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Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type

Introduction

Consider the initial value problem for the time-dependent Schrödinger equation on a Riemannian symmetric space of the noncompact type X:

i∂ t u(t, x) + ∆u(t, x) = 0 u(0, x) = f (x) (S)
where ∆ denotes the Laplace-Beltrami operator on X. In [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF], Sagun Chanillo initiated the study of certain uniqueness properties for the solutions of (S) that are related with the uncertainty principle.

According to this principle, the solution u(t, •) must be identically zero at all times t whenever the initial condition f and the solution at a certain time t 0 = 0 are simultaneously very rapidly decreasing. The case considered by Chanillo corresponds to Riemannian symmetric spaces of the form X = G/K where G is a noncompact connected semisimple Lie group possessing a complex structure and K is a maximal compact subgroup of G. Moreover, in [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF] the initial condition f is assumed to be K-invariant, which ensures that the solution itself is K-invariant. Some related articles in the Euclidean setting are [START_REF] Ionescu | Uniqueness properties of solutions of Schrödinger equations[END_REF], [START_REF] Escauriaza | Hardy's uncertainty principle, convexity and Schrödinger evolutions[END_REF], [START_REF] Escauriaza | The sharp Hardy uncertainty principle for Schrödinger evolutions[END_REF], [START_REF] Escauriaza | Uncertainty principles of Morgan type and Schrödinger evolutions[END_REF] and [START_REF] Cowling | The Hardy uncertainty principle revisited[END_REF]; for the Heisenberg group [START_REF] Said | Uniqueness of solutions to the Schrödinger equation on the Heisenberg group[END_REF].

In this paper, we consider the inital value problem (S) on arbitrary Riemannian symmetric spaces X of the noncompact type and not-necessarily K-invariant initial data f ∈ L 2 (X). We show that if f and the solution u(t 0 , •) at some time t 0 > 0 satisfy a suitable Beurling type condition, then u(t, •) = 0 for all t ∈ R. This describes an uncertainty principle because of the kind of relation one gets between the Fourier transforms of u t = u(t, •) and the initial condition f ; see (37). Our result in particular also implies the uniqueness property of solutions for the Schrödinger equation (S) proved by Chanillo using Hardy type conditions.

On X, the rapid decrease of a function is measured by means of exponential powers of the distance function d on X induced by the Riemannian metric. If o = eK denotes the base point in X, we set σ(x) := d(o, x). The estimates are also in terms of the elementary spherical function of spectral parameter 0, denoted by Ξ. We denote by C(R : L 2 (X)) the space of continuous functions t → u(t, •) from R to L 2 (X). We refer to section 2.4 for the precise definitions. Our main result is the following theorem.

Theorem 1.1. Let X be a Riemannian symmetric space of the noncompact type and let f ∈ L 2 (X). Let u(t, x) ∈ C(R : L 2 (X)) denote the solution of (S) with initial condition f . If there is a time t 0 > 0 so that X X |f (x)||u(t 0 , y)|Ξ(x)Ξ(y)e σ(x)σ(y) 2t 0 dx dy < ∞ ,

then u(t, •) = 0 for all t ∈ R.

The proof of Theorem 1.1 is given in section 4.3. It is based on a reduction to a Euclidean situation by means of the Radon transform. This is a powerful technique that is commonly used to attack problems related to the uncertainty principle on symmetric spaces as well as on Euclidean spaces; see for instance [START_REF] Sengupta | The uncertainty principle on Riemannian symmetric spaces of the noncompact type[END_REF][START_REF] Sengupta | An analogue of Hardy's theorem for semi-simple Lie groups[END_REF][START_REF] Sarkar | Beurling's theorem and characterization of heat kernel for Riemannian symmetric spaces of noncompact type[END_REF][START_REF] Sarkar | Beurling's theorem for Riemannian symmetric spaces[END_REF]. In our situation, the important feature is that for functions satisfying [START_REF] Anker | A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type[END_REF], the composition of the Radon transform and a Euclidean Fourier transform gives the Helgason-Fourier transform. A Beurling theorem for the Helgason-Fourier transform has been proved by Sarkar and Sengupta (see [START_REF] Sarkar | Beurling's theorem for Riemannian symmetric spaces[END_REF], Theorem 4.1), under the assumption f ∈ L 1 (X) ∩ L 2 (X). However, unlike the Euclidean case treated in section 3 below, we cannot deduce our uniqueness theorem from Beurling's theorem on Riemannian symmetric spaces. In fact, in the Euclidean situation, the moduli of the initial value function f (x) and of the solution u(t, x) are (up to constants) equal to those of a Fourier transform pair (h, h). So Beurling's theorem for (h, h) yields the required uniqueness for the Schrödinger solution. See Corollary 3.5. A similar property does not hold for general Riemannian symmetric spaces. This is a consequence of the lack of duality between the Helgason-Fourier transform and its inverse. One can in part recover this duality for K-invariant functions on Riemannian symmetric spaces G/K with G complex. In this case, one can work on a maximally flat geodesic submanifold, where the Helgason-Fourier transform reduced essentially to a Euclidean Fourier transform. This is the approach used in [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF].

The classical version of Beurling's theorem on R n is among the strongest qualitative uncertainty principles. By this, we mean theorems which allow to conclude that f = 0 by giving quantitative conditions on f and its Fourier transform f . For instance, Beurling's theorem implies the qualitative uncertainty principles of Gelfand-Shilov, Cowling-Price and Hardy. Following this line, in section 5 we prove that the uniqueness property stated in Theorem 1.1 implies uniqueness properties respectively of Gelfand-Shilov, Cowling-Price and Hardy type, for the solution of the Schrödinger equation on a Riemannian symmetric space.

Finally, we study more closely the Hardy type conditions. Let α and β be the exponents measuring respectively the very rapid decay of the initial condition f and the solution u t 0 at a time t 0 > 0. Then the uniqueness property is proven to hold when the condition 16t 2 0 αβ > 1 is satisfied. The value of t 0 is shown to be optimal. More precisely, in Theorem 5.9 we prove that, under the additional assumption that G admits a complex structure, the K-invariant initial conditions f for which the uniqueness property fails in the case 16t 2 0 αβ = 1 are precisely the constant multiples of an explicitly given function. like to thank the referee for a very careful reading of our manuscript, constructive suggestions and some simplifications of our original arguments.

Notation and preliminaries

2.1. Riemannian symmetric spaces of the noncompact type and their structure. Let X be a Riemannian symmetric space of the noncompact type. Then X = G/K where G is a noncompact, connected, semisimple, real Lie group G with finite center and K is a maximal compact subgroup of G. Let g be the Lie algebra of G and let k (⊂ g) be the Lie algebra of K. We have the Cartan decomposition g = k ⊕ p, where p is the subspace of g which is orthogonal to k with respect to the Killing form B of g. Then p can be identified with the tangent space to X at the base point o = eK. We fix a maximal abelian subspace a of p. We denote by a * the (real) dual space of a and by a * C its complexification. The Killing form B is a (positive definite) inner product on p and hence on a.

For H 1 , H 2 ∈ a we set H 1 , H 2 := B(H 1 , H 2 ) and |H 1 | := H 1 , H 1 1/2
. We extend this inner product to a * by duality by setting λ, µ := H λ , H µ if H λ is the unique element of a so that H, H λ = λ(H) for all H ∈ a. The C-bilinear extension of •, • to a * C will be indicated by the same symbol.

