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THE HEAT FLOW WITH A CRITICAL EXPONENTIAL NONLINEARITY

We analyze the possible concentration behavior of heat flows related to the Moser-Trudinger energy and derive quantization results completely analogous to the quantization results for solutions of the corresponding elliptic equation. As an application of our results we obtain the existence of critical points of the Moser-Trudinger energy in a supercritical regime.

Introduction

On any bounded domain Ω ⊂ R 2 the Moser-Trudinger energy functional

E(u) = 1 2 Ω (e u 2 -1) dx
for any α ≤ 4π admits a maximizer in the space

(1) M α = {u ∈ H 1 0 (Ω); u ≥ 0, ||∇u|| 2 L 2 = α}, corresponding to a solution 0 < u ∈ H 1 0 (Ω) of the equation ( 2)

-∆u = λue u 2 in Ω for some λ > 0; see [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF]. Moreover, when Ω is a ball numerical evidence [START_REF] Monahan | Numerical solution of a non-linear boundary value problem[END_REF] shows that for small α > 4π there exists a pair of critical points of E in M α , corresponding to a relative maximizer and a saddle point of E, respectively. However, standard variational techniques fail in this "supercritical" energy range and ad hoc methods devised to remedy the situation so far have only been partially succesful in producing the expected existence results; compare [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF], [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF]. As in various other geometric variational problems a flow method might turn out to be more useful in this regard.

Given a smooth function 0 ≤ u 0 ∈ H 1 0 (Ω), we consider smooth solutions u = u(t, x) to the equation The function λ = λ(t) may be determined so that the Dirichlet integral of u is preserved along the flow. As we shall see, also the case where the volume of the evolving metric g = e u 2 g R 2 is fixed gives rise to interesting applications, and both constraints can easily be analyzed in parallel. Clearly, we may assume that u 0 does not vanish identically and that c 0 > 0; otherwise u ≡ 0 is the unique smooth solution to (3) - [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] for any choice of λ(t).

Note that when we multiply (3) with u t and use [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF], upon integrating by parts we obtain the relation ( 7)

Ω u 2 t e u 2 dx + 1 2 d dt Ω |∇u| 2 dx = λ d dt E(u(t)) = 0;
that is, the flow (3) -( 5) may be regarded as the gradient flow (with respect to the metric g) for the Dirichlet energy with the critical exponential constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF].

Equation [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] and the energy inequality [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] imply the uniform bound [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] λ

Ω u 2 e u 2 dx = Ω |∇u| 2 dx ≤ Ω |∇u 0 | 2 dx =: Λ 0 .
Since we can easily estimate e a ≤ 1 + 4a for 0 ≤ a ≤ 1/4, we have

Ω u 2 e u 2 dx = Ω u 2 (e u 2 -1) dx + Ω u 2 dx ≥ 1 4 Ω (e u 2 -1) dx - 1 4 {x∈Ω;u≤1/2} (e u 2 -1) dx + Ω u 2 dx ≥ E(u) 2 ≥ c 0 2 , (9) 
for all t. Therefore, recalling that c 0 > 0, from [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] we deduce that with the constant λ 0 = 2Λ 0 /c 0 > 0 there holds [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] 0 < λ(t) ≤ λ 0 for all t ≥ 0.

Finally, the maximum principle yields that u ≥ 0.

1.2. Constant Dirichlet integral. If, on the other hand, we choose λ so that (11) 1 2

(13) and ( 9), for any t we have [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF] c 0 2 t 0 λ dt ≤ Λ 0 t + E(u(t)) -E(u 0 ), where c 0 = E(u 0 ) ≤ E(u(t)) for all t ≥ 0. Similarly, from [START_REF] Struwe | Curvature flows on surfaces[END_REF] we obtain [START_REF] Trudinger | On embeddings into Orlicz spaces and some applications[END_REF] t 0 λ -1 Ω u 2 t e u 2 dx dt = E(u(t)) -E(u 0 ).

Hence we can hope to obtain bounds for solutions of (3), ( 4), [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] whenever the Moser-Trudinger energy is bounded along the flow.

1.3. Results. Building on previous results from [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF], [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF], and [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], in this paper we establish the following result for the flow (3), [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF] with either the constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] or the constraint [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF].

Theorem 1.1. For any c 0 > 0 and any smooth initial data 0 ≤ u 0 ∈ H 1 0 (Ω) satisfying (5) the evolution problem (3) -(5) admits a unique smooth solution u ≥ 0 for all t > 0. Likewise, for any smooth 0 ≤ u 0 ∈ H 1 0 (Ω) satisfying [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] for a given Λ 0 > 0 the evolution problem (3), ( 4), [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] admits a unique smooth solution u ≥ 0 for small t > 0 which can be continued smoothly for all t > 0, provided that E(u(t)) remains bounded. In both cases, for a suitable sequence t k → ∞ the functions u(t k ) → u ∞ weakly in H 1 0 (Ω), where u ∞ ∈ H 1 0 (Ω) is a solution to the problem (2) for some constant λ ∞ ≥ 0. Moreover, either u(t k ) → u ∞ strongly in H 1 0 (Ω), λ ∞ > 0, and 0 < u ∞ ∈ H 1 0 (Ω) satisfies, respectively, [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF], or there exist i * ∈ N and points x (i) ∈ Ω, l i ∈ N, 1 ≤ i ≤ i * , such that as k → ∞ we have

|∇u(t k )| 2 dx w * |∇u ∞ | 2 dx + i * i=1 4πl i δ x (i)
weakly in the sense of measures. By [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] then necessarily 4π i * i=1 l i ≤ Λ 0 .

