formulae for ECC applications[END_REF] using the z-coordinate trick to compute Fibonacci number point multiples. One can also refer to [START_REF] Bernstein | Explicit-formulas database[END_REF] for an extensive overview of different formulae, coordinates systems, curve shapes and their latest updates.

Double base number system

Let k be an integer. As mentioned earlier, one can represent k as the sum of terms of the form c i 2 bi 3 ti , where c i ∈ {-1, 1}. Such a representation always exists. In fact, this number system is quite redundant. One of the most interesting properties is that, among all the possible representations for a given integer, some of them are really sparse, that is to say that the number of non-zero terms is quite low.

To compute DBNS representation of an integer, one usually use a greedy algorithm. It consists of the following: find the closest integer of the form 2 bi 3 ti to k, subtract it from k and repeat the process with k = k -2 bi 3 ti until it is equal to zero.

Performing a point scalar multiplication using this number system is relatively easy. Letting k be equal to n i=1 c i 2 bi 3 ti , one just needs to compute [c i 2 bi 3 ti ]P for i = 1 to n and then add all the points. If the number of additions is indeed quite low, in practice such a method requires too many doublings and triplings. That is why the general DBNS representation has been considered to be not suitable for point scalar multiplication.

To overcome this problem, Dimitrov, Imbert, and Mishra [START_REF] Imbert | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF] have introduced the concept of double-base chains. In this system, k is still represented as n i=1 c i 2 bi 3 ti , but with the restriction that (b i ) and (t i ) must be two decreasing sequences, allowing a Horner-like evaluation of kP using only b 1 doublings and t 1 triplings. Computing such a representation can be done using Algorithm 1. The main drawback of this method is that it significantly increases the number of point additions.

Algorithm 1 Computing a double-base chain computing k

Input: k ≥ 0 Output: k = P n i=1 si2 b i 3 t i with (bi, ti) 1: while k = 0 do 2: s = 1 3:
Find the best default approximation of k of the form z = 2 b 3 t with b ≤ bmax and t ≤ tmax 4:

Print(s, b, t)

5: bmax = b; tmax = t 6: if k < z then s = -s 7:
k = |k -z| 8: end while Some improvements have been proposed by applying various modifications including the possibility for c i to be chosen in a larger set than {-1, 1} [START_REF] Doche | Extended double-base number system with applications to elliptic curve cryptography[END_REF], the use of multiple bases [START_REF] Mishra | Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation[END_REF], etc. One can finally refer to [START_REF] Bernstein | Optimizing double-base ellipticcurve single-scalar multiplication[END_REF] for a view of the latest optimizations.

3 Modified Yao's Algorithm 

= k l-1 2 l-1 + • • • + k 1 2 + k 0 with k i ∈ {0, 1, . . . , 2 w -1}
, for some w. The algorithm first computes 2 i P for all i lower than l -1 by successive doublings. Then it computes d(1)P, . . . , d(2 w -1)P , where d(j) is the sum of the 2 i such that k i = j. Said differently, it mainly consists in considering the integer k as

1 × ki=1 2 i d(1) +2 × ki=2 2 i d(2) + • • • + (2 w -1) × ki=2 w -1 2 i d(2 w -1)
.

We can see that d(1) is the sum of all the powers of 2 associated to digit 1, d(2) is the sum of all the powers of 2 associated to digit 2 etc. Finally kP is obtained as d(1)P + 2d(2)P +• • •+(2 w -1)d(2 w -1)P . In order to save some group operations, it is usually computed as d(2 w -1)P +(d(2 w -1)P +d(2 w -2)P )+

• • •+(d(2 w -1)P +• • •+d(1)P ).
Example 1. Let k = 314159. We have NAF 3 (k) = 100 0300 1003 0000 5007, l = 19 and 2 w -1 = 7. One can compute kP in the following way:

consider k as 1 × (2 18 + 2 11 ) + 3 × (2 14 + 2 8 ) + 5 × 2 3 + 7 × 2 0 compute P, 2P, 4P, . . . 

Modified Yao's algorithm

Now, we adapt the preceding algorithm in order to take advantage of the DBNS representation. To do so, let us consider k in (one of) its DBNS form: k = 2 bn 3 tn + • • • + 2 b1 3 t1 . As in Yao's original algorithm, we first compute 2 i P for all i lower than max(b j ). Then, for all j lower than max(t i ), we define d(j)P as the sum of all the 2 bi P such that t i = j. Finally we have kP = d(0)P + 3d(1)P + . . . 3 max(ti) d(max(t i ))P .

