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THE Cosλ AND Sinλ TRANSFORMS
AS INTERTWINING OPERATORS BETWEEN

GENERALIZED PRINCIPAL SERIES REPRESENTATIONS
OF SL(n+ 1,K)

GESTUR ÓLAFSSON AND ANGELA PASQUALE

Abstract. In this article we connect topics from convex and integral geometry with well
known topics in representation theory of semisimple Lie groups by showing that the Cosλ

and Sinλ-transforms on the Grassmann manifolds Grp(K) = SU(n + 1,K)/S(U(p,K) ×
U(n+ 1− p,K)) are standard intertwining operators between certain generalized principal
series representations induced from a maximal parabolic subgroup Pp of SL(n+1,K). The
index p indicates the dependence of the parabolic on p. The general results of Knapp
and Stein and Vogan and Wallach then show that both transforms have meromorphic
extension to C and are invertible for generic λ ∈ C. Furthermore, known methods from
representation theory combined with a Selberg type integral allow us to determine the
K-spectrum of those operators.

Introduction

The Cosλ and Sinλ transforms have appeared in several mathematical contexts and have a
long history. In the last few years they have been widely studied because of their connection
to convex geometry and to some classical integral transforms, like the Funk and Radon
transforms on the sphere and their generalizations to Grassmann manifolds.

For the sphere Sn, the Cosλ transform Cλ is defined on L2(Sn) by

Cλ(f)(ω) =

∫
Sn
|(x, ω)|λ−ρ f(x) dσ(x) , ω ∈ Sn , (0.1)

where dσ is the normalized rotational invariant measure on Sn, (·, ·) stands for the usual
inner product on Rn and ρ = (n + 1)/2. The ρ-shift is chosen so that Cλ agrees with a
standard intertwining operator between certain principal series representations of SL(n +
1,R). The integral kernel of (0.1) is a power of the cosine of the angle between x and ω.
This is at the origin of the name cosine transform, given to (0.1) by E. Lutwak in [27] for
the case λ− ρ = 1.
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It is clear that Cλ is an integral transform on L2(B), where B := Gr1(R) is the Grassmann
manifold of lines in Rn+1. Denote by Grn(R) the Grassmann manifold of n-dimensional
subspaces of Rn+1. The Sinλ-transform Sλ maps functions on B to functions on Grn(R)
and is given by

Sλ(f)(ω) = Cλ(f)(ω⊥) .

Note that Grn(R) ' B so that one can also view Sλ as an integral transform on L2(B).
We note that Cλ(f) exists for all f ∈ L2(Sn) as long as λ ∈ Cρ := {z ∈ C | Re (z) ≥ ρ}

and λ 7→ Cλ(f) is holomorphic on Co
ρ, the interior of Cρ. The transform Cλ : C∞(Sn) →

C∞(Sn) extends meromorphically to C. One way to determine the singularities of this
extension is to determine the SO(n + 1)-spectrum of Cλ. The group K = SO(n + 1) acts
naturally on L2(Sn) and, as a representation of K, the space L2(Sn) decomposes into a
direct sum

L2(Sn) 'K
⊕
m∈N0

Ym

where

Ym = {p|Sn | p a homogeneous polynomial of degree m and ∆p = 0} .

Here ∆ = ∂2
1 + · · ·+ ∂2

n+1 denotes the Laplace operator on Rn+1. Likewise, by considering

Cosλ as a transform on L2(B), we have the decomposition

L2(B) 'K
⊕
m∈2N0

Ym .

See for instance [43]. As these are multiplicity-one decompositions and Cλ commutes with
rotations, it follows from Schur’s Lemma that for each m ∈ 2N0 there exists a holomorphic
function ηm : Cρ → C such that

Cλ|Ym = ηm(λ)idYm .

Information about ηm gives more detailed information about the meromorphic extension
of Cλ as well as the image and the kernel of the Cosλ-transform, as clearly both of those
spaces are K-invariant.

The functions ηm(λ) can be for instance determined using a Funk-Hecke type formula
[35, 36], and one gets for m ∈ 2N0

ηm(λ) = (−1)m/2
Γ(ρ)

Γ(1/2)

Γ
(

1
2
(λ− ρ+ 1)

)
Γ
(

1
2
(−λ+ ρ+m)

)
Γ
(

1
2
(λ+ ρ+m)

)
Γ
(

1
2
(−λ+ ρ)

) .

Note that

Γ
(

1
2
(−λ+ ρ+m)

)
Γ
(

1
2
(−λ+ ρ)

) =

{
1 if m = 0

2−m/2(−λ+ ρ)(−λ+ ρ+ 2) · · · (−λ+ ρ+m− 2) if m ∈ 2N

is a polynomial of degree m/2.



INTERTWINING OPERATORS AND THE COSλ-TRANSFORM 3

The first pole of Cλ is at λ = (n− 1)/2 and the Funk transform

F(f)(ω) =

∫
(x,ω)=0

f(x) dm(x)

is then given, up to a constant that can be determined, by F(f)(ω) = cResλ=(n−1)/2Cλ(f)(ω).

A similar discussion relates the Radon transform with the singularities of the Sinλ-transform.
All of these integral transforms have been generalized to the Grassmann manifolds over

R, C and H. We refer to [1, 2, 33, 37, 38, 39, 40, 45] for more details and discussions.
As mentioned earlier, the importance of the Cosλ and Sinλ transforms comes from the

connection to convex geometry and classical integral transforms like the Funk and Radon
transforms. The problem is to characterize its rank and derive an inversion formula. The
injectivity for λ − ρ = 1 was first proved in [42]. The connection to stochastic geometry
was established by G. Matheron in [29]. The description of the rank for the same case
was first achieved by [2]. In the unpublished manuscript [1], S. Alesker connected the
Cosλ-transform with intertwining operators and showed that the image was an irreducible
representation of GL(n + 1,R) for suitable parameters λ. We would also like to point out
[14] where the other Grassmann manifolds were considered, and the work by B. Rubin, A.
Koldobsky and coworkers [22, 23, 24, 25, 37, 38, 39, 40] where the Cosλ and Sinλ transforms
are considered in most generality and the connection to the Busemann-Petty problem plays
an important role.

The integral transform in (0.1) appeared independently in representation theory of
SL(n + 1,K), where K = R,C or H, around the same time as the Cosλ-transform. The
real case was studied in [10], the complex case in [12], and finally the quaternionic case in
[34]. In these articles it was shown that the integral (0.1) defines an intertwining opera-
tor between generalized principal series representations induced from a maximal parabolic
subgroup in SL(n+ 1,K). The K-spectrum was determined. Among the applications was
the composition series, some embeddings of the complementary series and the study of
the so-called canonical representations on rank-one Riemannian symmetric spaces of the
noncompact type, [8, 9, 11]. However the connections to convex geometry and to the Funk
and Radon transforms was neither discussed nor mentioned.

As first shown in [45], the Sinλ-transform can be viewed as a Knapp-Stein intertwining
operator. This was used to construct complementary series representations for GL(2n,R).
This transform is then also naturally linked to reflection positivity, which relates comple-
mentary series representations of GL(2n,R) to highest weight representations of SU(n, n),
[17, 18].

Let K = R,C or H and let Grp(K) = SU(n + 1,K)/S(U(p,K) × U(q,K)), with q =
n+ 1− p, be the Grassmann manifold of p-dimensional subspaces of Kn+1. Our main aim
in this article is to show that the Cosλ and Sinλ-transforms for Grp(K) are always canonical
intertwining operators between generalized principal series representations induced from
maximal parabolic subgroups of SL(n+1,K). We then use the spectrum generating method
developed in [5] to determine the K-spectrum of the Cosλ and Sinλ-transforms.
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The article is organized as follows. In Section 1 we recall needed notations and facts on
simple Lie groups and Lie algebras. In Section 2 we introduce the generalized spherical
principal series representations. These are representations induced from a character χλ of
a parabolic subgroup P = MAN . The elements of the representation space can be viewed
as L2 sections of the G-homogeneous line bundle over B = G/P corresponding to χλ. We
recall the results by Knapp and Stein and Vogan and Wallach on the meromorphic con-
tinuation of standard intertwining operators J(λ) between spherical generalized principal
series representations, [20, 21, 44]. The material of this section is presented in the general
setting of semisimple Lie groups rather than for the special case considered later in this
article. Indeed, the analytic properties of the intertwining operators which we discuss here
possess a rather unified structure for the different semisimple Lie groups. On the other
hand, we will associate a geometric meaning to these operators only for a specific class of
semisimple Lie groups. It is therefore a natural question whether one can provide a geo-
metric meaning to the standard intertwining operators for other groups or, more generally,
to intertwining operators between generalized principal series representations induced from
other parabolic subgroups. We expect that the answer will be positive and that higher
rank Cosλ-transforms are in fact given by such intertwining operators.