The quantization result in the case of divergence of the flow relies on the precise microscopic description of blow-up given in Sections 4 and 5; see in particular Theorems 4.2 and 5.1. Their derivation will take up the major part of this paper. These results are in complete analogy with the results of Adimurthi-Struwe [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF] and Druet [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] for solutions of the corresponding elliptic equation [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF]. In the final Section 6 we apply Theorem 1.1 to obtain saddle-point solutions for [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF] in the supercritical regime of large energy.

Global existence

Let u(t) be a solution of (3), [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF] with either the constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF]. In the latter case we also assume that E(u(t)) remains bounded. For any t ≥ 0 let m(t) = ||u(t)|| L ∞ . Writing equation (3) in the form u t -e -u 2 ∆u = λu in [0, ∞[×Ω and observing that ∆u ≤ 0 at any point where u(t) achieves its maximum, we conclude that the supremum of the function ũ(t) = e - R t 0 λ(s)ds u(t) is non-increasing in time. That is, for any 0 ≤ t 0 ≤ t < ∞ we have λ(s)ds m(t 0 ).

Together with [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF] this immediately gives the following result.

Lemma 2.1. Suppose that E(u(t)) is uniformly bounded. Then there exist constants λ 1 > 0, C 1 depending on u 0 such that for any t ≥ 0 we have

||u(t)|| L ∞ ≤ e R t 0 λ(s)ds ||u 0 || L ∞ ≤ C 1 e λ1t ||u 0 || L ∞ .
Existence of a unique smooth solution on any finite time interval now follows from standard results on uniformly parabolic equations.

Asymptotic behavior

3.1. Weak subconvergence. First consider the constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF]. Integrating in time, from [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] we then obtain (17

) ∞ 0 Ω u 2 t e u 2 dx dt ≤ 1 2 Ω |∇u 0 | 2 dx.
Hence we can find a sequence t k → ∞ such that (18)

{t k }×Ω u 2 t e u 2 dx → 0 as k → ∞.
In view of ( 10) and ( 8) from any such sequence (t k ) we may extract a subsequence such that λ ∞ = lim k→∞ λ(t k ) exists and such that, in addition,

u k = u(t k )
u ∞ weakly in H 1 0 (Ω) and pointwise almost everywhere as k → ∞. From ( 8) by means of the Vitali convergence theorem we then deduce that for a further subsequence the terms λue u 2 , evaluated at

t = t k , converge to λ ∞ u ∞ e u 2
∞ in L 1 (Ω). Thus, upon passing to the limit k → ∞ in (3) we see that u ∞ is a (weak) solution to equation [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF]. But since u ∞ ∈ H 1 0 (Ω), from the Moser-Trudinger inequality it follows that u ∞ e u 2 ∞ ∈ L p (Ω) for any p < ∞, and u ∞ is, in fact, smooth. Similarly, in the case of the the constraint [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF], assuming that E(u(t)) is uniformly bounded from above along the flow (3), (4), from [START_REF] Trudinger | On embeddings into Orlicz spaces and some applications[END_REF] we obtain the bound

(19) ∞ 0 λ -1 Ω u 2 t e u 2 dx dt ≤ lim t→∞ E(u(t)) -E(u 0 ) < ∞,
and we can find a sequence

t k → ∞ such that (20) λ(t k ) -1 {t k }×Ω u 2 t e u 2 dx → 0 as k → ∞.
Necessarily the sequence (λ(t k )) is bounded. Indeed, upon multiplying (3) by u we infer that at time t k with error o(1) → 0 we have

λ Ω u 2 e u 2 dx = Ω |∇u| 2 dx + Ω uu t e u 2 dx
But by (20) and Hölder's inequality, at time

t = t k with error o(1) → 0 as k → ∞ we can estimate (21) Ω uu t e u 2 dx 2 ≤ λ Ω u 2 e u 2 dx • λ -1 Ω u 2 t e u 2 dx = o(1)λ Ω u 2 e u 2 dx
and we have

(22) (1 + o(1))λ Ω u 2 e u 2 dx = Ω |∇u| 2 dx = Λ 0 .
Our claim now follows from [START_REF] Monahan | Numerical solution of a non-linear boundary value problem[END_REF]. Note that, in particular, the approximate identity (8) thus also holds in the case of the constraint [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF].

3.2.

The case when u is bounded. If in addition we assume that the function u is uniformly bounded we find that any sequence (u k ) as above is bounded in H 2 (Ω) and hence possesses a subsequence such that u k → u ∞ strongly in H 1 0 (Ω) as k → ∞. Hence u ∞ ∈ H 1 0 (Ω) satisfies, respectively, ( 5) or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF], and u ∞ > 0 by the maximum principle.

In the case of the constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF], and provided that u is bounded, we can even show relative compactness of the sequence u k = u(t k ) for any sequence t k → ∞ .

Proposition 3.1. Let u solve (3) - [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF]. Suppose that there exists a uniform constant M > 0 such that u(t, x) ≤ M for all x ∈ Ω and all t ≥ 0. Then any sequence u k = u(t k ) with t k → ∞ has a strongly convergent subsequence.