Example 2. Let k = 314159. One of the representations of k in the DBNS is

2 10 3 5 + 2 8 3 5 + 2 10 3 + 2 2 3 2 + 3 2 + 2,
max(a i ) = 10 and max(b i ) = 5. One can compute kP in the following way:

compute P, 2P, 2 2 P, . . . , We can see that the number of operations is max(b i ) doublings, max(t i ) triplings and n -1 additions. With our modified algorithm, we obtain the same complexity as the double-base chain method. However, in our case, the numbers of doublings and triplings are independent, which means that 2 max(bi) 3 max(ti) can be quite larger than k. It can be seen as a waste of operations, as we could expect it to just as large as k . In order to reduce this additional cost, we simply propose to use a maximum bound for both the b i 's and the t i 's so that 2 max(bi) 3 max(ti) ∼ k .

2 10 P -d(0)P = 2P , d (1) 

Extending the modified Yao's Algorithm

We have seen how Yao's algorithm can be adapted to the double-base number system. In this section, we generalize our approach to different number systems via an extended version of Yao's algorithm.

Generalization of Yao's algorithm

We have seen that Yao's algorithm can be efficiently adapted to the double-base number system. We can now derive a general form of Yao's algorithm based on any number system using two sets of integers.

Let A = {a 1 , . . . , a r } and B = {b 1 , . . . , b t } be two sets of integers. Let k be an integer that can be written as n i=1 a f (i) b g(i) with f : {1, . . . n} → {1, . . . r} and g : {1, . . . n} → {1, . . . t}. It is possible to use a generalized version of Yao's algorithm to compute kP . To do so, we first compute the b i P 's, for i = 1 . . . t. Then, for j = 1 . . . r, we compute d(j)P as the sum of all the b g(i) P such that f (i) = j. In other terms, d(1)P will be the sum of all the b g(i) P associated to a 1 , d(2)P will be the sum of all the b g(i) P associated to a 2 etc. Finally, kP = a 1 d(1)P + a 2 d(2

)P + • • • + a n d(n)P .
It is easy to see that with a proper choice of sets, we find again the previous forms of the algorithm. The original version is associated to the sets A = {1, 2, . . . , 2 n } and B = {1, 3, 5, . . . , 2 w -1} and the double-base version to A = {1, 2, . . . , 2 bmax } B = {1, 3, . . . , 3 tmax }. We also remark that both sets can contain negative integers. As the operation P → -P is almost free on elliptic curves, we always consider signed representation in our experiments.

The aim of the following subsections is to present a different set of integers to improve the efficiency of our method.

Double-base system using Zeckendorf representation

Let (F n ) n≥0 be the Fibonacci sequence defined as F 0 = 0, F 1 = 1, ∀n ≥ 0, F n+2 = F n+1 + F n . Any integer can be represented as a finite sum of Fibonacci numbers [START_REF] Zeckendorf | Représentations des nombres naturels par une somme de nombre de Fibonacci ou de nombres de Lucas[END_REF]. Just like in the case of the classical double-base system, we introduce a mixed binary-Zeckendorf number system (BZNS). It simply consists of representing an integer k as

2 bn F Zn + • • • + 2 b1 F Z1 .
Computing such a representation can be done using the same kind of greedy algorithm as with the classical DBNS.

Remark 1. The choice of such a representation is not arbitrary. It is based on the fact that on elliptic curves in Weierstraßform, the sequence F 2 P, . . . F n P can be efficiently computed thanks to the formulae proposed in [START_REF] Meloni | New point addition formulae for ECC applications[END_REF]. In that case, each point addition is performed faster than a doubling.

We now apply our generalized Yao's algorithm to the sets {F 2 , . . . , F Zmax } and {1, 2, . . . , 2 bmax }. In this case, we first compute F i P for all i lower than Z max , by consecutive additions. Then, for all j lower than max(b i ), we define d(j)P as the sum of all the F Zi P such that b i = j. Finally we have kP = d(0)P + 2d(1)P + . . . 2 max(bi) d(max(b i ))P . 

ECC implementation and comparisons

In this section, we provide a comprehensive comparison between our different versions of Yao's algorithm and the most recent double-base chain methods.

Caching strategies

Caching intermediate results while computing an elliptic curve group operation is one very important optimization criteria. In this subsection, we show that the use of our generalized algorithm allows some savings that cannot be done with the traditional methods. To better clarify this point, we fully detail our caching strategy for curves in Weierstraßform using jacobian coordinates with parameter a = 3 (Jac-3). Similar methods are applicable to all the different curve types. Addition:

P = (X 1 , Y 1 , Z 1 ), Q = (X 2 , Y 2 , Z 2 ) and P + Q = (X 3 , Y 3 , Z 3 ) A = X 1 Z 2 1 , B = X 2 Z 2 1 , C = Y 1 Z 3 2 , D = Y 2 Z 3 1 , E = B -A, F = 2(D -C), G = (2E) 2 , H = E × G, I = A × G,
and