In Section 3 we recall the method from [5] on how to find the eigenvalues of the inter-
twining operators on each of the K-types in case P is a maximal parabolic subgroup and
the K-types have multiplicity one. As the situation considered in this article is less general
then the one in [5], the results and their proofs are simpler. The principal result is Theorem
3.5, which provides us with an inductive way to compute the spectrum.

We specialize to the case of the Grassmann manifolds Grp(K) in Section 4. We introduce
the Cosλ-transform Cλ and show that Cλ = J(λ). This main result has several applications.
Using the well-known fact that the generalized principal series are irreducible for almost
all λ ∈ C, we obtain that there exists a meromorphic function cP (λ) = J(λ)1 = Cλ(1) such
that C−λ ◦ Cλ = Cλ ◦ C−λ = cP (−λ)cP (λ)id for almost all λ. Moreover, together with the
method from [5] outlined in Section 3, the equality Cλ = J(λ) allows us to calculate the
K-spectrum of Cλ. This computation is done in Section 5. The main result is Theorem
5.11. Finally, a similar discussion about the Sinλ-transform is carried out in Theorem 6.4.

1. Semisimple Lie Groups and Parabolic Subgroups

In this section we introduce the notation and basic facts on semisimple Lie groups, Lie
algebras and parabolic subgroups. The material can be found in any standard textbook on
semisimple Lie group, e.g. [19].

From now on G will stand for a noncompact connected semisimple Lie group with finite
center. The Lie algebra of G is denoted by g. In general Lie groups will be denoted by
upper case Latin letters and their Lie algebras by the corresponding German letter.

An involution θ : G → G is a Cartan involution if K = Gθ = {a ∈ G | θ(a) = a} is a
maximal compact subgroup of G. In that case K is connected. From now on θ will denote
a fixed Cartan involution on G and K the corresponding maximal compact subgroup. Our
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standard example will be G = SL(n + 1,K), K = R, C, or H, and θ(x) = (xt)−1 where ¯
denotes the canonical conjugation in K which fixes R. In this case K = {x ∈ G | xt = x}.
The general structure theory discussed in this section is specialized to this case in Section
4.

The derived involution θ̇ : g → g and its complex linear extension to gC = g ⊗R C will
for simplicity also be denoted by θ. Then g = k ⊕ s where k = gθ is the Lie algebra of K
and s = {X ∈ g | θ(X) = −X}. We have [s, s] ⊆ k, [k, s] ⊆ s, and Ad(K)s = s. We denote
the representation of K on sC by Ads.

Denote by 〈 · , · 〉 the Killing form on g, given by 〈X, Y 〉 = Tr(ad(X)ad(Y )). Then

(X, Y ) 7→ 〈X, Y 〉θ := 〈X, θ(Y )〉

is an inner product on g. If X ∈ g then ad(X)∗ = −ad(θ(X)). In particular, if X ∈ s
then ad(X) is a symmetric operator and hence diagonalizable over the reals. Let a ⊂ s be
abelian. For α ∈ a∗ let

gα = {X ∈ g | (∀H ∈ a) [H,X] = α(H)X}

and let

m = {X ∈ g | (∀H ∈ a) [H,X] = 0 and X ⊥ a} .
Then m⊕ a = g0. We will always assume that the

a = z(m) ∩ s = {X ∈ m⊕ a | [X,m⊕ a] = {0}} .

Let ∆ = ∆(g, a) := {α ∈ a∗ \ {0} | gα 6= {0}}. The elements in ∆ are called roots. We
have

g = m⊕ a⊕
⊕
α∈∆

gα .

As [gα, gβ] ⊆ gα+β for α, β ∈ ∆ ∪ {0} it follows that [m⊕ a, gα] ⊆ gα for all α ∈ ∆.
Let ar := {H ∈ a | (∀α ∈ ∆)α(H) 6= 0}. For a fixed H ∈ ar let ∆+ := {α ∈ ∆ |

α(H) > 0}. Then ∆+ is system of positive roots, i.e., ∆ = ∆+ ∪ −∆+, ∆+ ∩ −∆+ = ∅,
and (∆+ + ∆+) ∩∆ ⊂ ∆+. In particular,

n :=
⊕
α∈∆+

gα

is a nilpotent subalgebra of g normalized by the Lie algebra p := m⊕ a⊕ n. In fact

p = ng(n) = {X ∈ g | [X, n] ⊆ n} .

p is a parabolic subalgebra of g. It is maximal, if dim a = 1.
Let P = NG(p) = {g ∈ G | Ad(g)p ⊂ p}. Then P is a closed subgroup of G with Lie

algebra p. Let A = exp a respectively N = exp n denote the analytic subgroup of G with
Lie algebra a respectively n. Then A and N are closed, A is abelian and N is nilpotent.
Let Mo denote the analytic subgroup of G with Lie algebra m and M := ZK(A)Mo. Then
M is a closed subgroup of G with finitely many connected components, ZG(A) = MA and
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the product map M × A × N → P , (m, a, n) 7→ man, is an analytic diffeomorphism. Let
L = K ∩M and B := K/L. Then

G = KP and K ∩ P = L . (1.1)

Thus B = G/P and G acts on B. To describe this action, write g = kP (g)mP (g)aP (g)nP (g)
with (kP (g),mP (g), aP (g), nP (g)) ∈ K×M ×A×N . If the role of P is clear, then we leave
out the index P . The map G 3 g 7→ (a(g), n(g)) ∈ A×N is analytic and g 7→ a(g) is right
MN -invariant. We can therefore view a( · ) as a map G/MN → A. The elements k(g) and
m(g) are not uniquely defined. However, the maps

g 7→ k(g)L ∈ B and g 7→ Lm(g) ∈ L\M

are well defined and analytic. Let bo = eL. Then we can describe the G action on B by
g · (k · bo) = k(gk) · bo. If b = k · bo ∈ B and g ∈ G, then we set a(gb) := a(gk).

Let N := θ(N). The Lie algebra of N is n̄ = θ(n) =
⊕

α∈−∆+ gα. Furthermore, g =

n̄ ⊕ m ⊕ a ⊕ n = n̄ ⊕ p, and the map N ×M × A × N → G, (n̄,m, a, n) 7→ n̄man, is an
analytic diffeomorphism onto an open and dense subset NP of G of full measure.

Let P = MAN = θ(P ). Then as a K-manifold B = G/P but the G-action in general is
different. Denote this action for the moment by ·̄ .

Lemma 1.1. Let g ∈ G and b ∈ B. Then aP (gb) = aP (θ(g)b)−1, kP (gb) = kP (θ(g)b) and
g ·̄ b = θ(g) · b.

Proof. Let k ∈ K be such that b = k · bo. Then g ·̄ b = kP (gk)L. We have

gk = θ(θ(g)k)

= θ(kP (θ(g)k)mP (θ(g)k)aP (θ(g)k)nP (θ(g)k))

= kP (θ(g)k)θ(mP (θ(g)k))aP (θ(g)k)−1θ(nP (θ(g)k)) .

The Lemma now follows as M is θ-stable and θ(nP (θ(g)k)) ∈ N . �

We note for later use that the the above argument shows that

aP (gk) = aP (θ(g)k)−1 . (1.2)

We normalize the invariant measure on B and compact groups so that the total measure
is one. If f ∈ C(B) then ∫

B
f(b) db =

∫
K

f(k · bo) dk .

