
HAL Id: hal-01279418
https://hal.science/hal-01279418v1

Submitted on 26 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Double Bases for Scalar Multiplication
Nicolas Méloni, M. A. Hasan

To cite this version:
Nicolas Méloni, M. A. Hasan. Efficient Double Bases for Scalar Multiplication. IEEE Transactions on
Computers, 2015, 64 (8), pp.2204-2212. �10.1109/TC.2014.2360539�. �hal-01279418�

https://hal.science/hal-01279418v1
https://hal.archives-ouvertes.fr


1

Efficient Double Bases for Scalar

Multiplication

Nicolas Méloni and M. Anwar Hasan

DRAFT



2

Abstract

In this paper we present efficient algorithms to take advantage of the double-base number system in

the context of elliptic curve scalar multiplication. We propose a generalized version of Yao’s exponenti-

ation algorithm allowing the use of general double-base expansions instead of the popular double base

chains. We introduce a class of constrained double base expansions and prove that the average density of

non-zero terms in such expansions is O
(

log k
log log k

)
for any large integer k. We also propose an efficient

algorithm for computing constrained expansions and finally provide a comprehensive comparison to

double-base chain expansions, including a large variety of curve shapes and various key sizes.

Keywords: Double-base number system, elliptic curve, point scalar multiplication, Yao’s

algorithm.

I. INTRODUCTION

Since its introduction to modular exponentiation by Dimitrov et. al. [1], double-base (DB)

expansions have shown to be a very attractive alternative to the classical non-adjacent form

(NAF), window NAF and fractional window NAF. An integer k is written as a sum of 2-

3 integers, i.e. numbers of the form 2b3t. Such expansions are really redundant and it can

be proven that, among all of them, very sparse expansions (with O
(

log k
log log k

)
terms) can be

effectively computed via a greedy algorithm.

Despite those advantages, this number system has two drawbacks. First, computing DB expan-

sions using the greedy algorithm is quite slower than any recoding algorithm used to compute

window NAF expansions. Second, they seem to be relevant only in the context of exponentiation

of a fixed element. The first issue was partially solved by Berthé and Imbert [2]. They proposed

an asymptotically faster algorithm to compute DB expansions, which for cryptographically

relevant key sizes, provides a speed up of 40%. Another approach to that issue was proposed by

Doche and Imbert [3]. It consists of precomputing the binary representations of 3t up to some

bound, sort them in lexicographic order and look for the 2-3 integer closest to some number

by dichotomic search. The second issue was overcome by the introduction of double base chain

(DBC) expansions where the integer k =
∑

2bi3ti is still represented as a sum of 2-3 integers

but with the restriction that (bi) and (ti) must be two decreasing sequences [4]. The restriction

causes the number of terms to increase, but makes it possible to perform the scalar multiplication

using a Horner like scheme.
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In this work we take a different approach to address both of the aforementioned issues of

general DB expansions. In Section III, we propose a generalized version of Yao’s exponentiation

algorithm adapted to double bases. By imposing a maximum bound on bi’s and ti’s that is clearly

less restrictive than the DBC condition, we show that our expansion method provides significant

improvement even when compared to the optimized DB methods. We provide a complexity

analysis of our constrained double-base (CDB) expansions and prove that the number of terms

of those expansions still is in O
(

log k
log log k

)
, for k large enough. In Section V we tackle the

problem of efficient computation of expansions and introduce a window greedy algorithm. We

also propose a method to compute sparser expansions than the basic greedy algorithm. Finally,

in Section VI, we perform a comprehensive study of the performance of our algorithms. In

particular we show that the window greedy algorithm provides a factor 10 speed-up compared

to the classical greedy algorithm. Also, we provide comparisons between CDB expansions and

DBC on a wide range of elliptic curve forms and for various key sizes.

II. BACKGROUND

In this section, we give a brief review of the background material used in the paper.

A. Elliptic curves

Definition 2.1: An elliptic curve E over a field K denoted by E/K is given by the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K are such that, for each point (x, y) on E, the partial derivatives do

not vanish simultaneously.

In this paper, we only deal with curves defined over a prime finite field (K = Fp) of

characteristic greater than 3. In this case, the curve equation can be simplified to

y2 = x3 + ax+ b

where a, b ∈ K and 4a3 + 27b2 6= 0. The set of points E(K) defined over K forms an abelian

group. Elliptic curve group law computation has been a very active research area over the past
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years. Many formulas and coordinate systems have been proposed for which one can refer to

[5], [6] for a comprehensive overview.

Another feature of the elliptic curve group law is that it allows fast composite operations as

well as different types of additions. To take full advantage of our point scalar multiplication

method, and in addition to the classical addition (ADD) and doubling (DBL) operations, we

consider the following operations:

• tripling (TPL): point tripling

• readdition (reADD): addition of a point that has been previously added to another point

• mixed addition (mADD): addition of a point in affine coordinate (i.e., Z = 1) to another

point

In addition to various coordinate systems and composite operations, many curve shapes have

been proposed to improve group operation formulas. In this paper, we will consider a variety of

curve shapes including:

• tripling oriented Doche-Icart-Kohel curves (3DIK) [7]

• Edwards curves (Edwards) [8], [9] with inverted coordinates [10]

• Hessian curves [11], [12], [13]

• Extended Jacobi Quartics (ExtJQuartic) [11], [14], [12]

• Jacobi intersections (JacIntersect) [11], [15]

• Jacobian coordinates (Jacobian) with the special case a4 = −3 (Jacobian-3).