The set of (restricted) roots of the pair (g, a) is denoted by Σ. It consists of all α ∈ a * for which the vector space g α := {X ∈ g : [H, X] = α(H)X for every H ∈ a} contains nonzero elements. The dimension m α of g α is called the multiplicity of the root α. We shall adopt the convention that m 2α = 0 if 2α is not a root. The subset of a on which all roots vanish is a finite union of hyperplanes. We can therefore choose Y ∈ a so that α(Y ) = 0 for all α ∈ Σ. Put Σ + := {α ∈ Σ : α(Y ) > 0}. Then Σ + is a system of positive roots, and Σ is the disjoint union of Σ + and -Σ + . A root α ∈ Σ is said to be indivisible if α/2 / ∈ Σ. We denote by Σ 0 the set of indivisible roots and set Σ + 0 := Σ + ∩Σ 0 . The half-sum of the positive roots counted with multiplicites is denoted by ρ: hence

ρ = 1 2 α∈Σ + m α α . (2) 
The set a + := {H ∈ a : α(H) > 0 for all α ∈ Σ + } is an open polyhedral cone called the positive Weyl chamber. The corresponding Weyl chamber in a * is a * + := {λ ∈ a * : λ, α > 0 for all α ∈ Σ + }. Let exp : g → G be the exponential map of G, and set A := exp a and A + := exp a + . Then A is an abelian subgroup of G that is diffeomorphic to a under exp. The inverse diffeomorphism is denoted by log.

The Weyl group W of the pair (g, a) is the finite group of orthogonal transformations of a generated by the reflections r α with α ∈ Σ, where

r α (H) := H -2 α(H) α, α H α , H ∈ a .
The Weyl group action extends to A via the exponential map, to a * by duality, and to a * C by complex linearity.

Set n := ⊕ α∈Σ + g α . Then N := exp n is a simply connected nilpotent subgroup of G. The subgroup A normalizes N . The map (k, a, n) → kan is an analytic diffeomorphism of the product manifold K ×A×N onto G. The resulting decomposition G = KAN = KN A is called the Iwasawa decomposition of G. Thus, for g ∈ G we have g = k(g) exp H(g)n(g) for uniquely determined k(g) ∈ K, H(g) ∈ a and n(g) ∈ G. One can prove that

|H(ak)| ≤ | log a| (3) 
for all a ∈ A and k ∈ K.

Let M be the centralizer of A in K and set B = K/M . Then the map A : X × B → a is defined by A(gK, kM ) := -H(g -1 k) .

(4) Besides the Iwasawa decomposition, we will also need the polar decomposition G = KAK: every g ∈ G can be written in the form g = k 1 ak 2 with k 1 , k 2 ∈ K and a ∈ A. The element a is unique up to W -invariance.

2.2. Normalization of measures and integral formulas. We shall adopt the normalization of measures as in [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF], Ch. II, §3.1. In particular, the Haar measures dk and dm on the compact groups K and M are normalized to have total mass 1. The Haar measures da and dλ on A and a * , respectively, are normalized so that the Euclidean Fourier transform

(F A f )(λ) := A f (a)e -iλ(log a) da , λ ∈ a * , (5) 
of a sufficiently regular function f : A → C is inverted by

f (a) = a * (F A f )(λ)e iλ(log a) dλ , a ∈ A . (6) 
The Haar measures dg and dn of G and N , respectively, are normalized so that dg = e 2ρ(log a) dk da dn . Moreover, if U is a Lie group and P is a closed subgroup of U , with left Haar measures du and dp, respectively, then the U -invariant measure d(uP ) on the homogeneous space U/P (when it exists) is normalized by

U f (u) du = U/P P f (up) dp d(uP ) . (7) 
This condition normalizes the G-invariant measure dx = d(gK) on X = G/K and fixes the Kinvariant measure db = d(kM ) on B = K/M to have total mass 1.

Corresponding to the Iwasawa and the polar decompositions, we have the integral formulas

X f (x) dx = G f (g • o) dg = K A N f (kan • o)e 2ρ(log a) dk da dn (8) = c K A + f (ka • o)δ(a) dk da (9) 
where

δ(exp H) = α∈Σ + (sinh α(H)) mα = e 2ρ(H) α∈Σ + 1 -e -2α(H) 2 mα , H ∈ a + ( 10 
)
and c is a suitable positive constant.

2.3.

Invariant differential operators on X and the Laplace-Beltrami operator. Let D(X) denote the commutative algebra of invariant differential operators on X which are invariant under the action of G on X by left translations. As a Riemannian manifold, a symmetric space of the noncompact type X = G/K is endowed with a Laplace-Beltrami operator ∆ defined by ∆f = div

• grad f for f ∈ C ∞ (X). It turns out that ∆ is a self-adjoint differential operator on L 2 (X) belonging to D(X). Let λ ∈ a * C and b ∈ B. Then the function e λ,b : X → C defined by e λ,b (x) = e (iλ+ρ)(A(x,b)) , x ∈ X , (11) 
is an eigenfuntion of ∆. In fact,

∆e λ,b = -( λ, λ + ρ, ρ )e λ,b . (12) 
We refer to [START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF], Ch. II, for additional information.

2.4. K-invariant functions. Functions f : X → C can be identified with right K-invariant functions on G, i.e. with functions f : G → C so that f (gk) = f (g) for all g ∈ G and k ∈ K.

Likewise, K-invariant functions on X can be identified with K-bi-invariant functions on G, i.e. with functions f :

G → C so that f (k 1 gk 2 ) = f (g) for all g ∈ G and k 1 , k 2 ∈ K.
In turn, because of the polar decomposition G = KAK = KA + K, a K-bi-invariant function on G can be identified with its W -invariant restriction to A or with its restriction to A + . The Riemannian distance from the origin o, defined by σ(x) = d(x, o), is an example of K-invariant map on X. According to the above identifications, we shall sometimes write σ(g) instead of σ(g

• o) for g ∈ G. If x = g • o and g = k 1 exp Hk 2 with g ∈ G, H ∈ a and k 1 , k 2 ∈ K, then σ(x) = σ(g) = σ(exp H) = |H|. (13) 
The function σ satisfies the following inequalities:

σ(gh) ≤ σ(g) + σ(h) , g, h ∈ G , (14) 
σ(an) ≥ σ(a) , a ∈ A , n ∈ N . (15) 
Another K-invariant function on X we shall employ is the spherical function Ξ of spectral parameter 0. It is defined by

Ξ(x) = B e 0,b (x) db = K e -ρ(H(gk)) dk , x = g • o ∈ X. (16) 
It is a real analytic function and, writing Ξ(g) instead of Ξ(g • o), it satisfies the following properties:

0 < Ξ(g) = Ξ(g -1 ) ≤ 1 , g ∈ G , (17) 
K Ξ(g 1 kg 2 ) dk = Ξ(g 1 )Ξ(g 2 ) , g 1 , g 2 ∈ G , (18) 
e -ρ(H) ≤ Ξ(a) ≤ e -ρ(H) (1 + |H|) d , a = exp H ∈ A + , (19) 
where d = |Σ + 0 | is the cardinality of the set of positive indivisible roots. The properties of the functions σ and Ξ can be found in [START_REF] Gangolli | Harmonic analysis of spherical functions on real reductive groups[END_REF], §4.6 and §6.2.

The Helgason-Fourier transform and the Radon transform.

