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Elliptic Curve Scalar Multiplication Combining Yao’s
Algorithm and Double Bases

Nicolas Méloni and M. Anwar Hasan

Department of Electrical and Computer Engineering
University of Waterloo

Abstract. In this paper we propose to take one step back in the use of double
base number systems for elliptic curve point scalar multiplication. Using a mod-
ified version of Yao’s algorithm, we go back from the popular double base chain
representation to a more general double base system. Instead of representing an
integer k as

Pn
i=1 2bi3ti where (bi) and (ti) are two decreasing sequences, we

only set a maximum value for both of them. Then, we analyze the efficiency of our
new method using different bases and optimal parameters. In particular, we pro-
pose for the first time a binary/Zeckendorf representation for integers, providing
interesting results. Finally, we provide a comprehensive comparison to state-of-
the-art methods, including a large variety of curve shapes and latest point addition
formulae speed-ups.

Keywords: Double-base number system, Zeckendorf representation, elliptic curve,
point scalar multiplication, Yao’s algorithm.

1 Introduction

In order to compute elliptic curve point multiplication, that is to say kP where P is a
point on an elliptic curve, defined over a prime field, and k is an integer, a lot of effort
has been made to adapt and optimize generic exponentiation methods (such as Non-
adjacent form (NAF), window NAF and fractional window NAF). In 1995, Dimitrov
and Cooklev [8] have introduced the use the double base number system (DBNS) to
improve modular exponentiation speed. The idea is to represent k as a sum of terms
of the form ci2bi3ti with ci = 1 or −1. The main advantage of this representation is
the fewer number of terms it requires. A very interesting case is when the base element
x is fixed, so that one can precompute all the x2bi3ti mod p. The DBNS seems to be
not that efficient in the case of a randomly chosen element. In order to overcome this
problem and adapt the DBNS to elliptic curve point multiplication, Dimitrov, Imbert
and Mishra have introduced the concept of double base chains, where the integer k is
still represented as a sum of ci2bi3ti but with the restriction that (bi) and (ti) must be
two decreasing sequences [9]. The restriction causes the number of terms to increase,
but allows to perform the scalar multiplication using a Horner like scheme. Allowing
ci to belong to a larger set than {−1, 1} as well as choosing optimal parameters based
on the ratio of the number of doublings to that of triplings also helped to achieve better
results.



The original double base representation has probably not been utilized as much as it
should have been for developing improved exponentiation algorithms. To the end, our
contribution is to show that the use of a modified version of Yao’s algorithm allows to
partly overcome the drawbacks of the DBNS. By imposing a maximum bound on bi’s
and ti’s, that is clearly less restrictive than the double base chain condition, we show
that our method provides significant improvement even when compared to the most
recently optimized double base methods. Moreover, we introduce a binary/Zeckendorf
method which, on the classical Weierstrass curve, provides similar results.

2 Background

In this section, we give a brief review of the materials used in the paper.

2.1 Elliptic curves

Definition 1. An elliptic curve E over a field K denoted by E/K is given by the equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y) on E, the partial
derivatives do not vanish simultaneously.

In this paper, we only deal with curves defined over a prime finite field (K = Fp)
of characteristic greater than 3. In this case, the equation can be simplified to

y2 = x3 + ax + b

where a, b ∈ K and 4a3 + 27b2 6= 0. Points are affine points (x, y) satisfying the curve
equation and a point at infinity. The set of points E(K) defined over K forms an abelian
group. There exist explicit formulae to compute the sum of two points that involves
field inversions. When the field inversion operation is considerably costlier than a field
multiplication, one usually uses a projective version of the above equation. In this case, a
point is represented by three, or more, coordinates, and many such projective coordinate
systems have been proposed to speed up elliptic curve group operations. For a complete
overview of those coordinates, one can refer to [7, 14].