For λ ∈ a∗C define a homomorphism χλ : P → C by

χλ(m expHn) = eλ(H) , m ∈M, H ∈ a , and n ∈ N .

We will also use the shorthand notation pλ for χλ(p). For α ∈ ∆ let mα := dim gα and let
ρP := 1

2

∑
α∈∆+ mαα ∈ a∗. As P is fixed most of the time we simply write ρ instead of ρP .

We have p2ρ = |detAd(p)|n|.
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Normalize the Haar measure dn̄ on N such that∫
N

a(n̄)−2ρ dn̄ = 1

and let dn = θ(dn̄). We normalize the invariant measure on A respectively a such that the
inversion formula for the abelian Fourier transform holds without additional constants, i.e.,

if f ∈ C∞c (A) and f̂(λ) =
∫
A
f(a)a−λ da, then f(a) =

∫
a∗
f̂(iλ)aiλ dλ.

Lemma 1.2. Let the notation be as above.

(1) We can normalize the Haar measure on G and M such that for all f ∈ L1(G)∫
G

f(x) dx =

∫
K

∫
M

∫
A

∫
N

f(kman)a2ρ dkdmdadn

=

∫
N

∫
M

∫
A

∫
N

f(n̄man)a2ρ dn̄dmdadn .

(2) The set N · bo ⊂ B is open, dense and of full measure. If f ∈ L1(B) then∫
B
f(b) db =

∫
N

f(n̄ · bo) a(n̄)−2ρ dn̄ . (1.3)

(3) Let f ∈ L1(B) and x ∈ G. Then∫
B
f(x · b) a(xb)−2ρ db =

∫
B
f(b) db . (1.4)

Proof. See [19], pp. 137–140 and p. 170, or [30], §7. �

2. Generalized Principal Series Representations

We now introduce the spherical generalized principal series representations and their in-
tertwining operators. We refer to [20, 21, 44] for proofs. Later we will show that these
intertwining operators coincide with the Cosλ-transform.

For λ ∈ a∗C define a continuous representation of G on L2(B) by

[πλ(x)f ](b) := a(x−1b)−λ−ρf(x−1 · b) . (2.1)

Then πλ = πP,λ = IndGPχλ. It follows easily by (1.4) that πλ is unitary if and only if λ ∈ ia∗.
Theorem 2.1 (Vogan-Wallach). There exists a countable collection {pn}n of non-zero holo-
morphic polynomials on a∗C such that if λ ∈ a∗C and pn(λ) 6= 0, then πλ is irreducible. In
particular, πλ is irreducible for almost all λ ∈ a∗C.

Proof. This is Lemma 5.3 in [44]. �

Replace P by P , realize B as G/P and then induce the character determined by λ from
P to G. We denote the corresponding representation by πP ,λ.

Lemma 2.2. Let πθλ := πP,λ ◦ θ. Then πP ,λ = πθ−λ as a representation of G acting on

L2(B).
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Proof. This follows easily from Lemma 1.1, equation (1.2) and ρP = −ρP :

[πP ,λ(x)f ](b) = aP (x−1b)−λ−ρP f(x−1 ·̄ b)
= aP (θ(x)−1b)λ−ρP f(θ(x)−1 · b)
= [πP,−λ(θ(x))f ](b) . �

For f ∈ C∞(B) and b = k · bo define the standard intertwining operator J(λ) = JP |P (λ)
by

J(λ)f(b) :=

∫
N

a(n̄)−λ−ρf(kn̄ · bo) dn̄ (2.2)

whenever the integral exists. We note that this is well defined. Indeed, if m ∈ L then
a(mn̄m−1) = a(n̄), and the Haar measure on N is invariant under conjugation by m. Let
b = k · bo = k1 · bo. Then k = k1m for some m ∈ L. Thus∫

N

a(n̄)−λ−ρf(kn̄ · bo) dn̄ =

∫
N

a(n̄)−λ−ρf(k1mn̄ · bo) dn̄

=

∫
N

a(mn̄m−1)−λ−ρf(k1(mn̄m−1) · bo) dn̄

=

∫
N

a(n̄)−λ−ρf(k1n̄ · bo) dn̄ .

Recall that the space of smooth vectors for πλ is C∞(B). In particular, it is independent
of λ. If X ∈ g then we define as usually π∞λ (X) : C∞(B)→ C∞(B) by

lim
t→0

πλ(exp(tX))f − f
t

=
d

dt

∣∣∣∣
t=0

πλ(exp(tX))f

where the derivative is taken in L2(B). Then π∞λ is a representation of g in C∞(B) and
extends to a representation of the universal enveloping algebra U(g). If u ∈ U(g) then
π∞λ (u) : C∞(B) → C∞(B) is a differential operator. If λ ∈ a∗C write λ = λR + iλI with
λR, λI ∈ a∗.

Theorem 2.3 (Vogan-Wallach). The following holds:

(1) There exists a constant aP such that if

λ ∈ a∗C(aP ) := {µ ∈ a∗C | (∀α ∈ ∆+) 〈µR, α〉 ≥ aP}
then the integral (2.2) converges absolutely. Furthermore, there exists a constant
C > 0 such that for all λ ∈ a∗C(aP ) and f ∈ C∞(B)

‖J(λ)f‖∞ ≤ C‖f‖∞ . (2.3)

(2) If f ∈ C∞(B) then

a∗C(aP ) 3 λ 7→ J(λ)f ∈ C∞(B)

is continuous and holomorphic on the interior {µ ∈ a∗C | (∀α ∈ ∆+) 〈µR, α〉 > aP}.
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(3) There exists polynomial functions b : a∗C → C and D : a∗C → U(g)K such that if
λ ∈ a∗C(aP ) and f ∈ C∞(B), then

b(λ)J(λ)f = J(λ+ 4ρ)πλ+4ρ(D(λ))f .

In particular λ 7→ J(λ)f extends to a meromorphic function on a∗C.
(4) The operator J(λ) intertwines πλ and πθ−λ. Thus, if x ∈ G and f ∈ C∞(B), then

J(λ)(πλ(x)f) = πθ−λ(x)J(λ)f . (2.4)

Proof. Referring to [44], we have that (1) is Lemma 1.2, (2) is Lemma 1.3, (3) is Theorem
1.5, and (4) is Lemma 1.2 for λ ∈ a∗C(aP ). It extends to a∗C by meromorphic continuation.

�

Our situation is simpler than the general case considered in [44], therefore–and for
completeness–we describe the main idea behind the proof. Let

aP := max
α∈∆+

〈α, ρ〉 > 0 . (2.5)

According to Lemma A.3.3 in [44] we have 〈log a(n̄), α〉 ≥ 0 for all α ∈ ∆+. Thus for
λ ∈ a∗C(aP )

|a(n̄)−λ−ρ| ≤ a(n̄)−2ρ

and n̄ 7→ a(n̄)−2ρ is integrable. Thus, the integral defining J(λ) exists and λ 7→ J(λ)f is
holomorphic and also (2.3) clearly follows. Note that (2.3) says in particular that J(λ)f ∈
C∞(B).

Part (2) follows by the above estimates (2.3) that show that the integral defining J(λ)f
converges uniformly on any domain of the form a∗C(a) with a > aP .

The proof of (3) uses tensoring with finite dimensional representations of G. Another
way of showing that λ 7→ J(λ)f extends to a meromorphic function on a∗C is to use the last
part of (2.2) and ideas from [6, 30, 31] using the Bernstein polynomial for n̄ 7→ a(n̄)−λ−ρ

and equation (2.2).
We will show that J(λ) is an intertwining operator after having proved Lemma 2.5 below.

Lemma 2.4. Let aP be as in (2.5) and let λ ∈ a∗C(aP ). Let 1 ≤ p ≤ ∞ and let f ∈ Lp(B).
Then the integral (2.2) exists and |J(λ)f(k)| ≤ ‖f‖p. In particular, J(λ)f ∈ Lp(B) and
‖J(λ)f‖p ≤ ‖f‖p.