Table I summarizes the cost of those operations on all the considered curves, where M and S

correspond to field multiplication and squaring, respectively. Finally, some more optimizations

can be found in [16], [17] for the quintupling formulas. One can also refer to [18] for an extensive

overview of different formulas, coordinates systems, curve shapes and their latest updates.

B. Double-base number system

Let k be an integer. As mentioned earlier, one can represent k as
∑n

i=1 2bi3ti . Such a represen-

tation always exists. In fact, this number system is quite redundant. One of the most interesting

properties is that, among all the possible representations for a given integer, some of them are

really sparse, that is to say that the number of non-zero terms is quite low.

To compute such expansions, one typically uses Algorithm 1. It consists of the following: find
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Curve shape DBL TPL ADD reADD mADD
3DIK 2M+7S 6M+6S 11M+6S 10M+6S 7M+4S

Edwards 3M+4S 9M+4S 10M+1S 10M+1S 9M+1S
ExtJQuartic 2M+5S 8M+4S 7M+4S 7M+3S 6M+3S

Hessian 3M+6S 8M+6S 6M+6S 6M+6S 5M+6S
InvEdwards 3M+4S 9M+4S 9M+1S 9M+1S 8M+1S
JacIntersect 2M+5S 6M+10S 11M+1S 11M+1S 10M+1S

Jacobian 1M+8S 5M+10S 11M+5S 10M+4S 7M+4S
Jacobian-3 3M+5S 7M+7S 11M+5S 10M+4S 7M+4S

TABLE I

ELLIPTIC CURVE OPERATIONS COST.

Algorithm 1 Greedy algorithm for computing DB expansion
Input: k ∈ N
Output: ((bi, ti))i such that k =

∑n
i=1 2bi3ti

1: i← 0
2: while k > 0 do
3: Computes c = 2b3t the largest 2-3 integer smaller than k
4: bi ← b, ti ← t, k ← k − c, i← i+ 1
5: end while
6: return ((bi, ti))i

the largest integer of the form 2bi3ti smaller than k, subtract it from k and repeat this process

with k ← k − 2bi3ti until k is equal to zero.

The basic method to perform a point multiplication using a DB expansion is to compute the

points [2bi3ti ]P for i = 1 to n and add them all. In practice, this method does not provide

an efficient way to perform a point multiplication as the low number of additions does not

compensate the many doublings and triplings. That is why the general DB representation has

been considered to be not that advantageous for point scalar multiplication.

To overcome this problem, Dimitrov, Imbert, and Mishra [4] have introduced the concept of

DBC. In this system, k is still represented as
∑n

i=1 2bi3ti , but with the restriction that (bi) and

(ti) must be two decreasing sequences, allowing a Horner-like evaluation of kP using only b1

doublings and t1 triplings. The main drawback of this method is that it significantly increases

the number of point additions.
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A number of improvements have been proposed by applying various modifications including

the possibility to use digits from a larger set than {0, 1} [3], the use of multiple bases [16], etc.

One can refer to [19] for an overview of the latest optimizations.

III. YAO’S ALGORITHM FOR DOUBLE BASES

A. Original Yao’s algorithm

Published in 1976 [20], Yao’s algorithm can be seen as the right-to-left counterpart of Brauer’s

algorithm. Let k = kl−12l−1 + · · · + k12 + k0 with ki ∈ {0, 1, . . . , 2w − 1}, for some w. The

algorithm first computes 2iP for all i lower than l by successive doublings. Then it computes

d(1)P, . . . , d(2w − 1)P , where d(j) is the sum of the 2i’s such that ki = j. Said differently, it

mainly consists of considering the integer k as

1×
∑
ki=1

2i

︸ ︷︷ ︸
d(1)

+2×
∑
ki=2

2i

︸ ︷︷ ︸
d(2)

+ · · ·+ (2w − 1)×
∑

ki=2w−1

2i

︸ ︷︷ ︸
d(2w−1)

.

We can see that d(1) is the sum of all the powers of 2 associated to digit 1, d(2) is the sum

of all the powers of 2 associated to digit 2, etc. Finally kP is obtained as d(1)P + 2d(2)P +

· · · + (2w − 1)d(2w − 1)P . In order to save some group operations, it is usually computed as

d(2w − 1)P + (d(2w − 1)P + d(2w − 2)P ) + · · ·+ (d(2w − 1)P + · · ·+ d(1)P ).