Proof. It suffices to show that under the assumptions of the Proposition the convergence in (18) can be improved to be uniform in time. To show this we use (3) to calculate

u tt = λ t u + λu t -2uu t e -u 2 ∆u + e -u 2 ∆u t = λ t u + λu t + e -u 2 ∆u t -2uu 2 t + 2λu 2 u t . Thus we obtain 1 2 d dt Ω u 2 t e u 2 dx = Ω u t u tt e u 2 dx + Ω u 3 t ue u 2 dx = λ t Ω uu t e u 2 dx + λ Ω u 2 t e u 2 dx + Ω u t ∆u t dx -2 Ω uu 3 t e u 2 dx + 2λ Ω u 2 u 2 t e u 2 dx
By (6) the first term on the right vanishes. Moreover, we may use the fact u t = 0 on ∂Ω to integrate by parts in the third term. Also using Hölders inequality and Sobolev's embedding W 1,2 → L 4 then with constants C = C(M ) we find

Ω |∇u t | 2 dx + 1 2 d dt Ω u 2 t e u 2 dx ≤ C Ω u 2 t e u 2 dx + C Ω u 2 t e u 2 dx 1 2 Ω u 4 t dx 1 2 ≤ C Ω u 2 t e u 2 dx + C 1 Ω u 2 t e u 2 dx 1 2 Ω |∇u t | 2 + u 2 t e u 2 dx. (23) 
To proceed, we use an argument similar to [START_REF] Struwe | Curvature flows on surfaces[END_REF], p. 271. Given any number ε 0 > 0, by (17) there exist arbitrary large times t 0 such that (24)

{t0}×Ω u 2 t e u 2 dx < ε 0 .
For any such t 0 we may choose a maximal

t 0 ≤ t 1 ≤ ∞ such that (25) sup t0≤t≤t1 {t}×Ω u 2 t e u 2 dx ≤ 2ε 0 .
If we now fix ε 0 = 

u 2 t e u 2 dx ≤ lim inf t0→∞ {t0}×Ω u 2 t e u 2 dx + C ∞ t0 Ω u 2 t e u 2 dx = 0. ( 28 
)
Using again the assumption that u is uniformly bounded this directly implies that

(29) lim sup t→∞ ||u(t)|| H 2 < ∞
and hence the claim.

Blow-up analysis

It remains to analyze the blow-up behavior of a solution u to (3), (4) satisfying either ( 5) or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] in the case when u is unbounded. As we shall see, this can be done in complete analogy with the corresponding time-independent problem. The key is the following lemma, which refines our above choice of (t k ). Lemma 4.1. Suppose that lim sup t→∞ ||u(t)|| L ∞ = ∞ and that E(u(t)) ≤ E ∞ for some constant E ∞ < ∞. Then there is a sequence t k → ∞ with associated numbers

λ k = λ(t k ) → λ ∞ ≥ 0 such that u(t k ) u ∞ weakly in H 1 0 (Ω) as k → ∞ and ||u(t k )|| L ∞ → ∞, λ -1 k {t k }×Ω |u t | 2 e u 2 dx dt → 0 .
Proof. Suppose by contradiction that there exist t 0 ≥ 0 and a constant C 0 > 0 such that for all t ≥ t 0 either there holds

m(t) = ||u(t)|| L ∞ ≤ C 0 , or (30) λ(t) ≤ C 0 {t}×Ω |u t | 2 e u 2 dx .
Consider first the constraint [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF]. If m(t) > C 0 for all t ≥ t 0 , then (30) holds for all such t and upon integrating in time from [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] for any t ≥ t 0 we obtain

t t0 λ(s)ds ≤ C 0 ∞ 0 Ω |u t | 2 e u 2 dx dt ≤ C 0 Λ 0 2 =: C 1 < ∞. (31)
Applying (16) to the shifted flow u(t -t 0 ) we find sup t≥t0 m(t) ≤ m(t 0 )e C1 < ∞, contrary to assumption.

If for some t 0 ≤ t 1 < t 2 ≤ ∞ and all t 1 < t < t 2 we have m(t 1 ) = C 0 < m(t), then (30) holds for all such t and we obtain (31) with t 1 replacing t 0 for all t ∈ [t 1 , t 2 ]. Applying (16) to the shifted flow u(t -t 1 ), for any such t 0 ≤ t 1 < t 2 ≤ ∞ we obtain the bound sup t1<t≤t2 m(t) ≤ C 0 e C1 < ∞, again contradicting our hypotheses.

In case of the constraint [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF], whenever for some t 0 ≤ t 1 < t 2 ≤ ∞ and all t 1 < t < t 2 there holds m(t) > C 0 from (30) and ( 15) we obtain

t 2 -t 1 ≤ C 0 ∞ 0 λ(t) -1 Ω |u t | 2 e u 2 dx dt ≤ C 0 E ∞ =: T 0 < ∞. (32)
By (32) the length of any interval I =]t 1 , t 2 [ with m(t) > C 0 for t ∈ I is uniformly bounded. Since lim sup t→∞ m(t) = ∞, we may then assume that m(t 1 ) = C 0 . Applying (16) to the shifted flow u(t -t 1 ), by [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF] for any such interval we find sup t1<t≤t2 m(t) ≤ C 0 e C2 , where

C 2 = 2c -1 0 (Λ 0 T 0 + E ∞ ) < ∞.
Thus we also have lim sup t→∞ m(t) ≤ C 0 e C2 , contrary to hypothesis.

For a sequence (t k ) as determined in Lemma 4.1 above we let u k = u(t k ), k ∈ N and set uk = u t (t k ). The symbols t, t k then no longer explicitly appear and we may use these letters for other purposes. Also let η = log 

R 2

e 2η dx = 4π =: Λ 1 .

Similar to [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF], [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] the following result now holds.