Another feature of the elliptic curve group law is that it allows fast composite oper-
ations as well as different type of additions. To take full advantage of our point scalar
multiplication method, and in addition to the classical addition (ADD) and doubling
(DBL) operations, we consider the following operations:

– tripling (TPL): point tripling
– readdition (reADD): addition of a point that has been added before to another

point
– mixed addition (mADD): addition of a point in affine coordinate (i.e. Z = 1) to

another point



In addition to those coordinate systems and composite operations, many curve shapes
have been proposed to improve group operation formulae. In this paper, we will con-
sider a variety of curve shapes including:

– tripling oriented Doche-Icart-Kohel curves (3DIK) [10]
– Edwards curves (Edwards) [13, 3] with inverted coordinates [4]
– Hessian curves [6, 15, 16]
– Extended Jacobi Quartics (ExtJQuartic) [6, 12, 15]
– Jacobi intersections (JacIntersect) [6, 17]
– Jacobian coordinates (Jacobian) with the special case a4 = −3 (Jacobian-3).

Table 1 summarize the cost of those operations on all the considered curves.

Curve shape DBL TPL ADD reADD mADD
3DIK 2M+7S 6M+6S 11M+6S 10M+6S 7M+4S

Edwards 3M+4S 9M+4S 10M+1S 10M+1S 9M+1S
ExtJQuartic 2M+5S 8M+4S 7M+4S 7M+3S 6M+3S

Hessian 3M+6S 8M+6S 6M+6S 6M+6S 5M+6S
InvEdwards 3M+4S 9M+4S 9M+1S 9M+1S 8M+1S
JacIntersect 2M+5S 6M+10S 11M+1S 11M+1S 10M+1S

Jacobian 1M+8S 5M+10S 11M+5S 10M+4S 7M+4S
Jacobian-3 3M+5S 7M+7S 11M+5S 10M+4S 7M+4S

(1) proposed in this work
Table 1. Elliptic curve operations cost.

Finally, some more optimizations can be found in [21, 19] for the quintupling for-
mulae. In section 4, we use the specific formulae from [20] using the z-coordinate trick
to compute Fibonacci number point multiples. One can also refer to [2] for an exten-
sive overview of different formulae, coordinates systems, curve shapes and their latest
updates.

2.2 Double base number system

Let k be an integer. As mentioned earlier, one can represent k as the sum of terms of
the form ci2bi3ti , where ci ∈ {−1, 1}. Such a representation always exists. In fact, this
number system is quite redundant. One of the most interesting properties is that, among
all the possible representations for a given integer, some of them are really sparse, that
is to say that the number of non-zero terms is quite low.

To compute DBNS representation of an integer, one usually use a greedy algorithm.
It consists of the following: find the closest integer of the form 2bi3ti to k, subtract it
from k and repeat the process with k′ = k − 2bi3ti until it is equal to zero.

Performing a point scalar multiplication using this number system is relatively easy.
Letting k be equal to

∑n
i=1 ci2bi3ti , one just needs to compute [ci2bi3ti ]P for i = 1 to



n and then add all the points. If the number of additions is indeed quite low, in practice
such a method requires too many doublings and triplings. That is why the general DBNS
representation has been considered to be not suitable for point scalar multiplication.

To overcome this problem, Dimitrov, Imbert, and Mishra [9] have introduced the
concept of double-base chains. In this system, k is still represented as

∑n
i=1 ci2bi3ti ,

but with the restriction that (bi) and (ti) must be two decreasing sequences, allowing a
Horner-like evaluation of kP using only b1 doublings and t1 triplings. Computing such
a representation can be done using Algorithm 1. The main drawback of this method is
that it significantly increases the number of point additions.

Algorithm 1 Computing a double-base chain computing k

Input: k ≥ 0
Output: k =

Pn
i=1 si2

bi3ti with (bi, ti)↘
1: while k 6= 0 do
2: s = 1
3: Find the best default approximation of k of the form z = 2b3t with b ≤ bmax and

t ≤ tmax

4: Print(s, b, t)
5: bmax = b; tmax = t
6: if k < z then s = −s
7: k = |k − z|
8: end while

Some improvements have been proposed by applying various modifications includ-
ing the possibility for ci to be chosen in a larger set than {−1, 1} [11], the use of mul-
tiple bases [21], etc. One can finally refer to [1] for a view of the latest optimizations.