X 3 = F 2 -H -2I Y 3 = F (F -X 3 ) -2CH, Z 3 = ((Z 1 + Z 2 ) 2 -Z 2 1 -Z 2 2 )E Doubling: 2P = (X 3 , Y 3 , Z 3 ) A = X 1 Y 2 1 , B = 3(X 1 -Z 1 ) 2 (X 1 + Z 1 ) 2 and X 3 = B 2 -8A, Y 3 = -8Y 4 1 + B(4A -X 3 ), Z 3 = (Y 1 + Z 1 ) 2 -Y 2 1 -Z 2 1 .
One can verify that these two operations can be computed using 11M+5S and 3M+5S respectively. It has been shown that some of the intermediate results can be reused under particular circumstances. More precisely, if a point P = (X 1 , Y 1 , Z 1 ) is added to any other point, it is possible to store the data Z 2 1 and Z 3 1 . During the same scalar multiplication, if the point P is added again to another point, reusing those stored values saves 1M+1S. This is what is usually called a readdition and its cost is 10M+4S instead of 11M+5S. With mixed and, of course, the general addition (one of the added points has its z-coordinate equal to 1), this is the only kind of point additions that can occur in all the traditional scalar multiplication methods.

Our new method allows more variety in caching strategies and point addition situations. From the doubling formulae, we can see that if we store Z 2 1 after the doubling of P and if we have to add P to another point, reusing Z 2 1 saves 1S. Adding a point that has already been doubled will be called dADD.

We now apply this to our scalar multiplication algorithm. We first compute the sequence P → 2P → • • • → 2 bmax P . For each doubled point (i.e. P → 2P → • • • → 2 bmax-1 P ) , it is possible to store Z 2 . Different situations can now occur:

-addition after doubling (dADD): addition of a point that has already been doubled before -double addition after doubling (2dADD): addition of two points that have already been doubled before -addition after doubling + readdition (dreADD): addition of a point that has already been doubled before to a point that has been added before -double readition (2reADD): addition of two points that has been added before -addition after doubling + mixed addition dmADD: addition of a point that has already been doubled before to a point in affine coordinate (i.e. Z = 1) -mixed readdition (mreADD): addition of a point in affine coordinate (i.e. Z = 1) to a point that has been added before Remark 2. It is also possible to cache Z 2 after a tripling. Adding a point that has already been tripled has the same cost as that has been after a doubling. Thus, we will still call this operation dADD.

In Table 2 we summarize the costs of the different operations for each considered curve.

Curve shape dADD 2dADD dreADD 2reADD dmADD mreADD

3DIK 11M+6S 11M+6S 10M+6S 9M+6S 7M+4S 6M+4S Edwards 10M+1S 10M+1S 10M+1S 10M+1S 9M+1S 9M+1S ExtJQuartic 7M+3S 7M+2S 7M+2S 7M+2S 6M+2S 6M+2S Hessian 6M+6S 6M+6S 6M+6M 6M+6S 5M+6S 5M+6S InvEdwards 9M+1S 9M+1S 9M+1S 9M+1S 8M+1S 8M+1S JacIntersect 11M+1S 11M+1S 11M+1S 11M+1S 10M+1S 10M+1S Jacobian 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S Jacobian-3 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S
Table 2. New elliptic curve operations cost

Implementations and results

We have carried out experiments on 160-bit and 256-bit scalars over all the elliptic curves mentioned in section 2.1 and all values of b max , t max and Z max such that 2 bmax 3 tmax and 2 bmax F Zmax are 160-bit or 256-bit integers. For each curve and each set of parameters, we have:

generated 10000 pseudo random integers in {0, . . . , 2 m -1}m = 160, 256 , converted each integer into the DBNS/BZNS systems using the corresponding parameters,

counted all the operations involved in the point scalar multiplication process.

In Tables 3 and4, we report the best results obtained for each case, with the best choice of parameters. Results are given in number of base field multiplications. To do so and in order to ease the comparison with previous works, we assume that S = 0.8M . However, different ratios could give slightly different results.

As the efficiency of any method is directly dependent on that of the curve operations, in appendix, we give in Tables 5, 6, 7 and 8 the curve operation count of our methods, in order to ease comparisons with future works that might use improved formulae. However, one has to be aware that those operation counts are only valid for the parameters they correspond to. A significant improvement of any of those curve operations may significantly change the optimal parameters for a given method.