Theorem 4.2. There exist a number i * ∈ N and points x (i) ∈ Ω, 1 ≤ i ≤ i * , such that as k → ∞ suitably for each i with suitable points

x k = x (i) k → x (i) and scale factors 0 < r k = r (i) k → 0 satisfying (35) λ k r 2 k u 2 k (x k )e u 2 k (x k ) = 4 we have (36) η k (x) = η (i) k (x) := u k (x k )(u k (x k + r k x) -u k (x k )) → η 0 = log 1 1 + |x| 2 locally uniformly on R 2 , where η 0 = η -log 2 satisfies (37) -∆η 0 = 4e 2η0 on R 2 ,
and there holds

(38) lim L→∞ lim k→∞ λ k B Lr k (x k ) u 2 k e u 2 k dx = 4 R 2 e 2η0 dx = Λ 1 .
Equality x (i) = x (j) may occur, but we have

(39) dist(x (i) k , ∂Ω) r (i) k , |x (i) k -x (j) k | r (i) k → ∞ for all 1 ≤ i = j ≤ i * ,
and there holds the uniform pointwise estimate

(40) λ k inf i |x -x (i) k | 2 u 2 k (x)e u 2 k (x) ≤ C,
for all x ∈ Ω and all k ∈ N.

Finally, u k → u ∞ in H 2 loc (Ω \ {x 1 , . . . , x i * }) as k → ∞. Proof. Choose x k = x (1) k ∈ Ω such that u k (x k ) = sup x∈Ω u k and let r k = r
(1) k be given by (35). We claim that r k → 0 as k → ∞. Otherwise, (35) gives

λ k u 2 k (x k )e u 2 k (x k ) ≤ C < ∞,
and with the help of Lemma 4.1 we can estimate

Ω |u k (x k ) uk e u 2 k | 2 dx ≤ λ k u 2 k (x k )e u 2 k (x k ) λ -1 k Ω u2 k e u 2 k dx → 0 as k → ∞. By (3) then the sequence (u k (x k )∆u k ) is bounded in L 2 and it follows that u k → 0 uniformly as k → ∞ contradicting our assumption that u k (x k ) → ∞. Therefore r k → 0 as k → ∞.
Suppose that we already have determined points x

k , . . . , x

(i-1) k
such that (36) and (39) hold and let

x k = x (i) k ∈ Ω be such that (41) λ k inf j<i |x k -x (j) k | 2 u 2 k (x k )e u 2 k (x k ) = sup x∈Ω λ k inf j<i |x -x (j) k | 2 u 2 k (x)e u 2 k (x) → ∞ as k → ∞. If no such x k = x (i)
k exists the induction terminates, establishing (40). Choose r k = r (i) k → 0 satisfying (35). In view of (41) we have |x k -x

(j) k |/r k → ∞ for all j < i; that is, half of (39). Moreover, denoting as v k (x) = u k (x k + r k x) the scaled function u k on the domain Ω k = {x; x k + r k x ∈ Ω}, with error o(1) → 0 as k → ∞ for any L > 0 we can estimate (42) sup x∈Ω k , |x|≤L v 2 k (x)e v 2 k (x) ≤ (1 + o(1))v 2 k (0)e v 2 k (0) = (1 + o(1))u 2 k (x k )e u 2 k (x k ) . Let η k (x) = η (i)
k (x) be defined as in (36). Also denoting as vk (x) = uk (x k + r k x) the scaled function uk = u t (t k ), then we have

-∆η k = λ k r 2 k v k (0)v k e v 2 k -r 2 k vk v k (0)e v 2 k =: I k + II k on Ω k .
Observe that for any L > 0 the bound (42) implies the uniform estimate

0 < I k = λ k r 2 k v k (0)v k e v 2 k ≤ λ k r 2 k sup{v 2 k (0)e v 2 k (0) , v 2 k e v 2 k } ≤ (1 + o(1))λ k r 2 k v 2 k (0)e v 2 k (0) = (4 + o(1)) on B L (0) ; (43) 
moreover, with (35) and Lemma 4.1 for the second term we have

Ω k ∩B L (0) |II k | 2 dx ≤ (1 + o(1))λ k r 2 k v 2 k (0)e v 2 k (0) λ -1 k Ω k ∩B L (0) r 2 k v2 k e v 2 k dx = (4 + o(1))λ -1 k Ω∩B Lr k (x k ) |u t (t k )| 2 e u 2 k dx → 0 ( 44 
)
with error o(1) → 0 as k → ∞.

Note that (41) forces v k (0) → ∞. Since (42) also implies the bound

(45) 2η k = v 2 k -v 2 k (0) -(v k -v k (0)) 2 ≤ o(1) on Ω k ∩ B L (0) , it follows that dist(0, ∂Ω k ) = dist(x k , ∂Ω) r k → ∞.
Otherwise, by ( 43) -(45), the mean value property of harmonic functions and the fact that η k → -∞ on ∂Ω k as k → ∞ we have locally uniform convergence η k → -∞ in Ω k , which contradicts the fact that η k (0) = 0. By the same reasoning we also may assume that as k → ∞ a subsequence η k → η ∞ in H 2 loc and locally uniformly. Recalling that v k (0) → ∞, then we also have

(46) (v k -v k (0)) → 0, ρ k := v k v k (0) → 1, a k := 1 + η k 2v 2 k (0) → 1 locally uniformly. Observing that e v 2 k -v 2
k (0) = e 2a k η k and using (35), we conclude 

I k = λ k r 2 k v k (0)v k e v 2 k = 4ρ k e 2a k η k →
e 2η∞ dx = lim k→∞ B L (0) 4ρ 2 k e 2a k η k dx = lim k→∞ B Lr k (x k ) λ k u 2 k e u 2 k dx ≤ Λ 0 .
By Fatou's lemma, upon letting L → ∞ we find R 2 e 2η∞ dx < ∞. In view of the equation η(0) = lim k→∞ η k (0) = 0 together with (45), the classification of Chen-Li [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF] then yields that η ∞ = η -log 2 = η 0 , as claimed, which completes the induction step. In view of (38) the induction must terminate when i > Λ 0 /Λ 1 .