3 Modified Yao’s Algorithm

3.1 Yao’s algorithm

Published in 1976 [22], Yao’s algorithm can be seen as the right-to-left counterpart
of the classical Brauer algorithm. Let k = kl−12l−1 + · · · + k12 + k0 with ki ∈
{0, 1, . . . , 2w − 1}, for some w. The algorithm first computes 2iP for all i lower than
l − 1 by successive doublings. Then it computes d(1)P, . . . , d(2w − 1)P , where d(j)
is the sum of the 2i such that ki = j. Said differently, it mainly consists in considering
the integer k as

1×
∑
ki=1

2i

︸ ︷︷ ︸
d(1)

+2×
∑
ki=2

2i

︸ ︷︷ ︸
d(2)

+ · · ·+ (2w − 1)×
∑

ki=2w−1

2i

︸ ︷︷ ︸
d(2w−1)

.

We can see that d(1) is the sum of all the powers of 2 associated to digit 1, d(2) is the
sum of all the powers of 2 associated to digit 2 etc. Finally kP is obtained as d(1)P +



2d(2)P +· · ·+(2w−1)d(2w−1)P . In order to save some group operations, it is usually
computed as d(2w−1)P+(d(2w−1)P+d(2w−2)P )+· · ·+(d(2w−1)P+· · ·+d(1)P ).

Example 1. Let k = 314159. We have NAF3(k) = 100 0300 1003 0000 5007, l = 19
and 2w − 1 = 7. One can compute kP in the following way:

– consider k as 1× (218 + 211) + 3× (214 + 28) + 5× 23 + 7× 20

– compute P, 2P, 4P, . . . 218P
– d(1)P = 218P + 211P , d(3)P = 214P + 28P , d(5)P = 23P , d(7)P = P
– kP = 2(d(7)P ) + 2(d(7)P + d(5)P ) + 2(d(7)P + d(5)P + d(3)P ) + d(7)P +

d(5)P + d(3)P + d(1)P = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P

In this example, we have:

d(1) = 100 0000 1000 0000 0000
d(3) = 000 0100 0001 0000 0000
d(5) = 000 0000 0000 0000 1000
d(7) = 000 0000 0000 0000 0001

k = 100 0300 1003 0000 5007
= 7d(7) + 5d(5) + 3d(3) + d(1)

3.2 Modified Yao’s algorithm

Now, we adapt the preceding algorithm in order to take advantage of the DBNS rep-
resentation. To do so, let us consider k in (one of) its DBNS form: k = 2bn3tn +
· · · + 2b13t1 . As in Yao’s original algorithm, we first compute 2iP for all i lower than
max(bj). Then, for all j lower than max(ti), we define d(j)P as the sum of all the 2biP
such that ti = j. Finally we have kP = d(0)P + 3d(1)P + . . . 3max(ti)d(max(ti))P .

Example 2. Let k = 314159. One of the representations of k in the DBNS is

21035 + 2835 + 2103 + 2232 + 32 + 2,

max(ai) = 10 and max(bi) = 5. One can compute kP in the following way:

– compute P, 2P, 22P, . . . , 210P
– d(0)P = 2P , d(1)P = 210P , d(2)P = 22P + P , d(5) = 210P + 28P
– kP = 3(3(33d(5)P +d(2)P )+d(1)P )+d(0)P = 35d(5)P +32d(2)P +3d(1)P +

d(0)P

We can see that the number of operations is max(bi) doublings, max(ti) triplings
and n − 1 additions. With our modified algorithm, we obtain the same complexity as
the double-base chain method. However, in our case, the numbers of doublings and
triplings are independent, which means that 2max(bi)3max(ti) can be quite larger than k.
It can be seen as a waste of operations, as we could expect it to just as large as k . In
order to reduce this additional cost, we simply propose to use a maximum bound for
both the bi’s and the ti’s so that 2max(bi)3max(ti) ∼ k .



