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INTRODUCTION

Let (M, g) be a compact Riemannian manifold without boundary of dimension n ≥ 3. We consider the following equation:

∆u = |u| 4/(n-2) u, u ≡ 0 (E)
Where ∆ = -∇ i (∇ i ) is the Laplace-Beltrami operator on M .

Holcman's Problem: Is there a changing-sign solution to the problem (E) ?

In his paper, see [START_REF] Holcman | Solutions nodales sur les variétés Riemanniennes[END_REF], Holcman proved that, if the scalar curvature R of M is positive somewhere, (R(P ) > 0, P ∈ M ), then (E) has a changing-sign solution.

Here, we have, Theorem . Assume that (M, g) is not conformally flat manifold of dimension n ≥ 13 and R ≡ 0, then, (E) has a changing-sign solution.

For the proof of the Theorem, we use T. Aubin's and Holcman's methods and ideas and their computations, see [START_REF] Aubin | Equations Différentielles Non Linéaires et Probleme de Yamabe concernant la Courbure Scalaire[END_REF][START_REF] Holcman | Solutions nodales sur les variétés Riemanniennes[END_REF]. We use the variational method with an explicit expansion of the Yamabe type functional. The Aubin's and Holcman's approach is the subcritical approach, they solve the nodal problem with subcritical exponent and they prove that the sequence with subcritical exponent converge to a solution of the problem (non-concentration), and the goal is to find tests functions which satisfy the inequality of non-concentration, linked to the Sobolev embedding, see also [START_REF] Aubin | Some nonlinear Problems in Riemannian Geometry[END_REF] 1 .

Question: Is it possible, if we use Schoen inequality, in the proof of the Yamabe problem for the conformally flat case, to have the same result for R ≡ 0 ? Remark: Look also, the paper of E. Humbert and B. Ammann, [START_REF] Ammann | The second Yamabe invariant[END_REF], about " The second Yamabe invariant".

In our result, we can not do a conformal change of metric because we will have a term which contain the scalar curvature and in this case we change the equation (E).

PROOF OF THE THEOREM.

Let us consider (M, g) a compact Riemannian manifold without boundary and not locally conformally flat. Assume that the scalar curvature R ≡ 0 and we work with the Yamabe functional:

(1)

J(ϕ) = M |∇(ϕ)| 2 dV g + M Rϕ 2 dV g M |ϕ| N 2/N = M |∇(ϕ)| 2 dV g M |ϕ| N 2/N , with, N = 2n n -2 .
Let P the point where W eyl g (P ) = 0. As in the paper of T. Aubin, we do a conformal change of metric g = ψ 4/(n-2) g such that:

(2)

J(ϕ ǫ ) = 1 K [1 -|W eyl g(P )| 2 ǫ 4 + o(ǫ 4 )],
where J is the Yamabe functional for the metric g and ϕ ǫ the following functions:

ϕ ǫ (r) = ǫ (n-2)/2 (ǫ 2 + r2 ) (n-2)/2 - ǫ (n-2)/2 (ǫ 2 + δ2 ) (n-2)/2 if r = d(P, x) ≤ δ, otherwise 0.
Also, we know that:

(3)

J(ψϕ ǫ ) = J(ϕ ǫ ).
Let us consider the following functions:

φǫ = ψ(ϕ ǫ -µ ǫ ), with, µ ǫ > 0 is such that: M |ψ(ϕ ǫ -µ ǫ )| N -2 [ψ(ϕ ǫ -µ ǫ )]dV g = 0.
If we compute with g, we have:

M 1 ψ |ϕ ǫ -µ ǫ | N -2 (ϕ ǫ -µ ǫ )d Ṽ = M f |ϕ ǫ -µ ǫ | N -2 (ϕ ǫ -µ ǫ )d Ṽ = 0. with f = 1 ψ > 0.
We know, see Holcman, that µ ǫ is equivalent to ǫ [(n-2) 2 ]/2(n+2) for ǫ near 0.