Finally, to see the asserted local H 2 -convergence away from x i , 1 ≤ i ≤ i * , observe that by (40) and estimates similar to (43), (44) for any

x 0 with inf 1≤i≤i * |x 0 -x (i) k | ≥ 3R 0 > 0 the sequence (∆u k ) is bounded in L 2 (B 2R0 (x 0 )
). Boundedness of (u k ) on B R0 (x 0 ) and convergence u k → u ∞ in H 2 (B R0 (x 0 )) then follow from boundedness of (E(u k )) and elliptic regularity.

Quantization

Throughout this section we continue to assume that lim sup t→∞ ||u(t)|| L ∞ = ∞ and for a sequence (t k ) as determined in Lemma 4.1 we let u k = u(t k ) u ∞ weakly in H 1 0 (Ω) as k → ∞, and uk = u t (t k ) as above. By ( 8) or ( 22), respectively, with error o(1) → 0 there holds (47)

Ω |∇u k | 2 dx = (1 + o(1))λ k Ω u 2 k e 2u 2 k dx → Λ
for some Λ < ∞. By Theorem 4.2, moreover, we may assume that

|∇u(t k )| 2 dx w * |∇u ∞ | 2 dx + i * i=1 Λ (i) δ x (i)
weakly in the sense of measures, where Λ (i) ≥ Λ 1 = 4π on account of (38). Similar to [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] and [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF] we now obtain the following quantization result for the "defect" Λ (i) at each x (i) .

Theorem 5.1. We have

Λ (i) = 4πl i = l i Λ 1 for some l i ∈ N, 1 ≤ i ≤ i * .
For the proof we argue as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF]. We first consider the radial case.

5.1. The radial case. Let Ω = B R (0) =: B R and assume that u(t, x) = u(t, |x|).

In this case by Theorem 4.2 for any i ≤ i * we have r

-1 k x k → 0 as k → ∞, where x k = x (i) k and r k = r (i)
k is given by (35); otherwise, the blow-up limit η 0 = lim k→∞ η (i) k could not be radially symmetric. In particular, from (39) it follows that i * = 1; moreover, by (36) we have

u 2 k (x k ) = sup Ω u 2 k = u 2 k (0) + o(1)
. Thus, up to an error o(1) → 0 locally uniformly as k → ∞ we may replace the original function η k = η

(1) k defined in (36) by the function

η k (x) = u k (0)(u k (r k x) -u k (0)).
Observe that by radial symmetry or Theorem 4.2 we also have convergence u k → u ∞ locally uniformly away from x = 0 as k → ∞.

For |x| = r let u k (r) = u k (x) and set λ k u 2 k e u 2 k =: e k in Ω . We also denote as w k (x) = u k (0)(u k (x) -u k (0)) the unscaled function η k , satisfying the equation -∆w k = λ k u k (0)u k e u 2 k -d k ,
where the term

d k = u k (0) uk e u 2 k
for any L > 0 can be estimated

B Lr k |d k | dx ≤ sup B Lr k u k (0) u k λ k B Lr k u 2 k e u 2 k dx • λ -1 k B Lr k u2 k e u 2 k dx 1/2 . ( 48 
)
Hence by Theorem 4.2, Lemma 4.1, and (47) we conclude that

d k → 0 in L 1 (B Lr k )
for any L > 0 as k → ∞. Finally, we set

λ k u k (0)u k e u 2 k =: f k in Ω = B R and for 0 < r < R let Λ k (r) = Br e k dx, σ k (r) = Br f k dx, Observe that with error o(1) → 0 as k → ∞ we have e k ≤ (1 + o(1))f k , Λ k (r) ≤ σ k (r) + o(1); moreover, Theorem 4.2 implies (49) lim L→∞ lim k→∞ Λ k (Lr k ) = lim L→∞ lim k→∞ σ k (Lr k ) = lim L→∞ 4 B L e 2η0 dx = Λ 1 .
We can now show our first decay estimate. Let u k = ∂u k ∂r , and so on. Lemma 5.2. For any 0 < ε < 1, letting T k > 0 be minimal such that u k (T k ) = εu k (0), for any constant b < 2 and sufficiently large k there holds 49) and an estimate similar to (48) for all such t = t k we obtain

w k (r) ≤ b log r k r on B T k and we have lim k→∞ Λ k (T k ) = lim k→∞ σ k (T k ) = Λ 1 = 4π. Proof. Note that T k → 0 as k → ∞ in view of the locally uniform convergence u k → u ∞ away from 0. Since u k (t) ≥ εu k (0) for Lr k ≤ t ≤ T k , from (
2πtw k (t) = ∂Bt ∂ ν w k do = Bt ∆w k dx = -σ k (t) + o(1) ≤ -Λ 1 + o(1) (50) with error o(1) → 0 uniformly in t, if first k → ∞ and then L → ∞. For any b < 2 and sufficiently large L ≥ L(b), for k ≥ k 0 (L) we thus obtain that w k (t) ≤ - b t for all Lr k ≤ t ≤ T k . Since η 0 (L) < -b log L for all L > 0, in view of Theorem 4.2 clearly we may choose k 0 (L) such that η k (L) < -b log L for all k ≥ k 0 (L).
For any such k and any r ∈ [Lr k , T k ], upon integrating from Lr k to r then we find

w k (r) ≤ w k (Lr k ) -b log r Lr k = η k (L) + b log L + b log r k r ≤ b log r k r , (51) 
as claimed. For r ≤ Lr k the asserted bound already follows from Theorem 4.2.