Example 3.1: Let k = 314159. We have NAF3(k) = 100 0300 1003 0000 5007, l = 19 and

2w − 1 = 7. One can compute kP in the following way:

• consider k as 1× (218 + 211) + 3× (214 + 28) + 5× 23 + 7× 20

• compute P, 2P, 4P, . . . , 218P

• d(1)P = 218P + 211P , d(3)P = 214P + 28P , d(5)P = 23P , d(7)P = P

• kP = 2(d(7)P ) + 2(d(7)P + d(5)P ) + 2(d(7)P + d(5)P + d(3)P ) + d(7)P + d(5)P +

d(3)P + d(1)P = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P
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In this example, we have:

d(1) = 100 0000 1000 0000 0000

d(3) = 000 0100 0001 0000 0000

d(5) = 000 0000 0000 0000 1000

d(7) = 000 0000 0000 0000 0001

k = 100 0300 1003 0000 5007

= 7d(7) + 5d(5) + 3d(3) + d(1)

B. Generalized Yao’s algorithm

Let A = {a1, . . . , ar} and B = {b1, . . . , bt} be two sets of integers. Let k be an integer

that can be written as
∑n

i=1 af(i)bg(i) with f : {1, . . . , n} → {1, . . . , r} and g : {1, . . . , n} →

{1, . . . , t}. It is possible to use a generalized version of Yao’s algorithm to compute kP . To

do so, we first compute biP ’s, for i = 1 . . . t. Then, for j = 1 . . . r, we compute d(j)P as

the sum of all bg(i)P ’s such that f(i) = j. In other words, d(1)P will be the sum of all

bg(i)P ’s associated to a1, d(2)P will be the sum of all bg(i)P ’s associated to a2, etc. Finally,

kP = a1d(1)P + a2d(2)P + · · ·+ and(n)P .

It is easy to see that with a proper choice of A and B, we find again forms of the Yao algorithm

that are of our interest. For instance, the original version of Yao’s algorithm is associated to

the sets A = {1, 2, . . . , 2n} and B = {1, 3, 5, . . . , 2w − 1} and the double-base version to

A = {1, 2, . . . , 2bmax} and B = {1, 3, . . . , 3tmax}. Using the latter form, one can perform a scalar

multiplication with Algorithm 2.
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Algorithm 2 Double-base version of Yao’s scalar multiplication algorithm
Input: G a group, P ∈ G and k ≥ 0

Output: Q = kP

1: Compute a DB expansion for k =
∑n

i=1 2bi3ti

2: for 0 ≤ i ≤ max(tj) do

3: Pi ← 3iP

4: end for

5: for 1 ≤ i ≤ n do

6: Qbi ← Qbi + Pti

7: end for

8: Q← Qmax(bj)

9: for i = max(bj)− 1 down to 0 do

10: Q← 2Q+Qi

11: end for

12: return Q

Example 3.2: Let k = 281409. One of its DB expansions is: k = 2737 + 2434 + 2233 +

2132 + 2431 + 2031, so that (b1, . . . , b6) = (7, 4, 2, 1, 4, 0) and (t1, . . . , t6) = (7, 4, 3, 2, 1, 1). With

Algorithm 2, one can compute kP in the following way:

• compute P0 = P, P1 = 3P, P2 = 32P, . . . , P7 = 37P

• Qb1 = Q7 ← Pt1(= P7)

• Qb2 = Q4 ← Pt2(= P4)

• Qb3 = Q2 ← Pt3(= P3)

• Qb4 = Q1 ← Pt4(= P2)

• Qb5 = Q4 ← Q4 + Pt5(= P1 + P4)

• Qb6 = Q0 ← Pt6(= P1).

Finally, the last for loop is a Horner scheme to compute kP = 2(22(23Q7 + Q4) + Q2) +

Q1) +Q0 = (2737 + 24(34 + 31) + 2233 + 2132 + 2031)P .

IV. CONSTRAINED DOUBLE-BASE REPRESENTATION

The DB version of Yao’s algorithm is optimal in the sense that it requires max(bi) doublings,

max(ti) triplings and n − 1 additions. However, the numbers of doublings and triplings are
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independent, which means that 2max(bi)3max(ti) can be quite larger than k. For instance, with

parameter k = 2219, the greedy algorithm returns 37 +25 so that 2max(bi)3max(ti) = 3725 = 69984.

This means that Yao’s algorithm would perform enough doublings and triplings to compute a

17-bit integer. Despite the sparseness of the representation (i.e. the small value of n), most of the

time it will end up in slowing down the whole process. In order to reduce the computation time,

we propose a slightly more constrained version of the DB number system by setting maximum

bounds bmax and tmax for both the bi’s and the ti’s so that 2bmax3tmax ∼ k. It can be seen as

an intermediate representation between the general DB, where no constraint applies, and DBC,

where the boundaries get lower as the DB recoding goes.

In that context, it becomes unclear if Theorem 4 from [21] (refer to as Dimitrov’s theorem

in the rest of the paper) still holds, that is to say whether or not the number of terms of those

expansions is sub-linear in the size of k, like DBC expansions. Theorem 4.1 shows that, under

reasonable hypothesis, CDB expansions stay sub-linear.

Theorem 4.1: Let c1, c2 be two positive real numbers such that c1 + c2 ≥ 1. Then, for k

large enough, the greedy algorithm with parameter k and bounds bmax = bc1 log2(k)c + 1 and

tmax = bc2 log3(k)c+ 1 terminates in O
(

log k
log log k

)
steps.

Proof: Let us define T2,3(k) = {2b3t ≤ k} and T̄2,3(k) = {2b3t ≤ k : b ≤ bmax and t ≤

tmax}. Without loss of generality, we suppose that 3tmax < 2bmax . We split the proof into three

cases: k ≤ 3tmax , 3tmax ≤ k ≤ 2bmax and 2bmax ≤ k.