Since the distance function r is Lipschitzian and equivalent to the first distance function r, we can compute (when we have the gradient), with respect to the r. We can write,

M |∇[ψ(ϕ ǫ -µ ǫ )]| 2 ≤ M |∇(ψϕ ǫ )| 2 dV g + c 1 µ ǫ ,
to see this, we write:

M |∇[ψ(ϕ ǫ -µ ǫ )]| 2 = M |∇(ψϕ ǫ )| 2 dV g + 2µ ǫ M < ∇ψ, ∇(ψϕ ǫ ) > +O(µ 2 ǫ ), M < ∇ψ, ∇(ψϕ ǫ ) >= O( M ϕ ǫ ) + O( M |∇(ϕ ǫ )|),
We can see that;

∇i (ϕ ǫ ) = ψ -4/(n-2) ∇ i (ϕ ǫ ),
Thus, for two positive constants C 1 , C 2 , we have:

C 2 | ∇ϕ ǫ | ≤ |∇ϕ ǫ | ≤ C 1 | ∇ϕ ǫ | = C 1 |∂ r ϕ ǫ (r)|, M |∇ϕ ǫ |dV g ≤ C 4 M |∂ r ϕ ǫ (r)|d Ṽ ≤ C 5 ,
and,

M |∇(ψϕ ǫ )| 2 dV g = M | ∇ϕ ǫ | 2 d Ṽ + o(1) ≥ C 6 M |∂ r ϕ ǫ (r)| 2 d Ṽ ≥ C 7 > 0,
(see, Aubin computations), and we have the result for the gradient. And, we have:

( M |ψ(ϕ ǫ -µ ǫ )| N ) 2/N ≥ ( M |ψϕ ǫ | N ) 2/N -c 2 µ ǫ , with c 2 > 0.
because,

||ψ(ϕ ǫ -µ ǫ )|| N L N ,g = M |ψ(ϕ ǫ -µ ǫ )| N dV = M |(ϕ ǫ -µ ǫ )| N d Ṽ = ||(ϕ ǫ -µ ǫ )|| N L N ,g ,
and, for g

||ϕ ǫ || L N ,g ≤ ||(ϕ ǫ -µ ǫ )|| L N ,g + |M | 1/N µ ǫ , and, because ||(ϕ ǫ -µ ǫ )|| L N ,g → c > 0 (or, ||ϕ ǫ || L N ,g → c ′ > 0,) (
see the computations of Holcman's paper with the metric g),

||ψϕ ǫ || 2 L N ,g = ||ϕ ǫ || 2 L N ,g ≤ ||(ϕ ǫ -µ ǫ )|| 2 L N ,g + c 2 µ ǫ , and then, M |∇[ψ(ϕ ǫ -µ ǫ )]| 2 M |ψ(ϕ ǫ -µ ǫ )| N 2/N ≤ J(ψϕ ǫ )(1 + c 3 µ ǫ ) Thus, M |∇[ψ(ϕ ǫ -µ ǫ )]| 2 M |ψ(ϕ ǫ -µ ǫ )| N 2/N ≤ 1 K [1 + c 4 ǫ (n-2) 2 /2(n+2) -|W eyl g(P )| 2 ǫ 4 + o(ǫ 4 )].
We can say that, ǫ (n-2) 2 /2(n+2) is very small if we compare it to ǫ 4 if, (n -2) 2 2(n + 2) > 4, and then, if n ≥ 13. Thus, on M , we have test functions

φǫ = ψ(ϕ ǫ -µ ǫ ) ≡ 0, such that: M | φǫ | N -2 φǫ dV g = 0,
and, the Sobolev quotient is such that, from (1), ( 2), (3):

M |∇ φǫ | 2 M | φǫ | N 2/N ≤ 1 K [1 + c 4 ǫ (n-2) 2 /2(n+2) -|W eyl g(P )| 2 ǫ 4 + o(ǫ 4 )] < 1 K .
Thus, the variational problem has a nodal solution on M .

Remark 1:

We can replace µ ǫ by µ 2 ǫ , in this case we can assume n ≥ 9. Remark 2: This method works if we assume that, there is a point P such that W eyl g (P ) = 0 and R ≡ 0 in the neighborhood of P . (Such manifolds exist, it is sufficient to solve the prescribed scalar curvature problem for non-positive scalar curvature, by considering the condition on the first eigenvalue of small balls, see Rauzy and Veron in [START_REF] Aubin | Some nonlinear Problems in Riemannian Geometry[END_REF]).

Remark 3: This method works if we assume that, there is a point P such that W eyl g (P ) = 0 and R(P ) = ∇R(P ) = ∇ 2 R(P ) = 0.

We have the following corollary:

A variational approach

Corollary . Assume that (M, g) is not conformally flat manifold of dimension n ≥ 13 and R ≡ 0 in a neighborhood of a point P such that W eyl g (P ) = 0, then, (E) has a changing-sign solution.