Inserting (51) in the definition of f k and recalling (35), for Lr k ≤ r ≤ T k with sufficiently large L > 0 and k ≥ k 0 (L) then we obtain

f k = λ k (u 2 k (0) + w k )e u 2 k (0) e 2(1+ w k 2u 2 k (0) )w k ≤ λ k r 2 k u 2 k (0)e u 2 k (0) r -2 k e (1+ε)w k ≤ 4r -2 k r k r (1+ε)b . Choosing b < 2 such that (1 + ε)b = 2 + ε, upon integrating over B T k we obtain σ k (T k ) = B T k f k dx ≤ Λ 1 + B T k \B Lr k f k dx ≤ Λ 1 + Cr -2 k B T k \B Lr k r k r 2+ε dx ≤ Λ 1 + Cε -1 r k Lr k ε ≤ Λ 1 + ε, if first L > L 0 (ε) and then k ≥ k 0 (L) is chosen sufficiently large. Since ε > 0 is arbitrary, the proof is complete. If we now choose ε k ↓ 0 such that with s k = T k (ε k ) we have u k (s k ) → ∞, by Theorem 4.2 we also have r k /s k → 0, s k → 0 as k → ∞. That is, we can achieve that (52) lim k→∞ Λ k (s k ) = Λ 1 , lim k→∞ u k (s k ) u k (r k ) = lim k→∞ r k s k = lim k→∞ s k = 0.
In addition, from (49) we obtain that (53) lim

L→∞ lim k→∞ (Λ k (s k ) -Λ k (Lr k )) = 0. Let r k = r (1) k , s k = s (1) 
k . We now proceed by iteration. Suppose that for some integer l ≥ 1 we already have determined numbers r

(1) k < s (1) k < • • • < r (l) k < s (l) k such that (54) lim k→∞ Λ k (s (l) k ) = lΛ 1 and (55) lim L→∞ lim k→∞ (Λ k (s (l) k ) -Λ k (Lr (l) k )) = lim k→∞ u k (s (l) k ) u k (r (l) k ) = lim k→∞ r (l) k s (l) k = lim k→∞ s (l) k = 0. For 0 < s < t < R let N k (s, t) = Bt\Bs e k dx = Bt\Bs λ k u 2 k e u 2 k dx = 2π t s λ k ru 2 k e u 2 k dr
and define

P k (t) = t ∂ ∂t N k (s, t) = t ∂Bt e k do = 2πλ k t 2 u 2 k (t)e u 2 k (t) .
Note that (40) implies the uniform bound P k ≤ C; moreover, with a uniform constant C 0 for any t we have inf

t/2≤t ≤t P k (t ) ≤ C 0 N k (t/2, t). (56) 
A preliminary quantization now can be achieved, as follows.

Lemma 5.3. i) Suppose that for some t k > s (l) k there holds sup s (l) k <t<t k P k (t) → 0 as k → ∞.

Then we have lim

k→∞ N k (s (l) k , t k ) = 0. ii) Conversely, if for some t k > s (l)
k and a subsequence (u k ) there holds

lim k→∞ N k (s (l) k , t k ) = ν 0 > 0, lim k→∞ t k = 0,
then either ν 0 ≥ π, or we have

lim inf k→∞ P k (t k ) ≥ ν 0 and lim L→∞ lim inf k→∞ N k (s (l) k , Lt k ) ≥ π, lim L→∞ lim sup k→∞ N k (s (l) k , t k /L) = 0. Proof. i) For s = s (l)
k < t we integrate by parts to obtain

2N k (s, t) = Bt\Bs e k div x dx = P k (t) -P k (s) - Bt\Bs x • ∇e k dx ≤ P k (t) -4π t s λ k r 2 u k (1 + u 2 k )u k e u 2 k dr. (57) 
In order to further estimate the right hand side we observe that (3) for any t < R yields the identity 

(58) -2πtu k (t)u k (t) = Bt λ k u k (t)u k e u 2 k dx - Bt u k (t) uk e u 2 k dx. Estimating u 2 k (t)e u 2 k ≤ max{u 2 k (t)e u 2 k (t) , u 2 k e u 2 k },
u k (t)| uk |e u 2 k dx 2 ≤ λ k Bt u 2 k (t)e u 2 k dx • λ -1 k Bt u2 k e u 2 k dx ≤ o(1) πλ k t 2 u 2 k (t)e u 2 k (t) + λ k Bt u 2 k e u 2 k dx = o(1), (59) 
where o(1) → 0 as k → ∞. From (58) we then obtain that at any sequence of points t = t k where u k (t) ≥ 0 there holds

(60) Bt λ k u k (t)u k e u 2 k dx = o(1).
On the other hand, if for

t k0 = t 0 ≤ r ≤ t = t k there holds u k (r) ≤ 0 = u k (t 0 ), by (60) we can estimate Bt λ k u k (t)u k e u 2 k dx ≤ Bt\Bt 0 λ k u 2 k e u 2 k dx + Bt 0 λ k u k (t 0 )u k e u 2 k dx = N k (t 0 , t) + o(1). (61) 
In view of ( 59)-( 61) and (55), for s = s