A reference for this section is [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF], Ch. III. The Helgason-Fourier transform of a sufficiently regular function f : X → C is the function Ff defined by

Ff (λ, b) = X f (x)e -λ,b (x) dx = AN f (kan • o)e (-iλ+ρ)(log a) da dn (20) 
for all λ ∈ a * C and b = kM ∈ B for which this integral exists. The Plancherel theorem states that the Helgason-Fourier transform F extends to an isometry of

L 2 (X) onto L 2 (a * + × B, |c(λ)| -2 db dλ). The function c(λ) occurring in the Plancherel density is Harish-Chandra's c-function. It is the meromorphic function on a *
C given explicitly by the Gindikin-Karpelevich product formula:

c(λ) = c 0 α∈Σ + 0 c α (λ) (21) 
where

c α (λ) = 2 -iλα Γ(iλ α ) Γ iλα 2 + mα 4 + 1 2 Γ iλα 2 + mα 4 + m 2α 2 (22) 
and the constant c 0 is given by the condition c(-iρ) = 1. In [START_REF] Sengupta | The uncertainty principle on Riemannian symmetric spaces of the noncompact type[END_REF] we have employed the notation

λ α := λ, α α, α (23) 
for α ∈ Σ and λ ∈ a * C . Observe that if f ∈ L 2 (X) then, by the Plancherel theorem, for almost all λ ∈ a * we have

Ff (λ, •) ∈ L 2 (B).
The Helgason-Fourier transform Ff of a function f ∈ L 1 (X) is almost everywhere defined. More precisely, there exists a subset B ⊂ B (depending on f ) with B \ B of zero measure, such that Ff (λ, b) is defined for each λ ∈ a * . In fact, Ff (λ, b) is defined and holomorphic for λ in a small tube domain around a * in a * C . It turns out that F is injective on L 1 (X). Furthermore, as in the Euclidean case, there is an inversion formula for functions f ∈ L 1 (X) with Ff ∈ L 1 (a * × B, |c(λ)| -2 db dλ): for almost all x ∈ X, we have

f (x) = 1 |W | a * ×B Ff (λ, b)e λ,b (x) db dλ |c(λ)| 2 , ( 24 
)
where |W | denotes the cardinality of the Weyl group W . By identifying the space G/M N of horocycles on X with B × A, one can define the Radon transform of a sufficiently regular function f : X → C as the function Rf defined by

Rf (b, a) = e ρ(log a) N f (kan • o) dn (25) 
for all b = kM ∈ B = K/M and a ∈ A for which this integral exists. See [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF], p. 220 or [START_REF] Eguchi | Some properties of Fourier transform on Riemannian symmetric spaces[END_REF]. If f ∈ L 1 (X), then the integral defining Rf (b, a) converges absolutely for almost all (b, a)

∈ B × A and Rf ∈ L 1 (B × A). Indeed Rf L 1 (B×A,db da) ≤ |W | f 1 ; see [8], Lemma 3.2. By [15], Ch. II, Theorem 3.2, the Radon transform is injective on L 1 (X). Notice that if Rf ∈ L 1 (B × A) then for almost all a ∈ A we have Rf (•, a) ∈ L 1 (B).
The Helgason-Fourier transform of a sufficiently regular function f is the Euclidean Fourier transform of the Radon transform. For instance, if f ∈ L 1 (X), then

Ff (λ, b) = F A Rf (b, •) (λ) = A Rf (b, a)e -iλ(log a) da . ( 26 
)
for almost all b ∈ B and all λ ∈ a * . See e.g. the proof of formula (43), Ch. III, §1 in [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF].

2.6. Analysis on B = K/M . Let K denote the set of (equivalence classes of) irreducible unitary representations of K. Fix δ ∈ K acting on the space V δ of finite dimension d(δ). We consider V δ endowed with an inner product •, • making δ unitary. Let M = Z K (A) be the centralizer of A in

K. A vector v ∈ V δ is said to be M -fixed if δ(m)v = v for all m ∈ M . Let V M δ denote the subspace of M -fixed vectors of V δ . We denote by K M the subset of K consisting of (equivalence classes of) representations of K for which dim V M δ > 0. As before, let B = K/M . For f : B → C sufficiently regular, we define f δ : B → Hom(V δ , V δ ) by f δ (kM ) = d(δ) K δ(k -1 1 )f (k 1 kM ) dk 1 , k ∈ K . ( 27 
) Then f δ (kM ) = δ(k)f δ (eM ) (28) 
for all k ∈ K. In particular, f δ = 0 for δ / ∈ K M . The functions f δ determine f ∈ L 2 (B) by the Peter-Weyl theorem for vector-valued functions, stating that

f = δ∈ K M Trace(f δ ) . (29) 
See [START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF], Ch. V, Corollary 3.4. More generally, (29) holds in the sense of distributions when f ∈ L 1 (B). See [START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF], p. 508. Let v 1 , . . . , v d(δ) be an orthonormal basis of V δ . For i, j = 1, . . . , d(δ), define f δ i,j ∈ C by

f δ i,j = d(δ) -1 f δ (eM )v i , v j = K δ(k -1 )v i , v j f (kM ) dk . (30) 
Observe that, by ( 28) and (30), we have f δ = 0 if and only if f δ i,j = 0 for all i, j = 1, . . . , d(δ). Moreover, by (29), f = 0 if and only if f δ = 0 for all δ ∈ K M .

The Euclidean case

3.1. The damped Schrödinger equation on R n . Let F R n denote the Fourier transform on R n . For a (sufficiently regular) function f on R n , we also write f = F R n f . We fix as a measure on R n the Lebesgue measure divided by the factor (2π) n/2 .

Consider the initial value problem for the time-dependent damped Schrödinger equation on R n :

i∂ t u(t, x) + (∆ -c)u(t, x) = 0 u(0, x) = f (x) (S c )
where ∆ denotes the Laplace operator on R n and c ∈ R is the damping parameter. Suppose

f ∈ L 2 (R n ). Then there is a unique u ∈ C(R : L 2 (R n )) satisfying (S c
) in the sense of distributions and such that u(0, •) = f . In fact, let |λ| denote the euclidean norm of λ ∈ R n . The Fourier transform F R n gives a unitary equivalence of ∆ with the multiplication operator

M on L 2 (R n ) defined by (M f )(λ) = -|λ| 2 f (λ). It follows that the unique solution u t (x) = u(t, x) of (S c ) is characterized by the equation u t (λ) = e -i(|λ| 2 +c)t f (λ) . (31) 
Equivalently, u t = F -1 R n e -i(|λ| 2 +c)t F R n f . See for instance [START_REF] Rauch | Partial differential equations[END_REF], §3.5, Theorem 1 and Corollary 2. We will need precise information on the solution of (31) in the space S (R n ) of tempered distributions on R n for functions f which are not necessarily in L 2 (R n ).

Let O M (R n ) denote the space of functions ϕ on R n which are C ∞ with slow growth (i.e. each derivative of ϕ is bounded by a polynomial), and let O C (R n ) be the space of rapidly decreasing distributions T on R n (i.e. T ∈ S (R n ) and T * ϕ ∈ S(R n ) for all ϕ ∈ S(R n )). See [START_REF] Schwartz | Théorie des distributions[END_REF], p. 243-245. Then the Fourier transform is an isomorphism of

O M (R n ) onto O C (R n ). For every fixed a ∈ R, we have e -ia|x| 2 ∈ O M (R n ) ∩ O C (R n ). The following properties hold. Lemma 3.1. If S ∈ O M (R n ), T ∈ O C (R n ) and F ∈ S (R n ), then (a) SF ∈ S (R n ) and T * F ∈ S (R n ) . (b) SF = S * F and (T * F ) = T F .
Proof. See [START_REF] Schwartz | Théorie des distributions[END_REF], Ch. VII, §8, théorème XV.