4 Extending the modified Yao’s Algorithm

We have seen how Yao’s algorithm can be adapted to the double-base number system.
In this section, we generalize our approach to different number systems via an extended
version of Yao’s algorithm.

4.1 Generalization of Yao’s algorithm

We have seen that Yao’s algorithm can be efficiently adapted to the double-base number
system. We can now derive a general form of Yao’s algorithm based on any number
system using two sets of integers.

Let A = {a1, . . . , ar} and B = {b1, . . . , bt} be two sets of integers. Let k be an
integer that can be written as

∑n
i=1 af(i)bg(i) with f : {1, . . . n} → {1, . . . r} and g :

{1, . . . n} → {1, . . . t}. It is possible to use a generalized version of Yao’s algorithm to
compute kP . To do so, we first compute the biP ’s, for i = 1 . . . t. Then, for j = 1 . . . r,
we compute d(j)P as the sum of all the bg(i)P such that f(i) = j. In other terms,
d(1)P will be the sum of all the bg(i)P associated to a1, d(2)P will be the sum of all
the bg(i)P associated to a2 etc. Finally, kP = a1d(1)P + a2d(2)P + · · ·+ and(n)P .

It is easy to see that with a proper choice of sets, we find again the previous forms
of the algorithm. The original version is associated to the sets A = {1, 2, . . . , 2n}
and B = {1, 3, 5, . . . , 2w − 1} and the double-base version to A = {1, 2, . . . , 2bmax}
B = {1, 3, . . . , 3tmax}. We also remark that both sets can contain negative integers. As
the operation P → −P is almost free on elliptic curves, we always consider signed
representation in our experiments.

The aim of the following subsections is to present a different set of integers to
improve the efficiency of our method.

4.2 Double-base system using Zeckendorf representation

Let (Fn)n≥0 be the Fibonacci sequence defined as F0 = 0, F1 = 1,∀n ≥ 0, Fn+2 =
Fn+1 + Fn. Any integer can be represented as a finite sum of Fibonacci numbers [23].
Just like in the case of the classical double-base system, we introduce a mixed binary-
Zeckendorf number system (BZNS). It simply consists of representing an integer k as
2bnFZn

+ · · ·+ 2b1FZ1 . Computing such a representation can be done using the same
kind of greedy algorithm as with the classical DBNS.

Remark 1. The choice of such a representation is not arbitrary. It is based on the fact
that on elliptic curves in Weierstraßform, the sequence F2P, . . . FnP can be efficiently
computed thanks to the formulae proposed in [20]. In that case, each point addition is
performed faster than a doubling.

We now apply our generalized Yao’s algorithm to the sets {F2, . . . , FZmax} and
{1, 2, . . . , 2bmax}. In this case, we first compute FiP for all i lower than Zmax, by
consecutive additions. Then, for all j lower than max(bi), we define d(j)P as the
sum of all the FZi

P such that bi = j. Finally we have kP = d(0)P + 2d(1)P +
. . . 2max(bi)d(max(bi))P .



Example 3. Let k = 314159. One of the representations of k in the BZNS is

28F16 + 28F13 + 25F10 + 2F9 + 2F5 + F2

max(bi) = 8 and max(Zi) = 16. One can compute kP in the following way:

– consider k as 28(F16 + F13) + 25F10 + 2(F9 + F5) + F2

– compute P, 2P, 3P, . . . , F16P
– d(0)P = F2P , d(1)P = F9P + F5P , d(5)P = F10P , d(8) = F16P + F13P
– kP = 2(24(23d(8)P + d(5)P ) + d(1)P ) + d(0)P = 28d(8)P + 25d(5)P +

2d(1)P + d(0)P

5 ECC implementation and comparisons

In this section, we provide a comprehensive comparison between our different versions
of Yao’s algorithm and the most recent double-base chain methods.

5.1 Caching strategies

Caching intermediate results while computing an elliptic curve group operation is one
very important optimization criteria. In this subsection, we show that the use of our
generalized algorithm allows some savings that cannot be done with the traditional
methods. To better clarify this point, we fully detail our caching strategy for curves
in Weierstraßform using jacobian coordinates with parameter a = 3 (Jac-3). Similar
methods are applicable to all the different curve types.