Case 1: k ≤ 3tmax .

We remark that if k ≤ min(2bmax , 3tmax), then T2,3(k) = T̄2,3(k) so that the greedy and

the constrained greedy algorithms return the same results. Thus, from Dimitrov’s theorem, our

theorem holds.

Case 2: 3tmax ≤ k ≤ 2bmax .

Let B be the smallest integer such that 3tmax

2
≤ k

2B
≤ 3tmax . For k large enough, Tijdeman’s

theorem [22] applied to K = k
2B

guarantees that there exists 2b3t ∈ T2,3(K) such that:

K − 2b3t ≤ K

(logK)C
,

for some absolute constant C. Obviously 2b+B3t belongs to T̄2,3(k) and satisfies
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k − 2b+B3t ≤ k

(logK)C
≤ k

(tmax log(3)− log(2))C
≤ k

(c′2 log k)C
.

In other words, there is always a number from T̄2,3(k) larger than k − k
(c′2 log k)C

. Obviously,

the largest integer from T̄2,3(k) satisfies the previous propriety and from Dimitrov’s theorem, we

conclude that the constrained greedy algorithm terminates in O( log k
log log k

) steps.

Case 3: 2bmax ≤ k.

Let k0 = k. From the constrained greedy algorithm we construct a sequence k0 > k1 > · · · > kl

such that ki+1 = ki− 2bi+13ti+1 . By definition of bmax and tmax we know that k/2 ≤ 2bmax3tmax ,

thus there exists an integer d = 2B3T from T̄2,3(k) such that k/2 ≤ d ≤ k. More generally, it

ensures that the sequence (ki) satisfies ki+1 ≤ ki/2, hence ki ≤ k/2i. Let n =
⌊

log k
log log k

⌋
. We

suppose k is large enough such that the Tijdeman theorem applies to any integer larger than

2n/24. To proceed we need the following result:

Lemma 4.2: For any integer k′ smaller than kn there exist d ∈ T̄2,3(k′) and a constant A such

that

k′ − d ≤ k′

AnC
.

Proof: Let k′ ≤ kn. Since kn ≤ k
2n

, k′ satisfies k
kn
≥ 2n. For 0 ≤ b ≤ B and 0 ≤ t ≤ T ,

we define

K(b, t) =
k′

2B−b3T−t and EB,T = {K(b, t) ≤ min(2b, 3t)}.

Clearly, K(0, 0) ∈ EB,T and hence EB,T is not empty. Let K(b̄, t̄) be its largest element. Then

K(b̄ + 1, t̄) /∈ EB,T which means that K(b̄ + 1, t̄) > min(2b̄+1, 3t̄). We remark that 2b̄+1 must

be larger than 3t̄, otherwise we would have K(b̄+ 1, t̄) > 2b̄+1 and thus K(b̄, t̄) > 2b̄, which is

absurd. Hence we have K(b̄+ 1, t̄) > 3t̄ which means that

k′

2B−b̄−13T−t̄ > 3t̄ ⇒ 2b̄+1 >
2B3T

k′
≥ k

2k′
.

The same reasoning applied to K(b̄, t̄+ 1) leads to 3t̄+1 > k
2k′

. Now,

K(b̄, t̄) =
k′

2B−b̄3T−t̄ ≥
k′

k
× k

4k′
× k

6k′
≥ 2n

24
,
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thus we can apply the Tijdeman result. We get b′ ≤ b̄ and t′ ≤ t̄ such that K(b̄, t̄)− 2b′3t′ ≤
K(b̄,t̄)

(logK(b̄,t̄))C
. Multiplying by 2B−b̄3T−t̄ we obtain that

k′ − 2B+b′−b̄3T+t′−t̄ ≤ k′

(log(K(b̄, t̄)))C
≤ k′

(n log(2)− log(24))C
≤ k′

AnC
.

Lemma 4.2 guaranties that the constrained greedy algorithm produces a sequence kn > kn+1 >

kn+m such that kn+i − 2bn+i+13tn+i+1 ≤ kn+i

AnC . Then we obtain that

kn+m+1 ≤
kn

AmnC×m ≤
k

2n × AmnC×m .

To finish the proof, we show that there exists a function f : k 7→ f(k) such that we can choose

an m > f(k) with kn+m+1 ≤ 2bmax and f(k) not asymptotically bigger than O
(

log k
log log k

)
. We

have

log kn+m+1 ≤ log

(
k

2n × AmnCm

)
≤ log k − n log 2−m log(A)− Cm log(n)

This is smaller than bmax log 2 ≥ c1 log k provided that

(1− c1) log k −
⌊

log k

log log k

⌋
log(2) < m

(
log(A) + C log

(⌊
log k

log log k

⌋))
or, for k large enough and some C ′

C ′
log k

log log k − log log log k
< m.

So, for some constant D larger that C ′ we set

f(k) = D
log k

log log k − log log log k
.