Proof. The case p =∞ is (2.3). We can therefore assume that p <∞. Let q be such that
1
p

+ 1
q

= 1. Then 2ρ = 2
p
ρ + 2

q
ρ. As |a(n̄)−λ−ρ| ≤ a(n̄)−2ρ and

∫
N
a(n̄)−2ρ dn̄ = 1, it follows



10 GESTUR ÓLAFSSON AND ANGELA PASQUALE

that ∣∣∣ ∫
N

a(n̄)−λ−ρf(kk(n̄) · bo) dn̄
∣∣∣ ≤ ∫

N

a(n̄)−2ρ|f(kk(n̄) · bo)| dn̄

≤
(∫

N

∣∣∣a(n̄)−
2
p
ρf(kk(n̄) · bo)

∣∣∣p dn̄)1/p

=

(∫
N

|f(kk(n̄) · bo)|pa(n̄)−2ρ dn̄

)1/p

=

(∫
B
|f(kb)|p db

)1/p

= ‖f‖p .

Here we used (1.3) to transfer the integral over N to an integral over B. �

For x ∈ NP write
x = n̄P (x)mP (x)αP (x)nP (x)

with n̄P (x) ∈ N , mP (x) ∈ M , αP (x) ∈ A, and nP (x) ∈ N . Note that x 7→ αP (x) is right
MN -invariant. We leave out the subscript P if it is clear which parabolic subgroup we are
using.

Lemma 2.5. Assume that λ ∈ a∗C(aP ). Let f ∈ C∞(B). Then for k ∈ K

J(λ)f(k) =

∫
K

αP (k−1h)λ−ρf(h) dh =

∫
B
αP (k−1b)λ−ρf(b) db .

In particular, J(λ) is a convolution operator on L2(B) if λ ∈ a∗C(aP ).

Proof. Let n̄ ∈ N . Then

n̄ = k(n̄)m(n̄)a(n̄)n(n̄)

= n̄(k(n̄))mN(k(n̄))α(k(n̄))nN(k(n̄))m(n̄)a(n̄)n(n̄)

= n̄(k(n̄))m′α(k(n̄))a(n̄)n′

for some m′ ∈ M and n′ ∈ N . Thus α(k(n̄)) = a(n̄)−1. Assume that λ ∈ a∗C(aP ). Using
(1.3) we get∫

N

a(n̄)−λ−ρf(kk(n̄) · bo) dn̄ =

∫
N

α(k(n̄))λ−ρf(kk(n̄) · bo)a(n̄)−2ρ dn̄

=

∫
B
α(b)λ−ρf(kb) db

=

∫
B
α(k−1b)λ−ρf(b) db

as the measure on B is K-invariant. �
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We now show that J(λ)πλ(x) = π−λ(θ(x))J(λ). For this, let x ∈ G and λ ∈ a∗C(aP ).
Then

J(λ)(πλ(x)f)(k) =

∫
K

α(k−1h)λ−ρa(x−1h)−λ−ρf(k(x−1h)) dh . (2.6)

We have

α(k−1h) = α(k−1xx−1h) = α(k−1xk(x−1h))a(x−1h) .

Hence we can rewrite (2.6) as

J(λ)(πλ(x)f)(k) =

∫
K

α(k−1xk(x−1h))λ−ρf(k(x−1h))a(x−1h)−2ρ dh

=

∫
K

α(k−1xh)λ−ρf(h) dh

=

∫
K

α((x−1k)−1h)λ−ρf(h) dh . (2.7)

Now use Lemma 1.1 to write

x−1k = kP (x−1k)maP (x−1k)n̄ = kP (θ(x−1)k)maP (θ(x−1)k)−1n̄

for some m ∈M and n ∈ N and insert this into (2.7) to get

J(λ)(πλ(x)f)(k) = a(θ(x)−1k)λ−ρ
∫
K

α(k(θ(x)−1k)−1h)λ−ρf(h) dh = π−λ(θ(x))J(λ)f(k) .

As J(λ) is K-intertwining and the only K-invariant functions in L2(B) are multiple
of the constant function 1(x) = 1, it follows that there exists a meromorphic function
cP : a∗C → C such that J(λ)1 = c(λ). For λ ∈ a∗C(aP ) the function cP (λ) is given by the
converging integral

cP (λ) := J(λ)1 =

∫
N

a(n̄)−λ−ρ dn̄ =

∫
K

α(k)λ−ρ dk . (2.8)

Theorem 2.6. Let the notation be as above. Then, as an identity of meromorphic func-
tions,

J(−λ)J(λ) = J(λ)J(−λ) = cP (λ)cP (−λ) id .

Furthermore, if λ ∈ ia∗, then the normalized operator cP (λ)−1J(λ) is unitary.

Proof. We have

J(−λ)J(λ)πλ(x) = J(−λ)π−λ(θ(x))J(λ) = πλ(x)J(−λ)J(λ)

as θ2 = id. As πλ is irreducible for λ in an open dense subset of a∗C it follows that the
J(−λ)J(λ) is a scalar multiple of the identity on that set. As J(−λ)J(λ)1 = cP (−λ)cP (λ)
it follows that J(−λ)J(λ) = c(−λ)c(λ)id as a meromorphic function. The same argument
shows that J(λ)J(−λ) = c(−λ)c(λ)id and (1) follows. The unitarity of cP (λ)−1A(λ) for λ
purely imaginary follows from [cP (λ)−1J(λ)]∗ = cP (−λ)−1J(−λ) as in this case λ = −λ. �
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3. The Spectrum Generating Operator

We will now specialize the situation to the case where G is simple and P is a maximal
parabolic subgroup. Thus dim a = 1. Based on our application later on, we will also assume
that ∆ = {α,−α}. Hence n is abelian. Finally, we will assume that K is semisimple and
that (K,L) is a symmetric pair corresponding to an involution τ : K → K. This implies
that each irreducible representation of K that occurs in L2(B) has multiplicity one.

Denote by K̂ the set of equivalence classes of irreducible representations of K. For

simplicity we will often write δ ∈ K̂ where δ is an irreducible representation of K, i.e., we
identify the representation with its equivalence class. Denote by Vδ the finite dimensional
Hilbert space on which δ acts and let d(δ) := dimVδ. Let

V L := {u ∈ Vδ | (∀k ∈ L) δ(k)u = u} .
Then, as K/L is a symmetric space, either dimV L

δ = 0 or dimV L
δ = 1. We say that (δ, Vδ)

is spherical if V L
δ 6= {0}. Let K̂L denote the subset of K̂ of spherical representations. To

describe K̂L write k = l⊕ q where q = {X ∈ k | τ(X) = −X}. Let b be a maximal abelian
subspace of q. Denote by ∆k the set of roots of bC in kC. Note that ∆k ⊂ ib∗. Let ∆+

k

be a set of positive roots and let ρk be the corresponding half-sum of roots, counted with
multiplicities. Denote by Wk the Weyl group of ∆k. Finally we let

Λ+ := {µ ∈ ib∗ | (∀α ∈ ∆+
k )
〈µ, α〉
〈α, α〉

∈ N0} .

Then the map π 7→ (highest weight of π) defines an injective map of K̂L into Λ+. This

map is bijective if and only if B is simply connected. In general K̂L is isomorphic to a
sublattice Λ+(B) of Λ+. We refer to [15], p. 535, and the discussion in [32], in particular
the appendix, for more details. Let µ ∈ Λ+(B) and denote by πµ the corresponding spherical
representation. Let Vµ be the space on which πµ acts and let (·, ·)Vµ the inner product on
Vµ making πµ unitary. We also fix a unit vector eµ ∈ V L

µ . Define Tµ : Vµ → L2(B) by

Tµ(v)(x) := d(µ)1/2(v, πµ(x)eµ)Vµ .

Then Tµ is an isometric K-intertwining operator between πµ and the left regular represen-
tation L of K on L2(B). Let L2

µ(B) := Im (Tµ). Then L is an irreducible K-representation

on L2(B) and

L2(B) 'K
⊕

µ∈Λ+(B)

L2
µ(B) .