Addition:
P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P + Q = (X3, Y3, Z3)

A = X1Z
2
1 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B −A,

F = 2(D − C), G = (2E)2, H = E ×G, I = A×G,

and

X3 = F 2 −H − 2I Y3 = F (F −X3)− 2CH, Z3 = ((Z1 + Z2)2 − Z2
1 − Z2

2 )E

Doubling:
2P = (X3, Y3, Z3)

A = X1Y
2
1 , B = 3(X1 − Z1)2(X1 + Z1)2

and

X3 = B2 − 8A, Y3 = −8Y 4
1 + B(4A−X3), Z3 = (Y1 + Z1)2 − Y 2

1 − Z2
1 .

One can verify that these two operations can be computed using 11M+5S and
3M+5S respectively. It has been shown that some of the intermediate results can be
reused under particular circumstances. More precisely, if a point P = (X1, Y1, Z1) is
added to any other point, it is possible to store the data Z2

1 and Z3
1 . During the same



scalar multiplication, if the point P is added again to another point, reusing those stored
values saves 1M+1S. This is what is usually called a readdition and its cost is 10M+4S
instead of 11M+5S. With mixed and, of course, the general addition (one of the added
points has its z-coordinate equal to 1), this is the only kind of point additions that can
occur in all the traditional scalar multiplication methods.

Our new method allows more variety in caching strategies and point addition situa-
tions. From the doubling formulae, we can see that if we store Z2

1 after the doubling of
P and if we have to add P to another point, reusing Z2

1 saves 1S. Adding a point that
has already been doubled will be called dADD.

We now apply this to our scalar multiplication algorithm. We first compute the se-
quence P → 2P → · · · → 2bmaxP . For each doubled point (i.e. P → 2P → · · · →
2bmax−1P ) , it is possible to store Z2. Different situations can now occur:

– addition after doubling (dADD): addition of a point that has already been doubled
before

– double addition after doubling (2dADD): addition of two points that have already
been doubled before

– addition after doubling + readdition (dreADD): addition of a point that has al-
ready been doubled before to a point that has been added before

– double readition (2reADD): addition of two points that has been added before
– addition after doubling + mixed addition dmADD: addition of a point that has

already been doubled before to a point in affine coordinate (i.e. Z = 1)
– mixed readdition (mreADD): addition of a point in affine coordinate (i.e. Z = 1)

to a point that has been added before

Remark 2. It is also possible to cache Z2 after a tripling. Adding a point that has already
been tripled has the same cost as that has been after a doubling. Thus, we will still call
this operation dADD.

In Table 2 we summarize the costs of the different operations for each considered
curve.

Curve shape dADD 2dADD dreADD 2reADD dmADD mreADD
3DIK 11M+6S 11M+6S 10M+6S 9M+6S 7M+4S 6M+4S

Edwards 10M+1S 10M+1S 10M+1S 10M+1S 9M+1S 9M+1S
ExtJQuartic 7M+3S 7M+2S 7M+2S 7M+2S 6M+2S 6M+2S

Hessian 6M+6S 6M+6S 6M+6M 6M+6S 5M+6S 5M+6S
InvEdwards 9M+1S 9M+1S 9M+1S 9M+1S 8M+1S 8M+1S
JacIntersect 11M+1S 11M+1S 11M+1S 11M+1S 10M+1S 10M+1S

Jacobian 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S
Jacobian-3 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S

Table 2. New elliptic curve operations cost



5.2 Implementations and results

We have carried out experiments on 160-bit and 256-bit scalars over all the elliptic
curves mentioned in section 2.1 and all values of bmax, tmax and Zmax such that
2bmax3tmax and 2bmaxFZmax

are 160-bit or 256-bit integers. For each curve and each
set of parameters, we have:

– generated 10000 pseudo random integers in {0, . . . , 2m − 1}m = 160, 256 ,

– converted each integer into the DBNS/BZNS systems using the corresponding pa-
rameters,

– counted all the operations involved in the point scalar multiplication process.