Finally, for k large enough, we have f(k) = O
(

log k
log log k

)
, which concludes the proof.
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V. EFFICIENT DOUBLE-BASE EXPANSIONS

The question of efficiency when dealing with double base expansions in the context of elliptic

curve point multiplication is two-fold: the speed at which one can compute the expansions and

how good they are for point multiplication. In this section we address both issues by proposing

a sliding-window version of the general greedy algorithm 1. The main idea is to take advantage

of the boundaries set for bi’s and ti’s in order to reduce the size of the operands in Algorithm 1.

A. The window greedy algorithm

Let k be an n bit integer such that k > 3tmax and let 2b3t be the 2-3 integer closest to k

satisfying 2b3t < k, b ≤ bmax and t ≤ tmax. Finally, let u be the largest integer such that

k/2u > 3tmax . From these hypothesis we easily deduce that b ≥ u. Hence, if 2b′3t′ is the largest

2-3 integer smaller than k′ = bk/2uc satisfying t ≤ tmax then 2b′+u3t′ is the largest 2-3 integer

smaller than k satisfying t′ ≤ tmax and thus b = b′+u and t = t′. This result means that looking

for the 2-3 integer closest to k′ is sufficient to find the 2-3 integer to closest k. In other words,

one can simply consider the highest bits of k to find the closest 2-3 integer and multiply the

result by the appropriate power of 2. One can finally compute the full CDB expansion with

Algorithm 3. As long as the window size w satisfies 2w−1 > 3tmax , the algorithm returns the

same expansion as the classical greedy algorithm, i.e. Algorithm 1.
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Algorithm 3 Window Greedy algorithm for computing CDB expansion
Input: k ∈ N and three parameters bmax, tmax and w

Output: ((bi, ti))i such that k =
∑n

i=1 2bi3ti and ∀i, bi ≤ bmax and ti ≤ tmax

1: i← 0

2: while k > 0 do

3: s← bit-size(k)

4: u = max(0, s− w)

5: k′ = k/2u

6: if s ≤ bmax then

7: bm ← w

8: else if u < bmax then

9: bm ← bmax − u

10: else

11: bm ← 0

12: end if

13: Compute c = 2b′3t′ the largest 2-3 integer smaller than k′ with b′ ≤ bm and t′ ≤ tmax

14: bi ← b′, ti ← t′,

15: c← c× 2u, bi ← bi + u

16: k ← k − c, i← i+ 1

17: end while

18: return ((bi, ti))i

If k′ fits in a processor register, we can expect significant speed up by designing a specific

function to find the 2-3 integer closest to k′. This is mainly because of the following reasons.

First, manipulating smaller operands naturally speeds up arithmetic computations. Second, the

data structure management for large integers can be really expensive compared to the cost of the

actual arithmetic, especially for small integers. Typically, in our implementations, basic operations

such as additions, multiplications or shifts on raw C types (long long unsigned) performs six

times faster than on 64-bit gmp integer type (mpz t).

From Table VI of Section VI-C we can see that optimal choices for tmax are usually below 41

which means that k′ can be taken smaller than 341 < 264, i.e. k′ can fit in the registers of almost
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any of today’s general purpose processors. We have implemented the window greedy algorithm,

i.e. Algorithm 3 and compared it to the basic algorithm. We used the gmp library to operate

large integers and raw C implementation for register size integers. Tables III, IV and V show

that using our window method, the greedy algorithm performs about 15 times faster.

B. Shorter double-base expansions

The efficiency of Yao’s algorithm is directly linked to the number of terms of the DB

expansions of the scalar k. Thus, it is quite natural to look for shorter expansions to improve

the overall speed of the algorithm. One obvious way to do so is to allow signed expansions, i.e.,

scalar k is represented as
∑
si2

bi3ti where si ∈ {−1, 1}. In order to obtain such expansions,

one just has to look for the 2-3 integer to closest k (instead of the largest one smaller than k)

and repeat the process with |k − 2b3t|.

An alternative way to compute smaller DB expansions is to look for the integer of the form

s2b3t + s′2b′3t′ closest to k (with s, s′ ∈ {−1, 0, 1}) and perform the greedy algorithm with

this new function. If both s and s′ are positive, it is not necessary to try all pairs of the form

(2b3t, 2b′3t′). Indeed, let 2b3t be the largest of the two numbers, then it must satisfy |k− 2b3t| <

k/2 (otherwise 2b+13t or 2b+13t−1 would be closer to k than 2b3t + 2b′3t′). Then, for each such

2-3 integer it suffices to look for the 2-3 integer closest to |k − 2b3t| and return the best pair.

We use the same approach to find the closest signed sum even though, in this case, there is no

way to prove a similar result. Indeed, the closest signed sum to k might be made of two 2-3

integers much larger than k. On the other hand, the obtained expansions are still guaranteed to

be shorter than their non-signed counterparts.

In practice, one can find a signed sum of two 2-3 integers close enough to k using Algorithm

4.
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Algorithm 4 Finding a sum of two 2-3 integers close to k
Input: k ∈ N,

Output: c = 2b13t1 ± 2b23t2 close to k

1: b← dlog2 ke, t← 0, c← 0

2: c1 ← 2b3t

3: while b ≥ 0 do

4: if k = c1 then

5: return c1

6: end if

7: Compute c2 ← 2b′3t′ the closest 2-3 integer to |k − c1|

8: if c1 ≤ k then

9: c3 ← c1 + c2

10: else

11: c3 ← c1 − c2

12: end if

13: if |k − c3| < |k − c| then

14: c← c3

15: end if

16: if c1 > k then

17: b← b− 1, c1 ← c1/2

18: else

19: t← t+ 1, c1 ← c1 × 3

20: end if

21: end while

22: return c

Algorithm 4 can easily be generalized to larger combination of 2-3 integers. Such algorithms

can be defined recursively by replacing line 7 of Algorithm 4 by the appropriate computation.