Lemma 3.1. For µ ∈ Λ+(B) let Jµ(λ) := J(λ)|L2
µ(B). There exists a meromorphic function

ηµ : a∗C → C such that

(1) Jµ(λ) = ηµ(λ)idL2
µ(B).

(2) η0(λ) = cP (λ),
(3) ηµ(λ)ηµ(−λ) = cP (λ)cP (−λ),
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Proof. J(λ) is a G-intertwining operator between πλ and πθ−λ by Theorem 2.3 (4). As
K-representations, πλ and πθ−λ agree with L. Hence J(λ) is a K-intertwining operator of
L with itself. As each L2

µ(B) is irreducible and the multiplicity of πµ in L2(B) is one, it
follows by Schur’s Lemma that we can define ηµ(λ) by (1). The claim now follows from our
normalization J(λ)1 = cP (λ) and Theorem 2.6. �

We call {ηµ(λ) | µ ∈ Λ+(B)} the K-spectrum of J(λ).
Our aim is to determine the functions ηµ using the results from [5]. Fix Ho ∈ a such

that α(Ho) = 1. Fix a G-invariant R-bilinear form 〈 · , · 〉 on g such that 〈Ho, Ho〉 = 1. For
H ∈ a we have α(H) = 〈H,Ho〉. Denote the complex bilinear extension to gC by the same
symbol. Define a map ω : sC → C∞(B) by

ω(Y )(k) := 〈Y,Ad(k)Ho〉
and note that

ω(Ad(h)Y )(k) = 〈Ad(h)Y,Ad(k)Ho〉 = 〈Y,Ad(h−1k)Ho〉 = ω(Y )(h−1k) .

Thus ω is a K-intertwining operator.
Note that 〈 · , · 〉 is negative definite on k. Let X1, . . . , Xdim q be an orthonormal basis of q

such that X1, . . . , Xp, p = dim b, is an orthonormal basis of b. Denote by Ω = −
∑

j X
2
j the

corresponding positive definite Laplace operator on B. The action of Ω on functions on B
is–up to a sign–the same as that of the Casimir element of k. Thus Ω|L2

µ(B) = 〈µ+ 2ρk, µ〉id.
For later reference we state this as a Lemma:

Lemma 3.2. For µ ∈ Λ+(B) let

ω(µ) = −
p∑
j=1

µ(Xj)(µ+ 2ρk)(Xj) = −
p∑
j=1

(
µ(Xj)

2 + 2µ(Xj)ρk(Xj)
)
.

Then Ω|L2
µ(B) = ω(µ)id.

For f ∈ C∞(B) denote by M(f) : L2(B)→ L2(B) the multiplication operator g 7→ fg.

Theorem 3.3. Let Y ∈ s. Then [Ω,M(ω(Y ))] = 2π0(Y ).

Proof. This is Theorem 2.3 in [5]. �

For µ ∈ Λ+(B) define Φµ : L2
µ(B)⊗ sC → L2(B) by

Φµ(ϕ⊗ Y ) := M(ω(Y ))ϕ .

Observe that for k ∈ K, Y ∈ sC and ϕ ∈ L2
µ(B) we have

Lk
(
M(ω(Y )ϕ

)
=
(
Lkω(Y )

)
(Lkϕ) = M

(
ω(Ad(k)Y )

)
(Lkϕ)

with Ad(k)Y ∈ sC and Lkϕ ∈ L2
µ(B). Hence Φµ is K-equivariant and Im Φµ is K-invariant.

Define a finite subset S(µ) ⊂ Λ+(B) by

Im Φµ 'K
⊕
σ∈S(µ)

L2
σ(B) .
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Denote by prσ the orthogonal projection L2(B)→ L2
σ(B).

Lemma 3.4. Assume that µ ∈ Λ+(B). Let σ ∈ S(µ), Y ∈ sC and rα ∈ a∗C. Let

ωσµ(Y ) := prσ ◦M(ω(Y ))|L2
µ(B) : L2

µ(B)→ L2
σ(B) . (3.1)

Then

prσ ◦ πrα(Y )|L2
µ(B) =

1

2
(ω(σ)− ω(µ) + 2r)ωσµ(Y ) . (3.2)

Proof. This is Corollary 2.6 in [5]. �

Theorem 3.5. Let µ ∈ Λ+(B), σ ∈ S(µ) and λ = rα ∈ a∗C. Then

ησ(λ)

ηµ(λ)
=

2r − ω(σ) + ω(µ)

2r + ω(σ)− ω(µ)
. (3.3)

The K-spectrum {ηµ(λ)}µ∈Λ+(B) and hence J(λ) is uniquely determined by (3.3) and the
normalization η0(λ) = cP (λ).

Proof. Applying J(λ) to (3.2) from the left, using that J(λ) commutes with prσ and that
J(λ) ◦ πλ(Y ) = πθ−λ(Y ) ◦ J(λ) = −π−λ(Y ) ◦ J(λ), we obtain:

(ω(σ)− ω(µ) + 2r)ησ(λ)ωσµ(Y ) = −(ω(σ)− ω(µ)− 2r)ηµ(λ)ωσµ(Y ) .

As ωσδ(Y ) is non-zero for generic λ it can be canceled out. The last statement follows from
the fact that πλ is irreducible for generic λ, hence iterated application of (3.1) will in the
end reach all K-types starting from the trivial K-type. �

4. The case of the Grassmann Manifolds

From now on K denotes the one of the fields R or C, or the skew field H of quaternions.
We let G = SL(n + 1,K). For discussion about the determinant function on the space of
quaternionic matrices see [4, 13]. We will use that if x ∈ M(n+1,K) then |detRx| = |detKx|d,
where d = dimR K is equal to 1, 2, 4 for K = R,C,H, respectively. Denote by Gp(K) the
Grassmann manifold of k-dimensional subspaces of Kn+1. Note that Gp(K) ' Gn+1−p(K).
So we can assume without loss of generality that 2p ≤ n+ 1. We set q = n+ 1− p. Hence
q ≥ p.

In this section we show that Gp(K) = G/P = K/L, where P is a maximal parabolic
subgroup of G. Furthermore K/L is a symmetric space. Therefore the results from the
previous sections apply to this case. We introduce the Cosλ-transform for K/L and then
show that it agrees with the intertwining operator J(λ). In the next section we then apply
the spectrum generating operator to determine the K-spectrum.

Define an invariant R-bilinear form on g by

〈X, Y 〉 :=
n+ 1

pq
Re (Tr(XY )) .
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Denote by z 7→ z̄ the conjugation in K and for x = (xνµ) ∈ M(n+ 1,K) let x := (xνµ) and
x∗ := (xµν) = xt. The homomorphism θ : G→ G, x 7→ (x−1)∗ is a Cartan involution on G.
The corresponding Cartan involution on g is θ(X) = −X∗. We have

K = SU(n+ 1,K) := {x ∈ G | x∗ = x−1}
k = {X ∈ M(n+ 1,K) | X∗ = −X and Tr(X) = 0 }
s = {X ∈ M(n+ 1,K) | X∗ = X and Tr(X) = 0 }

In the notation in [16] we have G = SL(n + 1,R) and K = SO(n + 1) for K = R,
G = SL(n+1,C) and K = SU(n+1) for K = C, and G = SU∗(2(n+1)) and K = Sp(n+1)
for K = H.

For k ∈ N denote by Ik the k × k identity matrix. We write matrices as blocks(
X Y
W Z

)
, X ∈ Mp×p(K) , Y ∈ Mp×q(K) , W ∈ Mq×p(K) and Z ∈ Mq×q(K) .

Let

Ho =

( q
n+1

Ip 0
0 − p

n+1
Iq

)
∈ s ,

and define a := RHo, and m = {X ∈ zg(a) | 〈X,Ho〉 = 0}. Then z(m) ∩ s = a. We have
∆ = {α,−α} where α(Ho) = 1. As 〈Ho, Ho〉 = 1 it follows that 〈 · , · 〉 agrees with the
invariant form from last section.