In Tables 3 and 4, we report the best results obtained for each case, with the best
choice of parameters. Results are given in number of base field multiplications. To do
so and in order to ease the comparison with previous works, we assume that S = 0.8M .
However, different ratios could give slightly different results.

As the efficiency of any method is directly dependent on that of the curve operations,
in appendix, we give in Tables 5, 6, 7 and 8 the curve operation count of our methods, in
order to ease comparisons with future works that might use improved formulae. How-
ever, one has to be aware that those operation counts are only valid for the parameters
they correspond to. A significant improvement of any of those curve operations may
significantly change the optimal parameters for a given method.

As shown in Tables 3 and 4, our new method is very efficient compared to pre-
viously reported optimized double-base chains approaches [1] or optimized w-NAF
methods [5], whatever the curve is. We obtain particularly good results on extended
Jacobi Quartics, with which we improve the best results found in the literature, even
taking into account the recent multi-base chains (or (2,3,5)NAF) [18]. However, one
should note that part of those improvements are due to the fact that [1] and [5] uses
older formulae for Extended JQuartic and Hessian curves. As an example, doubling is
performed using 3M+4S instead of the actual 2M+5S. This saves 0.2M per doublings,
that is to say around 32M (160×0.2M) for 160-bit scalars.

We can also see the interest of our new binary/Zeckendorf number system, for each
curve where Euclidean additions are fast, it gives similar results as the classical double-
base number system. It could be really interesting to generalize this number system to
other curves and find more specific optimizations.

Finally, growing in size makes our algorithm even more advantageous, for every
curves. Considering the (2,3,5)NAF method, no data are given for 256-bit scalars in the
original paper. Due to lack of time, we have not been able to implement by ourselves
this algorithm but we expect a similar behavior.



Curve shape Method bmax tmax Zmax # multiplications

3DIK
4-NAF - - - 1645.8

DB chain 80 51 - 1502.4
Yao-DBNS 44 74 - 1477.3

Edwards
4-NAF - - - 1321.6

DB chain 156 3 - 1322.9
Yao-DBNS 140 13 - 1283.3

ExtJQuartic
4-NAF - - - 1308.5

DB chain 156 3 - 1311.0
(2,3,5)NAF 131 12 - 1226.0
Yao-DBNS 140 13 - 1210.9

Hessian
4-NAF - - - 1601.9

DB chain 100 38 - 1565.0
Yao-DBNS 113 30 - 1501.8

InvEdwards
4-NAF - - - 1287.8

DB chain 156 3 - 1290.3
(2,3,5)NAF 142 9 - 1273.8
Yao-DBNS 140 13 - 1258.6

JacIntersect
4-NAF - - - 1389.4

DB chain 150 7 - 1438.8
Yao-DBNS 143 11 - 1301.2

Jacobian
4-NAF - - - 1573.8

DB chain 100 38 - 1558.4
Yao-DBNS 131 19 - 1534.9
Yao-BZNS 142 - 28 1534.8

Jacobian-3
4-NAF - - - 1511.9

DB chain 100 38 - 1504.3
(2,3,5)NAF 131 12 - 1426.8
Yao-DBNS 131 19 - 1475.3
Yao-BZNS 142 - 28 1476.9