In any case, if we consider that one can compute the 2-3 integer closest to a given integer k

in O(log k) steps, then finding the sum of t such 2-3 integers requires O((log k)t) steps. Such

methods become quickly too costly as t grows, that is why we only consider the values 1, 2 and
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3 for t. The resulting window greedy algorithms will be refereed to as, respectively, depth 1, 2

and 3 greedy algorithms or w-greedy(1), (2) and (3).

Remark 5.1: One can obviously apply the same window approach to Berthé and Imbert’s

algorithm [2] and expect the same kind of improvements. However, in the case of Doche and

Imbert’s algorithm [3], adapting our approach is not that easy. Let us recall that it consists

of precomputing a dictionary with the binary representations of 3t up to some bound (typically

t = 41 here), sort them in lexicographic order and look for the closest 2-3 integer to some number

by dichotomic search. When looking for the sum of two 2-3 integers closest to some integer k,

one can either use the approach of Algorithm 4 to find the 2-3 integer closest to k′ ← |k−2b3t|,

for some b’s and t’s or consider a generalized version of the dictionary approach and precompute

all binary representations of 3t ± 2b3t′ with some proper bounds.

In the first case, the gain corresponds to the speed ratio between the standard and the dictionary

methods. In our implementation, the Doche and Imbert method is approximately 5 times faster

and so are the different window versions. In the second case, the dictionary size grows too

quickly with the window size to remain practical.

VI. IMPLEMENTATION RESULTS

A. Caching strategies

Caching intermediate results while performing an elliptic curve group operation is a very

important optimization technique. In this subsection, we show that the use of our generalized

algorithm allows some savings that cannot be achieved with the traditional methods. To better

clarify this point, we detail our caching strategy for curves in the Weierstrass form using Jacobian

coordinates with parameter a = 3 (Jac-3). Similar methods are applicable to all different curve

types considered.

Addition:

P = (X1, Y1, Z1), Q = (X2, Y2, Z2) and P +Q = (X3, Y3, Z3)

A = X1Z
2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 , E = B − A,

F = 2(D − C), G = (2E)2, H = E ×G, I = A×G,
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and

X3 = F 2 −H − 2I Y3 = F (I −X3)− 2CH, Z3 = ((Z1 + Z2)2 − Z2
1 − Z2

2)E

Doubling:

2P = (X3, Y3, Z3)

A = X1Y
2

1 , B = 3(X1 − Z2
1)(X1 + Z2

1)

and

X3 = B2 − 8A, Y3 = −8Y 4
1 +B(4A−X3), Z3 = (Y1 + Z1)2 − Y 2

1 − Z2
1 .

One can verify that these two operations can be performed using 11M+5S and 3M+5S

respectively. It has been shown that some of the intermediate results can be reused in specific

cases. More precisely, if a point P = (X1, Y1, Z1) is added to any other point, it is possible to

store the data Z2
1 and Z3

1 . During the same scalar multiplication, if the point P is added again

to another point, reusing those stored values saves 1M+1S. This is what is usually called a

readdition and its cost is 10M+4S instead of 11M+5S. With mixed and, of course, the general

addition (one of the added points has its z-coordinate equal to 1), this is the only kind of point

additions that can occur in all the traditional scalar multiplication methods.

Our new method allows more variety in caching strategies and point addition situations. From

the doubling formulas, we can see that if we store Z2
1 after the doubling of P and if we have

to add P to another point, reusing Z2
1 saves 1S. Adding a point that has already been doubled

will be called dADD.

We now apply this to our scalar multiplication algorithm. We first compute the sequence

P → 2P → · · · → 2bmaxP . For each doubled point (i.e., P → 2P → · · · → 2bmax−1P ), it is

possible to store Z2. Different situations can now arise:

• addition after doubling (dADD): addition of a point that has already been doubled before

• double addition after doubling (2dADD): addition of two points that have already been

doubled before

• addition after doubling + readdition (dreADD): addition of a point that has already been

doubled before to a point that has been added before
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Curve shape dADD 2dADD dreADD 2reADD dmADD mreADD
3DIK 11M+6S 11M+6S 10M+6S 9M+6S 7M+4S 6M+4S

Edwards 10M+1S 10M+1S 10M+1S 10M+1S 9M+1S 9M+1S
ExtJQuartic 7M+3S 7M+2S 7M+2S 7M+2S 6M+2S 6M+2S

Hessian 6M+6S 6M+6S 6M+6M 6M+6S 5M+6S 5M+6S
InvEdwards 9M+1S 9M+1S 9M+1S 9M+1S 8M+1S 8M+1S
JacIntersect 11M+1S 11M+1S 11M+1S 11M+1S 10M+1S 10M+1S

Jacobian 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S
Jacobian-3 11M+4S 10M+4S 10M+3S 9M+3S 7M+3S 6M+3S

TABLE II

NEW ELLIPTIC CURVE OPERATIONS COST

• double readition (2reADD): addition of two points that has been added before

• addition after doubling + mixed addition dmADD: addition of a point that has already

been doubled before to a point in affine coordinate (i.e., Z = 1)

• mixed readdition (mreADD): addition of a point in affine coordinate (i.e., Z = 1) to a

point that has been added before.