Let c ∈ R and t = 0 be fixed. In S (R n ), we have, with our normalisation of the Lebesgue measure:

γ c,t (λ) = e -i(|λ| 2 +c)t if γ c,t (x) = (2|t|) -n/2 e -ict e -πi(sign t)n/4 e i |x| 2 4t
, where sign t := t/|t|. See for instance [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Theorem 7.6.1. Thus part (b) in Lemma 3.1 gives for

F ∈ S (R n ) e -i(|λ| 2 +c)t F = γ c,t F = (γ c,t * F ) ∧ .
Since the Fourier transform is injective on S (R n ), we obtain that the unique solution to the equation

u t = e -i(|λ| 2 +c)t f in S (R n ) is u t = γ c,t * f . (32) 
Applying this property to the damped Schrödinger equation, we obtain in particular that, if f ∈ L 1 (R n ), then for t = 0 the solution to (S c ) can be written explicitly as

u(t, x) = (γ c,t * f )(x) = (2π) n/2 (2|t|) -n/2 e -ict e -πi(sign t)n/4 e i |x| 2 4t h t x 2t (33) 
where 33) and (34) hold as equalities in L 2 (R n ).

h t (y) = e i |y| 2 4t f (y) . ( 34 
) If f ∈ L 2 (R n ), then (

3.2.

Beurling-type uncertainty principles in R n . Beurling's theorem, proven by Hörmander in [START_REF] Hörmander | A uniqueness theorem of Beurling for Fourier transform pairs[END_REF], provides one of the strongest quantitative versions of the uncertainty principles for the Fourier transform on R.

Theorem 3.2 (Beurling's theorem). Let f ∈ L 1 (R). If R R |f (x)|| f (y)|e |xy| dx dy < ∞ then f = 0 almost everywhere.
A simplified proof of Theorem 3.2 can be found in the appendix of [START_REF] Bonami | Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms[END_REF]. Some higher dimensional versions of this theorem have been proven recently by Bagchi and Ray. One of these versions is the following theorem. See [START_REF] Bagchi | Uncertainty principles like Hardy's theorem on some Lie groups[END_REF], Corollary 1.

Theorem 3.3. Let f ∈ L 1 (R n ). Suppose that R n R n |f (x)|| f (y)|e |x||y| dx dy < ∞ .
Then f = 0 almost everywhere. Corollary 3.4. Suppose f, u t satisfy (31). If f ∈ L 1 (R n ) and there is t 0 > 0 so that

R n R n |f (x)||u(t 0 , y)|e |x||y| 2t 0 dx dy < ∞ (35) then f = 0. Hence u(t, •) = 0 for all t ∈ R.
Proof. According to (35) and (33), we have

+∞ > R n R n |f (x)||u(t 0 , y)|e |x||y| 2t 0 dx dy = 1 (2t 0 ) n/2 R n R n h t 0 (x) h t 0 y 2t 0 e |x||y| 2t 0 dx dy = (2t 0 ) n/2 R n R n |h t 0 (x)|| h t 0 (y)|e |x||y| dx dy
Theorem 3.3 gives then h t 0 = 0 and hence f = 0. Thus u(t, •) = 0 for all t ∈ R by (33).

Corollary 3.5. Let u(t, x) ∈ C(R : L 2 (R n )) be the solution to the initial value problem (S c ) with initial condition f ∈ L 2 (R n ). If there is t 0 > 0 so that (35) holds. Then f = 0 and hence u(t, •) = 0 for all t ∈ R.

Proof. By Corollary 3.4, it suffices to prove that f ∈ L 1 (R n ). If u(t 0 , •) = 0 a.e., then f = e i(|λ| 2 +c)t 0 u t 0 = 0. Hence f = 0. We can therefore suppose that u(t 0 , •) is not a.e. zero. By (35), we have

|u(t 0 , y)| R n |f (x)|e |x||y| 2t 0 dx < ∞ (36)
for almost all y ∈ R n . Since u t 0 does not vanish almost everywhere, (36) gives for some 

y 0 ∈ R n R n |f (x)| dx ≤ R n |f (x)|e |x||y 0 | 2t 0 dx < ∞ . Thus f ∈ L 1 (R n ).
i∂ t u(t, x) + ∆u(t, x) = 0 u(0, x) = f (x) (S)
where ∆ is the Laplace-Beltrami operator on X. Suppose f ∈ L 2 (X). Then the analysis of solutions of the Schrödinger equation on R n carries out to X when the Fourier transform F R n is replaced by the Helgason-Fourier transform F. In fact, by [START_REF] Gangolli | Harmonic analysis of spherical functions on real reductive groups[END_REF], the function e λ,b appearing in the definition of the Helgason-Fourier transform are eigenfunctions of the Laplace-Beltrami operator ∆. Hence, by the Plancherel theorem, F is a unitary equivalence of ∆ with the multiplication operator M on

L 2 (a * × B, dλ db |c(λ)| 2 ) defined by (M f )(λ, b) = -(|λ| 2 + |ρ| 2 )f (λ, b).
It follows that there is a unique u t (x) = u(t, x) ∈ C(R : L 2 (X)) satisfying (S) in the sense of distributions on X and such that u(0, •) = f . It is characterized by the equation

(Fu t )(λ, b) = e -i(|λ| 2 +|ρ| 2 )t Ff (λ, b) . (37) 
Equivalently, u t = F -1 e -i(|λ| 2 +|ρ| 2 )t Ff . We observe, in particular, that u ∈ C(R : S(X)) if f ∈ S(X). Here S(X) is the Schwartz space of smooth rapidly decreasing functions on X; see e.g. [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF], pp. 214-220. Notice that, as F is a bijection on L 2 (X), the condition f = 0 implies u t = 0 for all t ∈ R. Conversely, suppose there is t 0 ∈ R so that u t 0 = 0. Then (37) gives e -i(|λ| 2 +|ρ| 2 )t 0 Ff (λ, b) = 0 for all (λ, b). Hence Ff = 0. Thus f = 0 and u t = 0 for all t ∈ R. This remark applies more generally to solutions of (37) in S (X), the space of tempered distributions on X.

4.2.

The class of functions L 1 (X) C . Let Ξ and σ be the functions defined in ( 16) and ( 13), respectively. Let C ≥ 0. For a measurable function h : X → C we set

h 1,C := X |h(x)|Ξ(x)e Cσ(x) dx
We denote by L 1 (X) C the C-vector space of (equivalence classes of a.e. equal) functions on X for which h 1,C < ∞.

The motivation for introducing this class of functions is the following. Suppose f, u t 0 satisfy Beurling's condition [START_REF] Anker | A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type[END_REF]. Then f ∈ L 1 (X) C for some C ≥ 0. Indeed if u(t 0 , •) vanishes almost everywhere, then f = 0 by (37); if u(t 0 , •) does not vanish almost everywhere, (1) implies

|u(t 0 , y)|Ξ(y) X |f (x)|Ξ(x)e σ(x)σ(y) 2t 0 dx dy < ∞
for almost all y ∈ X, whence the result with C = σ(y)/t 0 for any y = o such that u(t 0 , y) = 0. Likewise (1) implies u(t 0 , •) ∈ L 1 (X) C for some C > 0 and we may assume C = C . 

Consequently, the Radon transform Rh of a function h ∈ L 1 (X) C is almost everywhere defined and Rh ∈ L 1 (B × A, e Cσ(a) da db).

Proof. Because of the definition of Ξ in ( 16), we have

X |h(x)|Ξ(x)e Cσ(x) dx = G K |h(g • o)|e -ρ(H(gk))
e Cσ(g) dg dk .

Then (38) follows by the right-K-invariance of σ and the map g → h(g • o). Suppose now that X |h(x)|Ξ(x)e Cσ(x) dx < ∞. By (38), the integral formula (8) for the Iwasawa decomposition and the inequality [START_REF] Helgason | Geometric analysis on symmetric spaces[END_REF], we can write this integral as The Radon transform Rh of a function h ∈ L 1 (X) C is well defined and Rh ∈ L 1 (B × A). In fact, we also have h ∈ L 1 (X) when C is sufficiently big. Lemma 4.2. For all x ∈ X, we have

Ξ(x)e |ρ|σ(x) ≥ 1 . (40) 
Consequently, L 1 (X) C ⊂ L 1 (X) for C ≥ |ρ|.