Let ∆+ = {α}. Then

m⊕ a =

{
M(X, Y ) =

(
X 0
0 Y

) ∣∣∣∣ X ∈ M(p,K)
Y ∈ M(q,K)

and TrX + TrY = 0

}
= s(gl(p,K)× gl(q,K)) ,

n =

{
N(X) :=

(
0pp X
0qp 0qq

) ∣∣∣∣ X ∈M(p× q,K)

}
'M(p× q,K)

MA =

{
m(a, b) :=

(
a 0
0 b

) ∣∣∣∣ a ∈ GL(p,K)
b ∈ GL(q,K)

and deta detb = 1

}
= S(GL(p,K)×GL(q,K))

N =

{
n(X) =

(
Ip X
0qp Iq

) ∣∣∣∣ X ∈ M(p× q,K)

}
P =

{
p(a, b;X) :=

(
a X
0 b

) ∣∣∣∣ a ∈ GL(p,K)
b ∈ GL(q,K)

, deta detb = 1, X ∈ M(p× q,K)

}
L = S(U(p,K)× U(q,K)) .

Let e1, . . . , en+1 be the standard basis for Kn+1 and let bo = Ke1 ⊕ . . .⊕Kep ∈ Grp(K).
Then Grp(K) = K · bo ' K/L = G/P . Thus we can introducce the notation B = Grp(K),
which agrees with the one from the previous sections. Note that L = S(O(p) × O(q)) for
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K = R, L = S(U(p)×U(q)) for K = C, and L = Sp(p)× Sp(q) for K = H. In particular B
is simply connected for K = C and H.

Applying θ to n, we see that

n̄ =

{
N̄(Y ) =

(
0pp 0pq
Y 0qq

) ∣∣∣∣ Y ∈ Mq×p(K)

}
' M(q × p,K)

and

N =

{
n̄(Y ) =

(
Ip 0pq
Y Iq

) ∣∣∣∣ Y ∈ M(q × p,K)

}
.

The action of MA on n, respectively n̄, is given by

m(a, b)N(X)m(a−1, b−1) = N(aXb−1) and m(a, b)N̄(Y )m(a−1, b−1) = N̄(bY a−1) .

Lemma 4.1. NP =

{(
A B
C D

)
∈ G

∣∣∣∣ A ∈ GL(p,K)

}
.

Proof. A simple calculation shows that

n̄(Y )m(a, b)n(X) =

(
a aX
Y a Y aX + b

)
, (4.1)

proving one of the inclusions. On the other hand, let x =

(
A B
C D

)
be such that A is

invertible. Define a = A, X = a−1B, Y = Ca−1, and b = D−Ca−1B. Then m(a, b) ∈MA
and n̄(Y )m(a, b)n(X) = x. �

Let b ∈ Grp(K) and view b as a dp-dimensional real vector space. Fix a convex subset
E ⊂ b containing the zero vector, such that the volume of E is one. For c ∈ Grp(K) let
Pc : Kn → c denote the orthogonal projection onto c. Define

|Cos(b, c)| := VolR(Pc(E))1/d (4.2)

The definition is independent of E as we will see in a moment. Recall, if x : b→ b is linear
then

VolR(x(E)) = |detR(x)| = |det(x)|d. (4.3)

As the elements in K acts as orthogonal transformations it follows that |Cos(k · b, c)| =
|Cos(b, k−1c)|. In particular, if b = k · bo and c = h · bo with k, h ∈ K, then

|Cos(b, c)| = |Cos(h−1k · bo, bo)| = VolR(Pbo(h
−1kE))1/d . (4.4)

As a motivation for the definition assume that p = 1 and K = R. If b = Rx, c = Ry ∈
Gr1(R), then

|Cos(b, c)| = |(x, y)|
‖x‖‖y‖

= | cos(^(x, y))|

where ^(x, y) denotes the angle between x and y.
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For reasons that will become transparent in a moment, we identify a∗C with C by

λ 7→ n+ 1

pq
λ(Ho) with inverse z 7→ z

pq

n+ 1
α . (4.5)

We have dimR n = dpq. Hence

ρ =
dpq

2
α←→ d(n+ 1)

2
∈ R .

Then ρ is an integer if and only if K = C,H or K = R and n is odd. For a complex number
λ, we write from now on αP (x)λ instead of αP (x)λ

pq
n+1

α.

Theorem 4.2. Fix a convex subset E ⊂ bo containing zero such that VolR(E) = 1. For
x ∈ G and λ ∈ C we have

αP (x)λ = |VolR(Pbo(x(E)))|λ/d = |Cos(x · bo, bo)|λ . (4.6)

In particular, if b = k · bo and c = h · bo ∈ B, then

α(h−1k)λ = |Cos(b, c)|λ . (4.7)

Proof. For z = (z1, . . . , zp)
t ∈ Kp we have(

A B
C D

)(
z
0

)
=

(
Az
Cz

)
.

Thus

Pbo

((
A B
C D

)(
z
0

))
=

(
Az
0

)
.

Thus, by (4.4), ∣∣∣∣Cos

((
A B
C D

)
· bo, bo

)∣∣∣∣λ = |detRA|λ/d . (4.8)

Let n̄(Y )m(a, b)n(X) ∈ NP . Write m(a, b) = mo exp(xH0) with mo ∈ M and x ∈ R.
Then

|detRa|λ = exp

(
λ
xdpq

n+ 1

)
= exp(xHo)

λ dpq
n+1

α = αP
(

exp(xH0)
)dλ

.

Thus
αP (n̄(Y )m(a, b)n(X))λ = |detR(a)|λ/d = |deta|λ (4.9)

and (4.6) follows now from (4.8). �

This shows in particular that the definition of Cos is independent of the convex set E.

Lemma 4.3. Let k ∈ K. Then αP (k) = αP (k−1).

Proof. Write k = n̄man. Then, as θ(k) = k and θ(a)−1 = a, we have k−1 = θ(k)−1 =
θ(n)−1θ(m)−1aθ(n̄)−1 and the claim follows. �

Corollary 4.4. Let b, c ∈ B. Then |Cos(b, c)|λ = |Cos(c, b)|λ.
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Proof. Write b = k · bo and c = h · bo. By (4.7) and Lemma 4.3

|Cos(b, c)|λ = α(h−1k)λ = α(k−1h)λ = |Cos(c, b)|λ ,

which proves the Corollary. �

The Cosλ-transform Cλ is defined for Reλ > ρ by

Cλ(f)(c) :=

∫
B
|Cos(b, c)|λ−ρf(c) dc =

∫
K

α(k−1h)λ−ρf(h · bo) dk c = k · bo (4.10)

where we have used Theorem 4.2. Thus, Cλ is nothing but the standard intertwining
operator J(λ). We would like to point out, that the proof of the intertwining property of
J(λ) shows that Cλ is an intertwining operator without the reference to the general theory.
But the general theory described in Section 2 gives us the following theorem for free and
allows us to apply the results from [5] described in Section 3.

Theorem 4.5. The following holds:

(1) The Cosλ-transform extends to a meromorphic family of intertwining operators Cλ :
C∞(B)→ C∞(B).

(2) Let cP (λ) := Cλ(1). Then cP : C→ C is meromorphic and

C−λ ◦ Cλ = Cλ ◦ C−λ = cP (−λ)cP (λ)id .

(3) If λ ∈ iR, then 1
cP (λ)
Cλ is unitary.

5. The K-spectrum of the Cosλ-Transform

In this section we determine the K-spectrum of J(λ) for the Grassmann manifolds Gp(K) =
SU(n+1,K)/S(U(p,K)×U(q,K)) ' SL(n+1,K)/P . This then determines the K-spectrum
of the cosλ transform. As before we always assume that p ≤ q and p+ q = n+ 1. We keep
the notation from the previous sections.

The following is well known.

Lemma 5.1. The space B is a symmetric space and the corresponding involution is

τ(x) =

(
Ip 0
0 −Iq

)
x

(
Ip 0
0 −Iq

)
=

(
A −B
−C D

)
for x =

(
A B
C D

)
and Kτ = L.