Our caching strategies provide a classical time-memory trade-off. It adds one more coordinate

to be stored for each stored point and saves on average one squaring per addition. For instance,

considering a point in Jacobian coordinates, storing the Z2 increases the memory requirement

by 25% and saves between 1% to 2% computation time.

Remark 6.1: It is also possible to cache Z2 after a tripling. Adding a point whether it has

already been doubled or tripled has the same cost. Thus, we will still call this operation dADD.

In Table II we summarize the costs of different operations for each considered curve.

B. Window greedy algorithm performance

We have implemented the previous algorithms in C with gmp library to manipulate large

numbers, compiled with gcc 4.6. We have measured the time and expansion sizes in various

situations for 1000 random integers of sizes 192, 224 and 256 bits on a 3.30GHz Intel Core

i5-2500 CPU. The results are summarized in Tables III, IV and V. For comparison purposes, we

also have implemented the DBC conversion method from [23]. It is in fact a multi-base version

of the traditional binary decomposition algorithm and thus performs really fast. However, the

DRAFT



19

need for 3 divisibility tests prevents the use of our window approach to speed up the process. In

our experiment, we have considered a window size of 5, as this is the optimal choice in terms

of performance for scalar multiplication using 192- to 256-bit scalars.

Results clearly show the benefit of using a windowed version of the greedy algorithm. Ma-

nipulating only register size operands allows us to compute DB expansions up to 15 times faster

than with the basic greedy algorithm. Moreover, in the context of a fixed exponent, it becomes

realistic to use the depth 2 or 3 version of the greedy algorithm. Depth 2 window greedy algorithm

behaves similar to the basic depth 1 algorithm in terms of speed, but provides significantly sparser

expansions. Going for depth 3 allows us to obtain even sparser expansions (up to 10%) but tends

to become a lot more time consuming. Still in the context of fixed exponent, it would be realistic

to go for a larger depth, however the gain tends to become drastically smaller compared to the

amount of time spent. That is why we have limited our study to depth 3.

bmax / tmax alg. exp. size time (µs)

192 / 38
w-greedy(1) 25.52 12.11

w-greedy(2) 23.87 196.69

w-greedy(3) 22.95 9399.01

greedy 25.52 153.04

132 / 38
w-greedy(1) 27.65 10.98

w-greedy(2) 26.16 177.80

w-greedy(3) 25.64 7518.61

greedy 27.65 151.96

db chains 28.96 7.2

TABLE III

COMPARISON OF SPEED AND EXPANSION SIZE OF THE VARIOUS GREEDY ALGORITHMS FOR 192-BIT INTEGERS
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bmax / tmax alg. exp. size time (µs)

224 / 38
w-greedy(1) 29.50 14.01

w-greedy(2) 27.61 233.96

w-greedy(3) 26.49 11281.05

greedy 29.50 183.66

164 / 38
w-greedy(1) 31.66 13.45

w-greedy(2) 29.94 217.18

w-greedy(3) 29.23 9424.95

greedy 31.66 179.66

db chains 33.78 8.6

TABLE IV

COMPARISON OF SPEED AND EXPANSION SIZE OF THE VARIOUS GREEDY ALGORITHMS FOR 224-BIT INTEGERS

bmax / tmax alg. exp. size time (µs)

256/ 38
w-greedy(1) 33.38 14.31

w-greedy(2) 31.21 270.86

w-greedy(3) 30.00 13055.43

greedy 33.38 214.90

196 / 38
w-greedy(1) 35.42 14.01

w-greedy(2) 33.51 254.62

w-greedy(3) 32.72 11269.38

greedy 35.42 216.96

db chains 38.38 10.3

TABLE V

COMPARISON OF SPEED AND EXPANSION SIZE OF THE VARIOUS GREEDY ALGORITHMS FOR 256-BIT INTEGERS

C. Performance analysis

We have carried out experiments on 192-, 224- and 256-bit scalars over all the elliptic curves

mentioned in section II-A and all values of bmax and tmax such that 2bmax3tmax is a 192, 224 or

256-bit integer. For each curve and each set of parameters, we have:

• generated 10000 pseudo random integers in {0, . . . , 2m − 1},m = 192, 224 and 256,
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• converted each integer into the DB number system using the corresponding parameters,

• counted all the field multiplications (M ) and squarings (S) involved in the point scalar

multiplication process.