(l) k ≤ r ≤ t = t k and with r k = r (l)
k we then can estimate

-2πru k (r)u k (r) = Br λ k u k (r)u k e u 2 k dx + o(1) ≤ N k (s, r) + Bs λ k u k (s)u k e u 2 k dx + o(1) ≤ N k (s, r) + N k (Lr k , s) + u k (s) u k (Lr k ) Λ k (Lr k ) + o(1) = N k (s, r) + o(1), (62) 
where o(1) → 0 when first k → ∞ and then L → ∞. Indeed, the first inequality is clear when u k ≤ 0 in [s, r], and otherwise follows from (60), (61). The second inequality may be seen in a similar way. Recalling (57) we thus arrive at the estimate

2N k (s, t) ≤ P k (t) + 2 t s λ k r(1 + u 2 k )e u 2 k N k (s, r)dr + o(1) ≤ P k (t) + π -1 N k (s, t) 2 + o(1). (63) 
If we now assume that sup

s<t<t k P k (t) → 0 as k → ∞, upon letting t increase from t = s = s (l) k to t k we find lim k→∞ N k (s (l) k , t k ) = 0, as claimed.
ii) On the other hand, if we suppose that for some t k > s (l)

k we have (64) 0 < lim k→∞ N k (s (l) k , t k ) = ν 0 < π, from (63) with error o(1) → 0 as k → ∞ we conclude that (65) ν 0 + o(1) ≤ (2 -ν 0 /π)N k (s (l) k , t k ) ≤ P k (t k ) + o(1). It then also follows that lim L→∞ lim inf k→∞ N k (s (l) k , Lt k ) ≥ π.
Otherwise, (56) and (65) for a subsequence (u k ) yield the uniform bound

C 0 lim inf k→∞ N k (Lt k /2, Lt k ) ≥ lim inf k→∞ inf Lt k /2≤t≤Lt k P k (t) ≥ ν 0 for all L ≥ 2. Choosing L = 2 m
, where m ∈ N, and summing over 1 ≤ m ≤ M , we obtain

C 0 lim inf k→∞ Λ k (2 M t k ) ≥ C 0 lim inf k→∞ N k (t k , 2 M t k ) ≥ ν 0 M → ∞ as M → ∞,
contrary to assumption (47). Upon replacing t k by t k /L in the previous argument and recalling our assumption (64), by the same reasoning we also arrive at the estimate lim

L→∞ lim inf k→∞ N k (s (l) k , t k /L) = 0. This completes the proof.
Suppose that for some t k > s (l)

k with t k → 0 as k → ∞ there holds lim inf k→∞ N k (s (l) k , t k ) > 0.
Then we can find a subsequence (u k ) and numbers r

(l+1) k ∈]s (l) k , t k [ such that (66) lim k→∞ N k (s (l) k , r (l+1) k ) = ν 0 > 0.
Replacing our original choice of r (l+1) k by a smaller number, if necessary, we may assume that ν 0 < π. Lemma 5.3 then implies that (67) lim

L→∞ lim inf k→∞ N k (s (l) k , Lr (l+1) k ) ≥ π, lim L→∞ lim sup k→∞ N k (s (l) k , r (l+1) k 
/L) = 0, and that

(68) lim inf k→∞ P k (r (l+1) k ) > 0.
In particular, since r

(l+1) k ≤ t k → 0 we then conclude that u k (r (l+1) k ) → ∞.
The desired precise quantization result at the scale r

(l+1) k
is a consequence of the following Proposition. Proposition 5.4. There exist a subsequence (u k ) such that

η (l+1) k (x) := u k (r (l+1) k )(u k (r (l+1) k x) -u k (r (l+1) k )) → η(x) locally uniformly on R 2 \ {0} as k → ∞, where η(x) = log( 2 1+|x| 2 ).
Postponing the details of the proof of Proposition 5.4 to the next section, we now complete the proof of Theorem 5.1.

Denote as v

(l+1) k (x) = u k (r (l+1) k x), v(l+1) k (x) = uk (r (l+1) k
x) the scaled functions u k and uk , respectively. Omitting the superscript (l + 1) for brevity, similar to the proof of Theorem 4.2 for η k := η (l+1) k we have

-∆η k = λ k r 2 k v k (1)v k e v 2 k -r 2 k vk v k (1)e v 2 k =: I k + II k ,
where

II k → 0 in L 2 loc (R 2 \ {0}) as k → ∞. Moreover, letting ρ k = ρ (l+1) k := v k v k (1) , a k = a (l+1) k = 1 + η k 2v 2 k (1)
, by Proposition 5.4 we have a k → 1, ρ k → 1 as k → ∞ locally uniformly away from x = 0, and

I k = λ k r 2 k v k (1)v k e v 2 k = λ k r 2 k v 2 k (1)e v 2 k (1) ρ k e v 2 k -v 2 k (1) = (2π) -1 P k (r k )ρ k e 2a k η k . Now observe that η solves equation (33) on R 2 with R 2 e 2η dx = 4π = Λ 1 .
We therefore conclude that P k (r k ) → 2π and

lim L→∞ lim k→∞ N k (r (l+1) k /L, Lr (l+1) k ) = lim L→∞ lim k→∞ B L \B 1/L λ k r 2 k v 2 k e v 2 k dx = lim L→∞ lim k→∞ B L \B 1/L (2π) -1 P k (r k )ρ 2 k e 2a k η k dx = lim L→∞ B L \B 1/L e 2η dx = Λ 1 . (69) 
From (67) then we obtain that lim

L→∞ lim k→∞ N k (s (l) k , Lr (l+1) k ) = lim L→∞ lim k→∞ (N k (s (l) k , r (l+1) k /L) + N k (r (l+1) k /L, Lr (l+1) k )) = Λ 1 ,
and our induction hypothesis (54) yields (70) lim

L→∞ lim k→∞ Λ k (Lr (l+1) k ) = lim L→∞ lim k→∞ (Λ k (s (l) k ) + N k (s (l) k , Lr (l+1) k 
)) = (l + 1)Λ 1 .

