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ULRICH BUNDLES ON ABELIAN SURFACES

ARNAUD BEAUVILLE

(Communicated by Lev Borisov)

Abstract. We prove that any abelian surface admits a rank 2 Ulrich bundle.

Let X ⊂ PN be a projective variety of dimension d over an algebraically closed
field. An Ulrich bundle on X is a vector bundle E on X satisfying H∗(X,E(−1)) =
. . . = H∗(X,E(−d)) = 0. This notion was introduced in [?], where various other
characterizations are given; let us just mention that it is equivalent to say that E
admits a linear resolution as a OPN -module, or that the pushforward of E onto Pd

by a general linear projection is a trivial bundle.
In [?] the authors ask whether every projective variety admits an Ulrich bundle.

The answer is known only in a few cases: hypersurfaces and complete intersections
[?], del Pezzo surfaces [?, Corollary 6.5]. The case of K3 surfaces is treated in [?].
In this short note we show that the existence of Ulrich bundles for abelian surfaces
follows easily from Serre’s construction:

Theorem 1. Any abelian surface X ⊂ PN carries a rank 2 Ulrich bundle.

Proof : We put dimH0(X,OX(1)) = n. Let C be a smooth curve in |OX(1)|; we
have OC(1) ∼= ωC , and g(C) = n+1. We choose a subset Z ⊂ C of n general points.
Then Z has the Cayley-Bacharach property on X (see for instance [?], Theorem
5.1.1): for every p ∈ Z, any section of H0(X,OX(1)) vanishing on Zr{p} vanishes
on Z. Indeed, the image V of the restriction map H0(X,OX(1))→ H0(C,OC(1))
has dimension n− 1, hence the only element of V vanishing on n− 1 general points
is zero; thus the only element of |OX(1)| containing Z r {p} is C.

By loc. cit., there exists a rank 2 vector bundle E on X and an exact sequence

(1) 0→ OX
s−−→ E −→ IZ(1)→ 0 .

Let η be a non-zero element of Pico(X); then h0(ωC ⊗ η) = n, so
H0(C,ωC⊗η(−Z)) = 0 since Z is general, and therefore H0(X, IZη(1)) = 0. Since
χ(IZη(1))) = 0 we have also H1(X, IZη(1)) = 0; from the above exact sequence
we conclude that H∗(X,E ⊗ η) = 0.

The zero locus of the section s of E is Z; since detE|C = OC(1) = ωC , we get
an exact sequence

(2) 0→ OC(Z)
s|C−−−→ E|C −→ ωC(−Z)→ 0 .
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As above the cohomology of ωC ⊗ η(−Z) and η(Z) vanishes, hence
H∗(C, (E ⊗ η)|C) = 0. Now from the exact sequence

0→ E(−1)→ E → E|C → 0

we conclude that H∗(X,E ⊗ η(−1)) = H∗(X,E ⊗ η) = 0, hence F := E ⊗ η(1) is
an Ulrich bundle. �

Remarks.− 1) There is no Ulrich line bundle on a general abelian surface X. Indeed
a line bundle M on X with χ(M) = 0 satisfies c1(M)2 = 0 by Riemann-Roch; since
X is general we have NS(X) = Z, hence M is algebraically equivalent to OX . Thus
if L is a Ulrich line bundle L(−1) and L(−2) must be algebraically equivalent to
OX , a contradiction.

On the other hand, some particular abelian surfaces do carry a Ulrich line bundle.
Let (A,OA(1)), (B,OB(1)) be two polarized elliptic curves, and let α, β be non-zero
elements of Pico(A) and Pico(B). Put X = A × B and OX(1) = OA(1) � OB(1).
Then α(1) � β(2) is a Ulrich line bundle for (X,OX(1)).

2) It follows from the exact sequence (2) that E|C is semi-stable, hence E, and
consequently F , are semi-stable (actually any Ulrich bundle is semi-stable, see [?,
Proposition 2.12]). Moreover if F is not stable, there is a line bundle L ⊂ E with
(L · C) = n, so that L|C must be isomorphic to OC(Z) or ωC(−Z). But we have
2 = dim Pico(X) < dim Pico(C) = n + 1, so for Z general OC(Z) and ωC(−Z) do
not belong to the image of the restriction map Pic(X) → Pic(C). Therefore F is
stable.

3) We have constructed the vector bundle E from a curve C ∈ |OX(1)|, a subset Z
of C and an extension class in Ext1(IZ(1),OX). This space is dual to H1(X, IZ(1));
from the exact sequence 0 → IZ(1) → OX(1) → OZ(1) → 0 we get h1(IZ(1)) =
h0(IZ(1)) = 1, thus the extension class is unique up to a scalar. It is not difficult
to prove that H0(X,E) = Cs; hence E determines Z = Z(s) and the curve C, so it
depends on dim |C|+ Card(Z) = 2n−1 parameters. To get a Ulrich bundle we put
F = E ⊗ η(1) with η ∈ Pico(X); the line bundle η is determined up to 2-torsion by
detF = η2(3). Thus our construction depends on 2n+ 1 parameters.

On the other hand, the moduli space of stable rank 2 vector bundles with the
same Chern classes as F is smooth of dimension 2n+ 2 [?]; the Ulrich bundles form
a Zariski open subsetMU of this moduli space. Therefore our construction gives a
hypersurface in MU .
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