The derived involution is given by the same formula. Let l denote the Lie algebra of L.
Then k = l⊕ q where

q =

{
Q(X) =

(
0pp X
−X∗ 0qq

) ∣∣∣∣ X ∈ M(p× q,K)

}
.
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Let E
(r,s)
ν,µ = (δiνδjµ)i,j denote the matrix in M(r × s,K) with all entries equal to 0 but

the (ν, µ)-th which is equal to 1. For t = (t1, . . . , tp)
t ∈ Rp let

X(t) = −
p∑
j=1

tjE
(p,q)
q−p+j,j ∈ M(p× q,K) ,

Y (t) = Q(X(t)) ∈ q

diag(t) =

p∑
j=1

tjEj,j ∈ M(p× p,K) .

Then b = {Y (t) | t ∈ Rp} ' Rp is a maximal abelian subspace of q.

To describe the set K̂L we note first that if K = R, then B is not simply connected. In
all other cases B is simply connected. Define εj(Y (t)) := tj. We will identify the element
λ =

∑p
j=1 λjεj with the corresponding vector λ = (λ1, . . . , λp).

Lemma 5.2. We have

∆k = {±εi ± εj (1 ≤ i 6= j ≤ p ,± independent ), ±εi (1 ≤ i ≤ p) ,±2εi (1 ≤ i ≤ p) }
with multiplicities respectively d (and not there in case p = 1), d(q − p) (and not there in
case p = q) and d− 1 (and absent if d = 1).

Proof. This follows from [16]: the table on page 518, the description of the simple root
systems on page 462 ff. and the Satake diagrams on page 532–533. �

Lemma 5.3. Let the notation be as above.

(1) If K = R and p = q, then

Λ+(B) = {µ =

p∑
j=1

mjεj | mj ∈ 2N0 and m1 ≥ . . . ≥ mp−1 ≥ |mp| } .

In all other cases,

Λ+(B) = {µ =

p∑
j=1

mjεj | mj ∈ 2N0 and m1 ≥ . . . ≥ mp ≥ 0 } .

(2) ρk =
∑p

j=1[ρ− d(j − 1)− 1]εj.

(3) Let µ ∈ Λ+(B). Then ω(µ) =
pq

2(n+ 1)

p∑
j=1

(
m2
j + 2mj(ρ− d(j − 1)− 1)

)
.

Proof. (1) is well known and (2) follows by a simple calculation using the form of ∆+
k and

the multiplicities. For (3) let X̃1, . . . , X̃p ∈ b be so that εj(X̃k) = iδjk. Then −〈X̃k, X̃k〉 =

2(n + 1)/pq. Thus the Xk =
√
pq/[2(n+ 1)] X̃k form an orthonormal basis for b and

−εj(Xk)
2 = pq/[2(n+ 1)]δjk. The claim now follows from Lemma 3.2. �
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Lemma 5.4. Let µ = (m1, . . . ,mp) ∈ Λ+(B). Then

S(µ) = {µ± 2εj | j = 1, . . . , p} ∩ Λ+(B) .

These representations occur with multiplicity one.

Proof. A simple matrix calculation shows that the weights of h in sC are ±(εi + εj) for
i, j = 1, . . . , p. Next we note that µ ± (εi + εj), j 6= i, is not in Λ+(B) as the ith and jth

entries are not even. It follows now from [26] and the fact that each submodule in Vµ ⊗ sC
that occur in L2(B) is spherical that σ ∈ S(µ) if and only if there exists j = 1, . . . , p and
w ∈ Wk such that w(µ± 2εj) is dominant and σ = w(µ± 2εj). Assume that µ+ 2εj is not
dominant. Then mj−1 < mj + 2. Hence mj = mj−1. Applying the transposition (j − 1, j)
shows that µ+ 2εj is Wk-conjugate to µ+ 2εj−1. Repeating as long as necessary shows that
there exists a k, 1 ≤ k < j such that µ+ 2εk is dominant and Wk-conjugate to µ+ 2εj. The
case µ− 2εj not dominant is handled in similar way. �

Lemma 5.5. Let µ = (m1, . . . ,mp) ∈ Λ+(B) and λ ∈ C ' a∗C. Then

ηµ+2εj(λ)

ηµ(λ)
=
λ−mj − ρ+ d(j − 1)

λ+mj + ρ− d(j − 1)
. (5.1)

Proof. By Lemma 5.3 we get

ω(µ+ 2εj)− ω(µ) =
2pq

n+ 1
(mj + ρ− d(j − 1)) .

The claim now follows from (3.3) and our identification C ' a∗C, z 7→ z pq
n+1

α. �

Introduce the Siegel or Gindikin Γ-function Γp,d : Cp → C by

Γp,d(λ) =

p∏
j=1

Γ(λj −
d

2
(j − 1)) . (5.2)

Then Γ(p, d;λ) is meromorphic with singularities on the union of the hyperplanes

H(d, j, n) = {λ ∈ Cp | λj = −n+
d

2
(j − 1)} , j = 1, . . . , p, n ∈ N0 .

In the following, if λ ∈ C, we will also indicate by λ the vector (λ, . . . , λ) ∈ Cp. It will be
clear from the context if we are using λ as a complex number or as a vector.

Theorem 5.6. Let λ ∈ C. Then there exists a meromorphic function G(λ) such that for
all µ ∈ Λ+(B) we have

ηµ(λ) = (−1)|µ|/2G(λ)
Γp,d

(
1
2
(−λ+ ρ+ µ)

)
Γp,d

(
1
2
(λ+ ρ+ µ)

) , (5.3)

where |µ| =
∑p

j=1mj.
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Proof. Denote the right hand side of (5.3) by σµ(λ). Using Γ(z + 1) = zΓ(z), we get

σµ+2εj(λ) = σµ(λ)
λ−mj − ρ+ d(j − 1)

λ+mj + ρ− d(j − 1)
.

Now Lemma 5.5 implies that there exists a meromorphic function G(λ) with the requires
property. �

The function G(λ) will be explicitly computed in (5.8) below, by comparing the formula
for η0(λ) = cP (λ). For this, we note the following result which can be found in [3], Theorem
8.1.1.

Lemma 5.7 (Selberg’s integral). Let γ1, γ2, α ∈ C with Re γ1,Re γ2,Reα > 0. Then∫ 1

0

· · ·
∫ 1

0

p∏
j=1

tγ1−1
j (1− tj)γ2−1

∏
1≤i<j≤p

|ti − tj|2α dt1 . . . dtp =

=

p∏
j=1

Γ(αj + 1)Γ(α(j − 1) + γ1)Γ(α(j − 1) + γ2)

Γ(α + 1)Γ(α(p+ j − 2) + γ1 + γ2)
.

To complete the calculation we need to evaluate αP (exp(Y (t))). We have

expY (t) =

diag(cos t1, . . . , cos tp) 0 −diag(sin t1, . . . , sin tp)
0 Iq−p 0

diag(sin t1, . . . , sin tp) 0 diag(cos t1, . . . , cos tp)

 (5.4)

where the matrix Iq−p = In+1−2p does not occur in case p = (n+ 1)/2.
For the following see also [45], Lemma 3.2:

Lemma 5.8. Let t ∈ Rp and λ ∈ C. Then αP (expY (t))λ =

p∏
j=1

| cos(tj)|λ.