As shown in Tables 3 and4, our new method is very efficient compared to previously reported optimized double-base chains approaches [START_REF] Bernstein | Optimizing double-base ellipticcurve single-scalar multiplication[END_REF] or optimized w-NAF methods [START_REF] Bernstein | Analysis and optimization of elliptic-curve single-scalar multiplication[END_REF], whatever the curve is. We obtain particularly good results on extended Jacobi Quartics, with which we improve the best results found in the literature, even taking into account the recent multi-base chains (or (2,3,5)NAF) [START_REF] Longa | Setting speed records with the (fractional) multibase non-adjacent form method for efficient elliptic curve scalar multiplication[END_REF]. However, one should note that part of those improvements are due to the fact that [START_REF] Bernstein | Optimizing double-base ellipticcurve single-scalar multiplication[END_REF] and [START_REF] Bernstein | Analysis and optimization of elliptic-curve single-scalar multiplication[END_REF] uses older formulae for Extended JQuartic and Hessian curves. As an example, doubling is performed using 3M+4S instead of the actual 2M+5S. This saves 0.2M per doublings, that is to say around 32M (160×0.2M) for 160-bit scalars.

We can also see the interest of our new binary/Zeckendorf number system, for each curve where Euclidean additions are fast, it gives similar results as the classical doublebase number system. It could be really interesting to generalize this number system to other curves and find more specific optimizations.

Finally, growing in size makes our algorithm even more advantageous, for every curves. Considering the (2,3,5)NAF method, no data are given for 256-bit scalars in the original paper. Due to lack of time, we have not been able to implement by ourselves this algorithm but we expect a similar behavior.

3. 1

 1 Yao's algorithmPublished in 1976[START_REF] Yao | On the evaluation of powers[END_REF], Yao's algorithm can be seen as the right-to-left counterpart of the classical Brauer algorithm. Let k

2 18 P

 18 d(1)P = 2 18 P + 2 11 P , d(3)P = 2 14 P + 2 8 P , d(5)P = 2 3 P , d(7)P = P -kP = 2(d(7)P ) + 2(d(7)P + d(5)P ) + 2(d(7)P + d(5)P + d(3)P ) + d(7)P + d(5)P + d(3)P + d(1)P = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P In this example, we have: d(1) = 100 0000 1000 0000 0000 d(3) = 000 0100 0001 0000 0000 d(5) = 000 0000 0000 0000 1000 d(7) = 000 0000 0000 0000 0001 k = 100 0300 1003 0000 5007 = 7d(7) + 5d(5) + 3d(3) + d(1)

P = 2 10 P

 10 , d(2)P = 2 2 P + P , d(5) = 2 10 P + 2 8 P -kP = 3(3(3 3 d(5)P +d(2)P )+d(1)P )+d(0)P = 3 5 d(5)P +3 2 d(2)P +3d(1)P + d(0)P

Example 3 . 8 F

 38 Let k = 314159. One of the representations of k in the BZNS is 2 16 + 2 8 F 13 + 2 5 F 10 + 2F 9 + 2F 5 + F 2 max(b i ) = 8 and max(Z i ) = 16. One can compute kP in the following way: consider k as 2 8 (F 16 + F 13 ) + 2 5 F 10 + 2(F 9 + F 5 ) + F 2 compute P, 2P, 3P, . . . , F 16 P d(0)P = F 2 P , d(1)P = F 9 P + F 5 P , d(5)P = F 10 P , d(8) = F 16 P + F 13 P -kP = 2(2 4 (2 3 d(8)P + d(5)P ) + d(1)P ) + d(0)P = 2 8 d(8)P + 2 5 d(5)P + 2d(1)P + d(0)P

Table 1

 1 summarize the cost of those operations on all the considered curves.

	Curve shape DBL	TPL	ADD reADD mADD
	3DIK	2M+7S 6M+6S 11M+6S 10M+6S 7M+4S
	Edwards 3M+4S 9M+4S 10M+1S 10M+1S 9M+1S
	ExtJQuartic 2M+5S 8M+4S 7M+4S 7M+3S 6M+3S
	Hessian 3M+6S 8M+6S 6M+6S 6M+6S 5M+6S
	InvEdwards 3M+4S 9M+4S 9M+1S 9M+1S 8M+1S
	JacIntersect 2M+5S 6M+10S 11M+1S 11M+1S 10M+1S
	Jacobian 1M+8S 5M+10S 11M+5S 10M+4S 7M+4S
	Jacobian-3 3M+5S 7M+7S 11M+5S 10M+4S 7M+4S
		(1) proposed in this work

Table 1 .

 1 Elliptic curve operations cost.
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Conclusions

In this paper we have proposed an efficient generalized version of Yao's algorithm, less restrictive than the double-base chain method, to perform the point scalar multiplication on elliptic curves defined over prime fields. The main advantage of this representation is that it takes advantage of the natural sparseness of the double-base number system without any additional and unnecessary computations. In the end, our method performs faster than all the previous double-base chains methods, over all types of curves. On the extended Jacobi Quartics, it also provides the best result found literature, faster than the (2,3,5)NAF, recently claimed as the fastest scalar multiplication algorithm. Finally we have proposed a new number system, mixing binary and Zeckendorf representation. On curves providing fast Euclidean addition, the BZNS provides very good results. 

A Detailed operation counts