Proof. By [START_REF] Rauch | Partial differential equations[END_REF], for all a = exp H ∈ A + we have Ξ(a • o)e |ρ|σ(a•o) ≥ Ξ(a • o)e ρ(H) ≥ 1. The inequality (40) then follows by K-invariance of Ξ and σ and by the decomposition G = KA + K.

Even if h ∈ L 1 (X) C may not be in L 1 (X) unless C is sufficiently big, we have Rh(b, •) ∈ L 1 (A) for almost all b ∈ B by Lemma 4.1. So we can consider F A Rh(b, •) . In fact, on L 1 (X) C the equality F = F A • R holds.
To prove this, we work on K-types. Let δ ∈ K M and let v 1 , . . . , v d(δ) be a fixed orthonormal basis of the space V δ of δ. Recall from (30) the notation f δ i,j for f : B = K/M → C. Recall also that f δ = 0 if and only if f δ i,j = 0 for all i, j = 1, . . . , d(δ). Lemma 4.3. Let C ≥ 0 be a constant and let h ∈ L 1 (X) C . For a ∈ A and λ ∈ a * set

(Rh) δ i,j (a) := ((Rh)(•, a)) δ i,j = K δ(k -1 )v i , v j Rh(kM, a) dk (41) (Fh) δ i,j (λ) := (Fh(λ, •)) δ i,j = K δ(k -1 )v i , v j Fh(λ, kM ) dk (42)
For a function g :

a * → C, set g ∞ := sup λ∈a * |g(λ)|. Then F A (Rh) δ i,j ∞ ≤ h 1,C (43) 
(Fh) δ i,j ∞ ≤ h 1,C (44) 
Suppose moreover that Rh ∈ L 1 (B × A) and set

F A (Rh) δ i,j (λ) := K δ(k -1 )v i , v j F A Rh(kM, •) (λ) dk . ( 45 
)
Then F A (Rh) δ i,j = F A (Rh) δ i,j (46) 
Proof. By (41) we have

F A (Rh) δ i,j (λ) = A K δ(k -1 )v i , v j Rh(kM, a)e iλ(log a) da dk . ( 47 
)
Since δ is unitary and v 1 , . . . , v d(δ) is an orthonormal basis, we obtain from (39):

|F A (Rh) δ i,j (λ)| ≤ A B |Rh(b, a)| db da ≤ h 1,C .
This proves (43). To prove (44), we have by [START_REF] Sarkar | Beurling's theorem for Riemannian symmetric spaces[END_REF]: So (44) follows again from (39). Finally, ( 46) is a consequence of (47) and Fubini's theorem, which applies as Rh ∈ L 1 (B × A).

|Fh(λ, b)| ≤ A N |h(kan • o)|e ρ(log a) da dn
Corollary 4.4. Suppose h ∈ C ∞ c (X). Then for all i, j = 1, . . . , d(δ) and λ ∈ a * F A (Rh) δ i,j (λ) = (Fh) δ i,j (λ) . ( 48 
) Proof. For h ∈ C ∞ c (X) we have F A • R = F. Proposition 4.5. Let C ≥ 0. Let δ ∈ K M and v 1 , . . . , v d(δ) be as above. Then for all h ∈ L 1 (X) C F A (Rh) δ i,j = F A (Rh) δ i,j = (Fh) δ i,j (49) 
as functions on a * . Consequently,

F = F A • R on L 1 (X) C .
Proof. The first equality is a consequence of (46). For the second, let h ∈ L 1 (X) C , and let h n ∈ C ∞ c (X) be a sequence converging to h in L 1 (X) C . By (43), ( 44) and ( 46), for all i, j = 1, . . . , d(δ), the sequences [F A (Rh n )] δ i,j and (Fh n ) δ i,j converge in L ∞ (a * ) to [F A (Rh)] δ i,j and (Fh) δ i,j , respectively. But [F A (Rh n )] δ i,j = (Fh n ) δ i,j by Corollary 4.4. Hence [F A (Rh)] δ i,j = (Fh) δ i,j by uniqueness of the limit. Since this is true for all δ ∈ K M and every orthonormal basis v 1 , . . . , v d(δ) of the space of δ, we conclude that

F = F A • R on L 1 (X) C .
We conclude this section by a remark on the convolution h × ψ of two elements in L 1 (X) C under the additional assumption that ψ is K-invariant. Recall that the convolution of two sufficiently regular functions f 1 and f 2 on X is the function f 1 ×f 2 defined on X by (f

1 ×f 2 )•π = (f 1 •π) * (f 2 •π).
Here π : G → X = G/K is the natural projection and * denotes the convolution product of functions on G. This convolution is not commutative. 

Proposition 4.6. Let C ≥ 0 and let h, ψ ∈ L 1 (X) C . Suppose that ψ is K-invariant. Then h × ψ ∈ L 1 (X) C . More precisely, we have X |(h × ψ)(x)|Ξ(x)e Cσ(x) dx ≤ h 1,C ψ 1,C .
. Recall that if u t = u(t, •) is a solution of (S) with initial condition f ∈ L 2 (X) satisfying X X |f (x)||u(t 0 , y)|Ξ(x)Ξ(y)e σ(x)σ(y) 2t 0 dx dy < +∞ (50) 
for some t 0 > 0, then f, u t 0 ∈ L 1 (X) C for some constant C > 0.

Proof of Theorem 1.1. Observe that, by applying an argument similar to that in the proof of Lemma 4.1, we get

X X |f (x)||u(t 0 , y)|Ξ(x)Ξ(y)e σ(x)σ(y) 2t 0 dx dy = = G G |f (g 1 • o)||u(t 0 , g 2 • o)|e -ρ(H(g 1 )+H(g 2 )) e σ(g 1 )σ(g 2 ) 2t 0 dg 1 dg 2 . (51) 
By (37), to prove that u(t, •) = 0 for all t ∈ R, it is enough to prove that f = 0. But by Proposition 4.5, we have Ff = F A (Rf ) as f ∈ L 1 (X) C for some C > 0. Since F is an isometry on L 2 (X), it therefore suffices to prove that Rf = 0. For this, we shall prove that (Rh) δ i,j = 0 for all δ ∈ K M and i, j = 1, . . . , d(δ). This would complete the proof by the comments at the end of section 2.6.

By proceeding as in the proof of (38), we have

X X |f (x)||u(t 0 , y)|Ξ(x)Ξ(y)e σ(x)σ(y) 2t 0 dx dy ≥ ≥ A B A B (R|f |)(b 1 , a 1 )(R|u t 0 |)(b 2 , a 2 )e | log a 1 || log a 2 | 2t 0 da 1 da 2 db 1 db 2 ≥ A A B |Rf (b 1 , a 1 )|db 1 B |Ru t 0 (b 2 , a 2 )|db 2 e | log a 1 || log a 2 | 2t 0 da 1 da 2 .
By (41), this implies that

A A |(Rf ) δ i,j (a 1 )||(Ru t 0 ) δ i,j (a 2 )|e | log a 1 || log a 2 | 2t 0 da 1 da 2 < ∞ (52) 
for all δ ∈ K M and i, j = 1, . . . , d(δ).

On the other hand, (37) together with (49) gives us

F A (Ru t ) δ i,j (λ) = e -i(|λ| 2 +|ρ| 2 )t F A (Rf ) δ i,j (λ) . (53) 
Now, by Corollary 3.4, we obtain (Rf ) δ i,j = 0 for all δ ∈ K M and i, j = 1, . . . , d(δ), concluding the result.