Table 3. Optimal parameters and operation count for 160-bit scalars



Curve shape Method bmax tmax Zmax # multiplications

3DIK
4-NAF - - - 2603.3

DB chain 130 80 - 2393.2
Yao-DBNS 63 122 - 2319.2

Edwards
4-NAF - - - 2088.5

DB chain 252 3 - 2089.7
Yao-DBNS 220 23 - 2029.8

ExtJQuartic
4-NAF - - - 2068.9

DB chain 253 2 - 2071.2
Yao-DBNS 215 26 - 1911.4

Hessian
4-NAF - - - 2542.4

DB chain 150 67 - 2470.6
Yao-DBNS 185 45 - 2374.0

InvEdwards
4-NAF - - - 2038.7

DB chain 252 3 - 2041.2
Yao-DBNS 220 23 - 1993.3

JacIntersect
4-NAF - - - 2185.4

DB chain 246 7 - 2266.1
Yao-DBNS 236 13 - 2050.5

Jacobian
4-NAF - - - 2492.1

DB chain 160 61 - 2466.2
Yao-DBNS 185 45 - 2416.2
Yao-BZNS 227 - 44 2419.8

Jacobian-3
4-NAF - - - 2391.8

DB chain 160 61 - 2379.0
Yao-DBNS 185 45 - 2316.2
Yao-BZNS 22 - 44 2329.2

Table 4. Optimal parameters and operation count for 256-bit scalars

6 Conclusions

In this paper we have proposed an efficient generalized version of Yao’s algorithm, less
restrictive than the double-base chain method, to perform the point scalar multiplication
on elliptic curves defined over prime fields. The main advantage of this representation
is that it takes advantage of the natural sparseness of the double-base number system
without any additional and unnecessary computations. In the end, our method performs
faster than all the previous double-base chains methods, over all types of curves. On the
extended Jacobi Quartics, it also provides the best result found literature, faster than the
(2,3,5)NAF, recently claimed as the fastest scalar multiplication algorithm. Finally we
have proposed a new number system, mixing binary and Zeckendorf representation. On
curves providing fast Euclidean addition, the BZNS provides very good results.
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A Detailed operation counts

Curve shape DBL TPL ADD reADD dADD 2dADD 2reADD dreADD mADD dmADD mreADD
3DIK 43.50 73.43 1.20 0.64 16.10 3.49 0.01 0.29 0.66 0.45 0.01

Edwards 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01
ExtJQuartic 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01

Hessian 112.22 29.73 1.26 1.07 17.40 1.63 0.01 0.17 1.07 0.28 0.03
InvEdwards 139.12 12.84 1.68 1.55 18.48 0.97 0 0.01 1.59 0.22 0.01
JacIntersect 142.19 10.94 2.40 1.64 17.71 0.81 0 0.13 2.22 0.29 0.03

Jacobian 130.10 18.71 1.43 1.09 18.36 1.11 0 0.14 1.31 0.25 0.03
Jacobian-3 130.10 18.71 1.43 1.09 18.36 1.11 0 0.14 1.31 0.25 0.03

Table 5. Detailed operation count for the Yao-DBNS scalar multiplication using 160-bit scalar

Curve shape DBL ZADD ADD reADD mADD 2reADD mreADD
Jacobian 141.27 25.53 19.55 0.48 1.72 0 0

Jacobian-3 141.27 25.53 19.55 0.48 1.72 0 0

Table 6. Detailed operation count for the Yao-BZNS scalar multiplication using 160-bit scalars



Curve shape DBL TPL ADD reADD dADD 2dADD 2reADD dreADD mADD dmADD mreADD
3DIK 62.48 121.72 1.33 1.07 23.78 6.17 0.01 0.49 0.66 0.52 0.03

Edwards 219.17 22.89 1.87 2.37 28.46 1.61 0 0.23 1.48 0.35 0.06
ExtJQuartic 214.29 25.86 1.93 1.93 27.88 1.92 0.01 0.29 1.73 0.32 0.01

Hessian 184.33 44.73 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03
InvEdwards 219.17 22.89 1.87 2.37 28.46 1.61 0 0.23 1.48 0.35 0.06
JacIntersect 235.26 12.94 2.37 3.04 29.31 1.39 0.02 0.24 2.25 0.33 0.05

Jacobian 184.33 44.78 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03
Jacobian-3 184.33 44.78 1.38 1.47 26.58 2.57 0.01 0.21 1.18 0.34 0.03

Table 7. Detailed operation count for the Yao-DBNS scalar multiplication using 256-bit scalar

Curve shape DBL ZADD ADD reADD mADD 2reADD mreADD
Jacobian 226.3 41.4 30.01 0.74 1.20 0 0.02

Jacobian-3 226.3 41.4 30.01 0.74 1.20 0 0.02

Table 8. Detailed operation count for the Yao-BZNS scalar multiplication using 256-bit scalars