To compare with DBC, we have included results from [19] for 256-bit integers and used our

own implementation for other scalar sizes. Results for Extended Jacobi Quartics and Hessian

curves slightly differ from [19] since faster point composition formulae have been proposed

since the publication of the article. Table VI summarizes the results of our experiments. For

the window greedy algorithms, we have added, between parenthesis, the optimal choice for

tmax, i.e. the value that led to the best average result. To ease the task of comparisons with

previous works, we made the classical assumption S = 0.8M . However, different ratios could

give slightly different results. It clearly shows that CDB expansions are superior to DBC in

almost every situation. In particular, the best results are obtained on Extended Jacobi Quartic

curves, for which we perform about 4% faster than DBC. As expected, if the scalar is fixed

and one can spend some time on precomputation, using the depth 2 or 3 version of the window

greedy algorithm allows some additional savings making our approach about 8% faster than its

chained counterpart.
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Curve shape w-greedy(1) w-greedy(2) w-greedy(3) DB chain

3DIK 192 1817.6 (38) 1796.2 (37) 1786.2 (35) 1810.0

3DIK 224 2123.1 (38) 2098.1 (37) 2084.7 (36) 2101.1

3DIK 256 2428.0 (38) 2397.2 (37) 2382.0 (36) 2393.2(1)

Edwards 192 1535.3 (12) 1517.9 (16) 1507.3 (18) 1581.1

Edwards 224 1783.8 (18) 1762.0 (18) 1748.8 (20) 1830.5

Edwards 256 2030.0 (20) 2004.1 (22) 1990.6 (20) 2089.7(1)

ExtJQuartic 192 1466.5 (12) 1453.6 (12) 1447.0 (12) 1526.3

ExtJQuartic 224 1704.1 (12) 1688.4 (12) 1678.6 (16) 1769.3

ExtJQuartic 256 1941.0 (11) 1922.0 (14) 1910.2 (15) 2021.2(1)

Hessian 192 1794.8 (36) 1778.5 (36) 1768.3 (33) 1825.1

Hessian 224 2087.4 (36) 2067.4 (35) 2057.9 (31) 2121.8

Hessian 256 2379.7 (36) 2356.7 (36) 2345.5 (36) 2420.1(1)

InvEdwards 192 1505.4 (12) 1490.7 (16) 1481.7 (18) 1542.6

InvEdwards 224 1750.7 (16) 1731.1 (18) 1719.7 (20) 1788.1

InvEdwards 256 1993.0 (20) 1970.1 (22) 1957.5 (20) 2041.2(1)

JacIntersect 192 1550.8 (11) 1535.7 (12) 1525.8 (13) 1713.3

JacIntersect 224 1800.2 (11) 1780.6 (12) 1768.5 (12) 1986.8

JacIntersect 256 2048.1 (11) 2026.1 (15) 2010.2 (15) 2266.1(1)

Jacobian 192 1829.3 (30) 1806.9 (29) 1793.7 (30) 1859.5

Jacobian 224 2124.4 (30) 2097.9 (31) 2083.7 (30) 2157.9

Jacobian 256 2417.2 (36) 2387.3 (34) 2369.4 (30) 2466.2(1)

Jacobian-3 192 1759.9 (28) 1735.7 (27) 1721.9 (24) 1795.6

Jacobian-3 224 2043.4 (29) 2014.7 (25) 1998.6 (25) 2084.0

Jacobian-3 256 2323.3 (37) 2292.4 (30) 2274.8 (29) 2379.0(1)

(1) Bernstein et al. [19]

TABLE VI

FIELD MULTIPLICATION COUNT FOR 192, 224 AND 256 BIT SCALARS AND VARIOUS DOUBLE-BASE EXPANSIONS

D. Comments

For high performance of cryptographic operations, many researchers have proposed dedicated

hardware to accelerate the field arithmetic, especially multiplication. For example, the work in

[24] (p. 41) reports that a 192-bit modular multiplication can be performed in 14 cycles in

ASIC with a clock frequency of 138 MHz, i.e., one multiplication can be performed in only 14∗

10−6/138 = 0.10145 µs. Using such a hardware unit for both field multiplication and squaring, a
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192-bit ECC scalar multiplication on ExtJQuartic would require about 1672.19×0.10145= 169.64

µs. Expansion of the scalar k into the DB representation however cannot easily take advantage

of the field multiplier and hence is expected to rely on a general purpose processor. Thus the

time for the expansion of k can be close, or of the same order, to that of the scalar multiplication

in the hybrid hardware-software implementation of cryptographic systems. When k is not known

in advance and needs to be re-coded into DB representation on-the-fly, our proposed expansion

method can provide considerable speed-up for the overall scalar multiplication operation. As

an example, a 192-bit scalar expansion (for which some timing results are given in Table III)

followed by a scalar multiplication on ExtJQuartic will take about 353.3 µs using the greedy

algorithm, but only 181.75 µs using the proposed w-greedy(1) algorithm.

VII. CONCLUSIONS

In this paper we have proposed efficient algorithms to take advantage of double-base ex-

pansions in the context of elliptic curve scalar multiplication. We have proposed a generalized

version of Yao’s algorithm, along with a constrained double-base representation that is less

restrictive than the double-base chain. The main advantage of this representation is that it takes

advantage of the natural sparseness of the double-base number system without any additional and

unnecessary computations. We have proved that, despite its constraints, our representation still

behave asymptotically like the general double-base expansion. We have introduced a window

version of the greedy algorithm enabling the computation of the double-base expansion up to

15 times faster. Finally, our experiments show that our method performs generally faster than

its chained counterpart for over all types of curves considered here.
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