Remark 4.7. Note that (51) give us the Beurling's condition in group terms.

As an immediate corollary of Theorem 1.1, we obtain the following result for compactly supported initial conditions. Corollary 4.8. Let u(t, x) ∈ C(R : L 2 (X)) denote the solution of (S) with initial condition f ∈ L 2 (X). Suppose that f has compact support. If there is a time t 0 > 0 so that u(t 0 , •) has compact support. Then f = 0 and hence u(t, •) = 0 for all t ∈ R.

Proof. It suffices to observe that (1) is always satisfied if f and u(t 0 , •) are compactly supported. Remark 4.9. For f ∈ L 2 (X) the Radon transform Rf (b, •) as well as the K-types (Rf ) δ i,j appearing in (53) need not be in L 2 (A). This can be easily seen for functions f satisfying Ff = F A (Rf ). Indeed the Euclidean Fourier transform is an isometric isomorphism of L 2 (A) onto L 2 (a * ). According to the Plancherel theorem, the image of L 2 (X) under the Helgason-Fourier transform is

L 2 (a * + × B, |c(λ)| -2 dλ db). So Rf (b, •) ∈ L 2 (A) for almost all b ∈ B provided L 2 (a * , |c(λ)| -2 dλ) ⊂ L 2 (
a * , dλ). The latter condition depends on the Harish-Chandra's c-function appearing in the Plancherel measure. Using the properties of the gamma function, one can prove the asymptotic behaviour

1 |c(λ)| 2 α∈Σ + 0 | λ, α | 2 α∈Σ + 0 (1 + | λ, α |) mα+m 2α -2 . ( 54 
)
See e.g. [START_REF] Anker | A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type[END_REF], Lemma 1. Here f g means that there exists positive constants C 1 and C 2 so that C 1 g(λ) ≤ f (λ) ≤ C 2 g(λ) for all λ.

In the rank-one case, we have for instance the following result. The boundedness of Ff (b, •) at λ = 0 for almost all b ∈ B is obtained under very weak assumptions on f . Recall for instance that for almost all b ∈ B, the function Ff (b, •) is even holomorphic in a tube around a * . See section 2.5. Moreover, in this case Ff (b, •) vanishes at infinity by Fatou's lemma for F. We can then prove that Rf ∈ L 2 (A) for f ∈ L 1 (X) ∩ L 2 (X) whenever the root system satisfies the following conditions:

(C) Either there is no α ∈ Σ + 0 with multiplicity m α = 1, or 2α ∈ Σ + . When condition (C) is met, then we have

α∈Σ + 0 (1 + | λ, α |) mα+m 2α -2 ≥ C (55) 
for all λ ∈ a * . The result Rf ∈ L 2 (A) for f ∈ L 2 (X) ∩ L 1 (X) is then a consequence of the above discussion and the following lemma.

Lemma 4.11. Let Σ be a root system satisfying condition (C). Suppose h ∈ L 2 (a * , |c(λ)| -2 dλ) is continuous and vanishes at infinity. Then h ∈ L 2 (a * , dλ).

Proof. Set Π(λ) = α∈Σ + 0 λ, α . By Lemma 5 in [START_REF] Anker | A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type[END_REF], the set

Ω 1 = {λ ∈ a * : |Π(λ)| ≤ 1} has finite Lebesgue measure. Let B 1 = {λ ∈ a * : λ ≤ 1} and C 1 = a * \ B 1 . Write a * |h(λ)| 2 dλ = B 1 |h(λ)| 2 dλ + Ω 1 ∩C 1 |h(λ)| 2 dλ + (a * \Ω 1 )∩C 1 |h(λ)| 2 dλ .
The first integral is finite as h is continuous, hence bounded on the compact B 1 . The second integral is also finite as h is continuous and vanishes at infinity, so it is bounded in C 1 , and Ω 1 ∩ C 1 is a subset of Ω 1 , hence of finite measure. For the convergence of the third integral, we use condition (C). In fact, condition (C) yields (55). Moreover, on a * \Ω 1 , we have

|Π(λ)| ≥ 1. Thus |c(λ)| -2 ≥ C for all λ ∈ (a * \ Ω 1 ) ∩ C 1 . Consequently, (a * \Ω 1 )∩C 1 |h(λ)| 2 dλ ≤ C -1 (a * \Ω 1 )∩C 1 |h(λ)| 2 dλ |c(λ)| 2 < +∞.

Applications

Let X be a Riemannian symmetric space of the noncompact type. In this section we collect some uniqueness conditions for the solution of the Schrödinger equation (S) on X which can be deduced from Theorem 1.1. They correspond to uncertainty principle conditions of Gelfand-Shilov type, Cowling-Price type and Hardy type. These results are parallel to the classical results of uncertainty principles for the Fourier transform on R n . Recall from (17) that 0 < Ξ(x) ≤ 1 for all x ∈ X. Theorem 5.1 (Gelfand-Shilov type). Let u(t, x) ∈ C(R : L 2 (X)) be the solution of (S) with initial condition f ∈ L 2 (X). Suppose there exists positive constants α, β and a time t 0 > 0 so that

X |f (x)|Ξ(x)e α p p σ p (x) dx < ∞ and X |u(t 0 , x)|Ξ(x)e β q q σ q (x) dx < ∞ (56)
where 1 < p < ∞ and 1 p + 1 q = 1 . If 2t 0 αβ ≥ 1, then f = 0 and hence u(t, •) = 0 for all t ∈ R.

Proof. We have σ(x)σ(y) 2t 0 ≤ αβσ(x)σ(y) ≤ α p p σ p (x) + β q q σ q (y). The inequalities (56) imply then Beurling's condition (1). Theorem 5.2 (Cowling-Price type). Let u(t, x) ∈ C(R : L 2 (X)) be the solution of (S) with initial condition f ∈ L 2 (X). Suppose there exists positive constants a, b and a time t 0 > 0 so that

X |f (x)|e aσ 2 (x) p dx < ∞ and X |u(t 0 , x)|e bσ 2 (x) q dx < ∞ (57)
where 1 ≤ p, q ≤ ∞. If 16t 2 0 ab > 1, then f = 0 and hence u(t, •) = 0 for all t ∈ R.

Proof. Choose A, B so that 0 < A < a, 0 < B < b and 16t 2 0 AB > 1. Let p and q so that x) . Observe that, by ( 9) and ( 10), the function e η ∈ L p (X) for

1 p + 1 p = 1 and 1 q + 1 q = 1. Set e η (x) = e ησ 2 (
all p ∈ [1, +∞] if η < 0. Indeed, by K-invariance of σ, X |e η (x)| p dx ≤ c a + e pη|H| 2 δ(H) dH ≤ c a + e pη|H| 2 +2ρ(H) dH < ∞ .
By [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Hölder inequality and the assumption,

f Ξe A 1 ≤ f e A 1 ≤ f e a p e (A-a) p < ∞ , u(t 0 , •)Ξe B 1 ≤ u(t 0 , •)e B 1 ≤ u(t 0 , •)e b q e (B-b) q < ∞ .
The stated result is then a consequence of Theorem 5.1 with p = q = 2, A = α 2 /2 and B = β 2 /2.

Remark 5.3. Let ψ be a function on X satisfying ψ(x)e νσ 2 (x) ∈ L ∞ (X) and ψ(x) -1 e νσ 2 (x) ∈ L ∞ (X) for all ν < 0. Because of the strict inequality 16t 2 0 ab > 1 in Theorem 5.2, we can replace the functions e ησ 2 (x) , with η ∈ {a, b}, measuring the growth of f and u t 0 , respectively, with ψ(x)e ησ 2 (x) . For instance, we can choose ψ(x) = Ξ(x) M (1 + σ(x)) N for some fixed integers M and N . Similar remarks apply to Corollary 5.4 and Theorem 5.5 below.