Proof. This follows from (5.4), (4.9) and (4.1). �

Theorem 5.9. Let cP (λ) =
∫
K
αP (k)λ−ρ dk = η0(λ) = J(λ)1. Then

cP (λ) =
Γp,d (d(n+ 1)/2)

Γp,d (dp/2)

Γp,d
(

1
2
(λ− ρ+ dp)

)
Γp,d

(
1
2
(λ+ ρ)

) . (5.5)

Proof. In the following c will denote a positive constant that might change from one line
to another. Its value will then be determined at the end. Let γ1 = (λ − ρ + d)/2, γ2 =
d(q − p + 1)/2, Q = [0, 1]p, and Qπ = [0, π]p. Using that sin(2u) = 2 cos(u) sin(u) and
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| sin(u− v) sin(u+ v)| = | cos2(u)− cos2(v)|, we get by the substitution uj = cos2(tj):

cP (λ) = c

∫
Qπ

p∏
j=1

| cos tj|2γ1−1 sin(tj)
2γ2−1

∏
i<j

| cos2(ti)− cos2(tj)|d dt1 . . . dtp

= c

∫
Qπ

p∏
j=1

| cos tj|2γ1−1(1− cos2 tj)
γ2−1 sin(tj)

∏
i<j

| cos2(ti)− cos2(tj)|d dt1 . . . dtp

= c

∫
Q

p∏
j=1

uγ1−1
j (1− uj)γ2−1

∏
i<j

|ui − uj|d du1 . . . dup

= c

p∏
j=1

Γ
(

1
2
(λ− ρ+ dj)

)
Γ
(

1
2
(λ− ρ+ d(q + j))

)
= c

p∏
j=1

Γ
(

1
2
(λ− ρ+ dp− d(j − 1))

)
Γ
(

1
2
(λ+ ρ− d(j − 1))

) .

In the last equation we used that d(q+ j) = d(n+ 1− p+ j) = 2ρ− dp+ dj and that for a
complex number z

p∏
j=1

Γ

(
1

2
(z + dj)

)
=

p∏
j=1

Γ

(
1

2
(z + dp− d(j − 1))

)
. (5.6)

Now evaluate c by using that cP (ρ) = 1 and recalling that ρ = d(n+ 1)/2. �

Remark 5.10. After circulation of the preprint of the present paper, Ole Warnaar kindly
pointed us that the integral in Theorem 5.9 is well known to algebraic combinatorialists
and was probably first considered by I. Macdonald in [28], p. 992.

Theorem 5.11. The K-spectrum the Cosλ-transform is given by:

ηµ(λ) = (−1)|µ|/2
Γp,d (d(n+ 1)/2)

Γp,d (dp/2)

Γp,d
(

1
2
(λ− ρ+ dp)

)
Γp,d

(
1
2
(−λ+ ρ+ µ)

)
Γp,q

(
1
2
(−λ+ ρ)

)
Γp,d

(
1
2
(λ+ ρ+ µ)

) . (5.7)

Proof. By taking µ = 0 in (5.3) and using η0 = cP , we get

G(λ) =
Γp,d

(
1
2
(λ+ ρ)

)
Γp,d

(
1
2
(−λ+ ρ)

) cP (λ) . (5.8)

The claim then follows from (5.3) and (5.5). �

Remark 5.12. In Section 2 we referred to the result of Vogan and Wallach on the mero-
morphic continuation of the intertwining operator J(λ). This result is not needed for the
computation of ηµ(λ). Indeed, it is enough to know that J(λ) is holomorphic on a∗C(aP ).
Then Theorem 5.11 implies the meromorphic continuation of J(λ) = Cλ at least at the
level of K-finite functions, cf. [21].
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Remark 5.13. One can give a more general definition of the Cosλ-transform. Note first
that the definition of |Cos(b, c)|λ in (4.2) is valid for all b ∈ Grp′(K), p′ ≥ p. For p′ ≤ p
one uses the symmetry relation |Cos(b, c)|λ = |Cos(c, b)|λ. For p ≤ p′ define the Radon
transform Rp′,p : C∞(Grp′)→ C∞(Grp) by

Rp′,p(f)(ω) :=

∫
ω⊂η

f(η) dσp′,ω(η)

where σp′ is a well defined probability measure on the set {η | ω ⊂ η}. Then Rp′,p is a
K-intertwining operator whose K-spectrum is independent of λ. Furthermore, defining Cλ
by (4.10), one shows that, with the obvious notation,

Cλp′,p = Cλ ◦Rp′,p .

The determination of the K-spectrum of the more general Cosλ-transform is then reduced
to the determination of the λ-independent K-spectrum of Rp′,p and the determination of
the λ-dependent K-spectrum of Cλ. We note that obviously Rp′,p is zero on all K-types
µ ∈ Λ+(Bp′) \ Λ+(Bp) ∩ Λ+(Bp′), or equivalently, have a nonzero entry mj with p < j ≤ p′.
As our purpose is to relate the Cosλ-transform with the standard intertwining operators,
we do not go further into this interesting topic, but refer to [45] and the references therein
for further discussion.

6. The Sinλ-transform

In this section we introduce the Sinλ-transform and determine its K-spectrum. We assume
that p = q. This in particular implies that n+1 is even and p = n+1

2
. If ω ∈ Grp(K) then ω⊥

denotes the orthogonal complement of ω. Define the Sinλ-transform Sλ : C∞(B)→ C∞(B)
by

Sλ(f)(ω) := Cλ(f)(ω⊥) .

This transform has been studied by B. Rubin for more general p, see [39, 40] and refer-
ences therein, and by G. Zhang [45]. In particular G. Zhang shows, using the N realization
of the principal series representations, that the Sinλ-transform is a Knapp-Stein intertwin-
ing operator and uses this fact to determine the complementary series for πλ.

As p = (n+ 1)/2 we have Ho =

(
1
2
Ip 0
0 −1

2
Ip

)
. Let

w =

(
0 −Ip
Ip 0

)
= exp

(
Y
(π

2
, . . . ,

π

2

))
.

Then wHow
−1 = Ad(w)H0 = −1. It follows that Ad(w)N = N .

Lemma 6.1. For f ∈ C∞(B) define A(λ)f(k · bo) := J(λ)(f)(kw · bo) = R(w)J(λ)f(k · bo),
where R(w) denotes the right translation by w. Then A(λ) : C∞(B) → C∞(B). Then
λ 7→ A(λ) is a meromorphic family of intertwining operators: A(λ) ◦ πλ(x) = π−λ(x)A(λ).
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Proof. We have w−1Lw = L as Ad(w) normalizes a. Thus kmw · bo = kw · bo if m ∈ L and
k ∈ K. Thus A(λ) is well defined. The intertwining property follows from Theorem 2.3
and the fact that w−1Nw = N and Ad(w)|a = −1. �

Theorem 6.2. If λ ∈ a∗C(aP ), then A(λ) = Sλ.

Proof. We have by definition

A(λ)f(k · bo) =

∫
K

|Cos(h · bo, kw · bo)|λ−ρf(h) dh . (6.1)

The claim follows if we can show that (k ·bo)⊥ = kw ·bo. As SU(n+1,K) acts by orthogonal
transformations it is enough to show that b⊥o = w · bo. But this follows from

w(x1, . . . , xp, 0, . . . , 0)t = (0, . . . , 0, x1, . . . , xp)
t . �

As for the Cosλ-transform, it follows that for each µ ∈ Λ+(B) there exists a meromorphic
function νµ(λ) such that

Sλ|L2
µ(B) = νµ(λ)IL2

µ(B) .

As w2 ∈ L it follows that R(w) defines a unitary K-intertwining operator of order two
on each of the K-types L2

µ(B). Thus R(w)|L2
µ(B) = r(µ)idL2

µ(B) where r(µ) is a constant

independent of λ, r(µ)2 = ±1 and νµ(λ) = r(µ)ηµ(λ).

Lemma 6.3. Let µ ∈ Λ+(B). Then r(µ) = (−1)|µ|/2.

Proof. Let eµ ∈ V L
µ be as in Section 2. Then πµ(w)eµ = r(µ)eµ. Let vµ be a highest weight

vector such that (vµ, eµ)Vµ = 1. Then

r(µ) = (vµ, πµ(w)eµ) = (πµ(w−1)vµ, eµ) = e−
πi
2

P
mj(vµ, eµ) = (−1)|µ|/2 . �

Theorem 6.4. The K-spectrum of the Sinλ-transform is given by

νµ(λ) =
Γp,d(ρ)

Γp,d(ρ/2)

Γp,d
(
λ
2

)
Γp,d

(
1
2
(−λ+ µ+ ρ)

)
Γp,d

(
1
2
(−λ+ ρ)

)
Γp,d

(
1
2
(λ+ µ+ ρ)

)
with ρ = dp.

Proof. This follows from Theorem 5.11 and Lemma 6.3. �
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