Corollary 5.4. Let u(t, x) ∈ C(R : L 2 (X)) be the solution of (S) with initial condition f ∈ L 2 (X). Suppose there exists positive constants a, A, b, B and a time t 0 > 0 so that for all x ∈ X |f (x)| ≤ A e -a p p σ p (x) and |u(t 0 , x)| ≤ B e -b q q σ q (x)

where 1 < p < ∞ and 1 p + 1 q = 1 . If 2t 0 ab > 1, then f = 0 and hence u(t, •) = 0 for all t ∈ R.

Proof. Choose α, β so that 0 < α < a, 0 < β < b and 2t 0 αβ > 1. Then f and u(t 0 , •) satisfy (56).

Theorem 5.5 (Hardy type). Let f be a measurable function on X so that there exists positive constants A and α so that |f (x)| ≤ A e -ασ 2 (x) (59) for all x ∈ X. Then f ∈ L 2 (X). Let u(t, x) ∈ C(R : L 2 (X)) be the solution of (S) with initial condition f . Suppose, moreover, that there is a time t 0 > 0 and positive constants B and β so that

|u(t 0 , x)| ≤ B e -βσ 2 (x) (60) 
If 16αβt 2 0 > 1, then u(t, •) = 0 for all t ∈ R. Proof. By the K-binvariance of σ and the integral formula ( 9) and ( 10), the growth condition on f implies

X |f (x)| 2 dx ≤ A 2 X e -2ασ 2 (x) dx ≤ cA 2 a + e -2α|H| 2 δ(H) dH ≤ cA 2 a + e -2α|H| 2 +2ρ(H) dH < ∞ . If 16αβt 2 0 > 1, then u(t,
•) ≡ 0 for all t ∈ R. Suppose now that G has a complex structure and f is a K-invariant function on X. A Kinvariant function on X can be identified with a W -invariant function on A = exp a ≡ a. Here, as before, W denotes the Weyl group. In this identification, the space of K-invariant functions in L 2 (X) corresponds to the space of W -invariants in L 2 (a, η 2 (H) dH), where

η(H) = γ∈Σ + sinh γ(H) , H ∈ a . (64) 
Moreover, the radial component on

A + ≡ a + of the Laplace-Beltrami operator ∆ on X is 1 η(H) ∆ a -|ρ| 2 • η(H) (65) 
where ∆ a is the Laplace operator on a. If n = dim a and {H j } n j=1 is an orthonormal basis of a with respect to the inner product induced by the Killing form, then ∆ a = n j=1 ∂(H j ) 2 . Because of (65), u t = u(t, •) is the solution to (S) with K-invariant initial condition f ∈ L 2 (X) if and only if η(H)u t (H) is the solution of the damped Schrödinger equation (S c ) on a ≡ R n with damping parameter c = |ρ| 2 and W -skew-invariant initial condition η(H)f (H).

When G admits a complex structure, all root multiplicities m γ are equal to 2. Writing ψ(H) instead of ψ(exp H), we therefore have

ψ(H) = π(H) η(H) , H ∈ a , where π(H) = γ∈Σ + γ(H) .
Let α, β be two positive constants and let

f (x) = ψ(x)e -ασ 2 (x) e -i √ αβσ 2 (x) , x ∈ X .
Then f is a K-biinvariant function in L 2 (X). Considered as a function on A ≡ a, we have f (H) = π(H) η(H) e -α|H| 2 e -i √ αβ|H| 2 , H ∈ a .

Let u(t, x) be the solution of (S) with initial condition f . Then η(H)u(t, H) , H ∈ a, is the solution of (S c ) with damping parameter |ρ| 2 and initial condition η(H)f (H). Set t 0 = (16αβ) for all H ∈ a, i.e. u(t 0 , x) = c t 0 ψ(x)e -βσ 2 (x) e i σ 2 (x) 4t 0 for all x ∈ X. Since f and u t respectively satisfy the estimates (62) and (63), the uniqueness property in Corollary 5.7 fails when 16t 2 0 αβ = 1. In fact, we shall prove in Theorem 5.9 below that the function f we just considered is (up to constant multiples) the only function which can occur in the case 16t 2 0 αβ = 1. We shall derive this property from the following equality case of Hardy's theorem on R n ; see [START_REF] Thangavelu | An introduction to the uncertainty principle. Hardy's theorem on Lie groups[END_REF], Theorem 1.4.4. with a, b > 0. When ab = 1 4 , then h(x) = P (x)e -a|x| 2 where P is a polynomial of degree ≤ 2m. Theorem 5.9. Let X = G/K be a Riemannian symmetric space with G complex. Suppose f is a K-invariant function on X satisfying (62). Let u(t, •) be the solution of (S) with initial condition f . Assume that u(t 0 , x) satisfies (63). If 16αβt 2 0 = 1, then there exists a constant C so that f (x) = C ψ(x)e -ασ 2 (x) e -i √ αβσ 2 (x) . for all x ∈ X.

Proof. It remains to prove that if f and u t 0 satisfy (62) and (63), respectively, then f (x) is a constant multiple of ψ(x)e -ασ 2 (x) e -i √ αβσ 2 (x) . We know that η(H)u t (H) is the solution of the damped Schrödinger equation on a with damping parameter |ρ| 2 and initial condition η(H)f (H) ∈ L 2 (a, dH). Hence, by (33) ) m and α(4t 2 0 β) = 1/4, we obtain from Lemma 5.8 that h t 0 (H) = P (H)e -α|H| 2 where P (H) is a polynomial of degree ≤ 2m. Therefore e i |H| 2 4t 0 η(H)f (H) = P (H)e -α|H| 2 . This equality shows that P (H) must be Wskew-invariant, so divisible by π(H). Hence P (H) = q(H)π(H) for a W -invariant polynomial q(H) so that deg q = deg P -deg π ≤ 2m -|Σ + | ≤ 1. This is only possible when q(H) = C is a constant.

Thus f (H) = C π(H) η(H) e -i |H| 2 
4t 0 e -α|H| 2 , which proves the claim.
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 441 The case of a Riemannian symmetric space of the noncompact type The Schrödinger equation on X. Consider the initial value problem for the time-dependent Schrödinger equation on the Riemannian symmetric space X = G/K:

Lemma 4 . 1 .(

 41 Let h be a measurable function on X and let C ≥ 0 be a constant. Then X |h(x)|Ξ(x)e Cσ(x) dx = G |h(g • o)|e -ρ(H(g)) e Cσ(g) dg . R|h|)(b, a)e Cσ(a) da db ≤ h 1,C .

  K×A×N |h(kan • o)|e -ρ(log a) e Cσ(an) e 2ρ(log a) dk da dn ≥ K A e ρ(log a) N |h(kan • o)| dn e Cσ(a) da dk = B A (R|h|)(b, a)e Cσ(a) da db . This proves (39). The final property then follows as |Rh(a, b)| ≤ e ρ(log a) N |h(kan • o)| dn = R|h|(a, b) .

(

  R|h|)(b, a) da db .

Proof.

  In the following we shall employ the same symbol to denote a function on X and the corresponding K-invariant function on G. By definition of convolution products on G, G (|h| * |ψ|)(g)Ξ(g)e Cσ(g) dg = G G |h(g)||ψ(g )|Ξ(gg )e Cσ(gg ) dg dg ≤ G |h(g)||ψ(g )|Ξ(gg )e Cσ(g) e Cσ(g ) dg dg since σ(gg ) ≤ σ(g) + σ(g ) and C ≥ 0. Replacing g by kg , k ∈ K, and using the K-invariance of ψ and σ, the latter integral becomes G G |h(g)||ψ(g )|Ξ(gkg )e Cσ(g) e Cσ(g ) dg dg , which does not depend on k. Integration over K leads to G G |h(g)||ψ(g )|Ξ(g)Ξ(g )e Cσ(g) e Cσ(g ) dg dg = h 1,C ψ 1,C in view of the classical functional equation of spherical functions. 4.3. The Beurling-type condition for the Schrödinger equation on X. In this section, we shall prove Theorem 1.1

Lemma 4 . 10 .

 410 Suppose dim a * = 1. Let h ∈ L 2 (a * , |c(λ)| -2 dλ) be bounded on {λ ∈ a * : |λ| ≤ r} for some r > 0. Then h ∈ L 2 (a * , dλ).Proof. The asymptotic formula (54) gives in this case:|c(λ)| -2 ≥ C for |λ| ≥ r. If h ∈ L 2 (a * , |c(λ)| -2 dλ),then h is square integrable with respect to the Lebesgue measure on {λ ∈ a * : |λ| ≥ r}. Hence h ∈ L 2 (a * , dλ), as it is bounded on the compact set {λ ∈ a * : |λ| ≤ r}.

Lemma 5 . 8 .

 58 Suppose h is a measurable function on R n that satisfies the estimates|h(x)| ≤ C(1 + |x| 2 ) m e -a|x| 2 and | h(ξ)| ≤ C(1 + |ξ| 2 ) m e -b|ξ| 2

  -1/2 . By (33) and (34) we have for a constant C 1 depending on t 0η(H)u(t 0 , H) = C 1 e (Y ) = π(Y )e -α|Y | 2 . Since h t 0 (H) = π(i∂) e -α|Y | 2 ∧ = C 2 π(i∂)e -|H| 2Observe that P (H)e -β|H| 2 is a constant multiple of e η(H)u(t 0 , H). Since η(H) is W -skew-invariant, so is P (H). Hence π(H) divides P (H). Thus P (H) = cπ(H) for a constant c. Therefore u(t 0 , H) = c t 0 π(H) η(H) e -β|H| 2 e

	-i	|H| 2 4t 0 i	|H| 2 4t 0
			i	|H| 2 4t 0 h t 0	H 2t 0
	where		
	h t 0 4α
	and 16t 2 0 α = β -1 , we conclude that		
	η(H)u(t 0 , H) = C 3 e i	|H| 2 4t 0 π(i∂)e -β|H| 2

where C 3 is a constant depending on t 0 . Moreover, π(i∂) = γ∈Σ + i∂(H γ ), where H γ is the unique element in a so that γ(H) = H γ , H for all H ∈ a. Since ∂(H γ )e -β|H| 2 = -2βγ(H)e -β|H| 2 , we have π(i∂)e -β|H| 2 = P (H)e -β|H| 2 where P (H) is a polynomial of degree deg P = deg π.

  , η(H)u(t 0 , H) = (γ |ρ| 2 ,t 0 * η • f )(H) = C t 0 e A|π(H)|e -α|H| 2 and h t 0 H 2t 0 = C -1 t 0 |π(H)ψ(H) -1 u(t 0 , H)| ≤ BC -1 t 0 |π(H)|e -β|H| 2 . So | h t 0 (ξ)| ≤ C t 0 |π(ξ)|e -4t2 0 β|ξ| 2 . Let m be the smallest integer such that 2m ≥ |Σ + |. Since |π(H)| ≤ C(1+|H|

			i	|H| 2 4t 0 h t 0	H 2t 0
	where	h t 0 (H) = e i	|H| 2 4t 0 η(H)f (H) .
	Hence		
	|h t		

0 (H)| = |η(H)f (H)| = |π(H)ψ(H) -1 f (H)| ≤

  2 
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Thus f ∈ L 2 (X). The uniqueness property is a consequence of Corollary 5.4 with p = q = 2 and α = a 2 /2, β = b 2 /2. Remark 5.6. Under the additional assumptions that f is K-invariant and G is endowed with a complex structure, Theorem 5.5 was proven in [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF] using the explicit expression of the elementary spherical functions. In fact, the Euclidean reduction via Radon transform provides an elementary proof of Theorem 5.5 for arbitrary X and f . Observe first that if h is a measurable function on X and there is C > 0 for which |h(x)| ≤ A e -Cσ 2 (x) for all x ∈ X, then h ∈ L 1 (X) ∩ L 2 (X). Suppose now that f and u t 0 satisfy (59) and (60), respectively. Choose a, b so that 0 < a < α, 0 < b < β and 16abt 2 0 > 1. By Proposition 1 in [START_REF] Sengupta | An analogue of Hardy's theorem for semi-simple Lie groups[END_REF], there are constants A , B > 0 so that for all (H, x) ∈ a × B we have |Rf (x, exp H)| ≤ A e -a|H| 2 and |Ru t 0 (x, exp H)| ≤ B e -b|H| 2 . By (37) and the fact that

) and damping parameter |ρ| 2 . The Hardy type uniqueness theorem for the Schrödinger equation on R n (Theorem 2 in [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF]) yields then Rf (x, •) = 0 for all x ∈ B. Since R is injective on L 1 (X), we conclude that f = 0 and hence u(t, •) = 0 for all t ∈ R.

In [START_REF] Chanillo | Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups[END_REF], the value t 0 given in Theorem 5.5 by the inequality 16αβt 2 0 > 1 was proven to be optimal. Indeed, for the symmetric space X = SL(2, C)/SU (2), Chanillo gave the following example. Let f be the function on X which agrees on the maximally flat geodesic submanifold A ≡ R with the function e -x 2 -ix 2 /4 . Then f satisfies (59) with α = 1. The solution u(t, •) of the Schrödinger equation (S) with initial condition f is not identically zero even if it satisfies (60) for β = 1/16 at t 0 = (16αβ) -1/2 = 1. Thus the uniqueness property fails in this case for some α, β and t 0 with 16αβt 2 0 = 1. In the rest of this section we provide additional information on the optimality of t 0 . We consider some Hardy type uniqueness conditions which are slightly more restrictive than those stated in Theorem 5.5. So they still imply that the solutions of (S) are identically zero provided the condition 16αβt 2 0 > 1 holds. We then characterize the non-unique solutions in the case t 0 = (16αβ) -1/2 under the additional assumption that G is endowed with a complex structure and the initial condition f is K-invariant.

Observe first that we can modify the right-hand side of the estimates in Theorem 5.5 by a suitable positive bounded factor ψ without loosing the uniqueness property when 16αβt 2 0 > 1. We choose here ψ to be the function used by Harish-Chandra to control the decay of the elements in the Kbiinvariant L 2 -Schwartz space on G. See for instance [START_REF] Gangolli | Harmonic analysis of spherical functions on real reductive groups[END_REF], p. 256. Considered as a K-biinvariant function on G, the function ψ is uniquely defined on G by the condition

Then ψ is a positive K-invariant function on X which is bounded. More precisely, one can prove that for suitable positive constants c 1 , c 2 and nonnegative integers d 1 , d 2 one has

for all x ∈ X. The following result is then a consequence of Theorem 5.5.

Corollary 5.7. Let f be a measurable function on X and assume there exist positive constants A and α so that |f (x)| ≤ A ψ(x)e -ασ 2 (x) (62) for all x ∈ X. Then f ∈ L 2 (X). Let u(t, x) ∈ C(R : L 2 (X)) be the solution of (S) with initial condition f . Suppose, moreover, that there is a time t 0 > 0 and positive constants B and β so that |u(t 0 , x)| ≤ B ψ(x)e -βσ 2 (x) .

(63)