Moreover, r

(l+1) k /s (l) k → ∞ as k → ∞. Indeed, if we assume that r (l+1) k ≤ Ls (l) k
for some L by Proposition 5.4 we have N k (s

(l) k /2, s (l) 
k ) ≥ ν 0 for some constant ν 0 = ν 0 (L) > 0, contradicting (55).

In order to obtain decay analogous to Lemma 5.2 and then also the analogue of (55) at the scale r

(l+1) k , denote as w (l+1) k (x) = u k (r (l+1) k )(u k (x) -u k (r (l+1) k )) the unscaled function η (l+1) k , satisfying the equation -∆w (l+1) k = λ k u k (r (l+1) k )u k e u 2 k -u k (r (l+1) k ) uk e u 2 k =: f (l+1) k -d (l+1) k (71) 
in Ω = B R . We then have the analogue of Lemma 5.2, which may be proved in the same fashion.

Lemma 5.5. For any ε > 0, letting

T k = T (l+1) k > r (l+1) k be minimal such that u k (T k ) = εu k (r (l+1) k
), for any constant b < 2 and sufficiently large k and L there holds

w (l+1) k (r) ≤ b log r (l+1) k r on B T k \ B Lr (l+1)
k and we have

lim k→∞ N k (s (l) k , T k ) = Λ 1 .
Proof. Denote w 

(l+1) k = w k , r (l+1) 
k = r k , d (l+1) 
(t) = ∂Bt ∂ ν w k do = Bt ∆w k dx ≤ - B Lr k u k (r k ) u k e k dx + o(1) ≤ -N k (r k /L, Lr k ) + o(1) ≤ -Λ 1 + o(1), (72) 
with error o(1) → 0 uniformly in t, if first k → ∞ and then L → ∞. For any b < 2 and sufficiently large L ≥ L(b) for k ≥ k 0 (L), we thus obtain that

w k (t) ≤ - b t
for all Lr k ≤ t ≤ T k . For such t it then follows that

e k ≤ λ k u 2 k (r k )e u 2 k (r k ) e 2(1+ w k 2u 2 k (r k ) )w k ≤ (2π) -1 P (r k )r -2 k e (1+ε)w k ≤ Cr -2 k r k r (1+ε)b
, and the proof may be completed as in Lemma 5.2.

For suitable numbers s

(l+1) k = T (l+1) k (ε k ), where ε k ↓ 0 is chosen such that u k (s (l+1) k ) = ε k u k (r (l+1) k ) → ∞ as k → ∞, then we have (73) lim k→∞ Λ k (s (l+1) k ) = (l + 1)Λ 1 and lim L→∞ lim k→∞ (Λ k (s (l+1) k ) -Λ k (Lr (l+1) k )) = lim k→∞ r (l+1) k s (l+1) k = lim k→∞ u k (s (l+1) k ) u k (r (l+1) k ) = lim k→∞ s (l+1) k = 0, (74) 
completing the induction step. In view of (47) and Lemma 5.3 the iteration must terminate after finitely many steps 1 ≤ l ≤ l * , after which 

N k (s (l * ) k , t k ) → 0 as k → ∞ for any sequence t k → 0 as k → ∞
- k = r (l) k , s - k = s (l)
k . Again denote as v k (x) = u k (r k x), vk (x) = uk (r k x) the scaled functions u k , uk , respectively. As usual we write

v k (x) = v k (r) for r = |x|. Recall that (68) implies that v k (1) = u k (r k ) → ∞. Lemma 5.6. As k → ∞ we have v k (x) -v k (1) → 0 locally uniformly on R 2 \ {0}. Proof. The function ṽk (x) = v k (x) -v k (1) satisfies the equation -∆ṽ k = g k -l k , where g k = λ k r 2 k v k e v 2
k and with l k = r 2 k vk e v 2 k . We claim that g k → 0 locally uniformly away from 0. Indeed, since r k → 0, for any x where

g k (x) ≥ r k we have v k (x) = u k (r k x) ≥ γ k with constants γ k → ∞ independent of x.
Hence for any L > 0 and any 1/L ≤ |x| ≤ L we either can bound

g k (x) ≤ r k → 0, or g k (x) = λ k r 2 k v k (x)e v 2 k (x) = λ k r 2 k u k (r k x)e u 2 k (r k x) = (2π) -1 |x| -2 P k (r k |x|)/u k (r k x) ≤ CL 2 γ -1 k → 0 as k → ∞.
Moreover, (40) and Lemma 4.1 imply

B L \B 1/L (0) |l k | 2 dx ≤ λ k r 2 k sup 1/L≤|x|≤L e v 2 k (x) λ -1 k B Lr k (x k ) u2 k e u 2 k dx ≤ (2π) -1 L 2 sup 1/L≤|x|≤L P k (r k |x|) u 2 k (r k |x|) λ -1 k Ω u2 k e u 2 k dx → 0 (75) 
for any fixed L > 1 as k → ∞.

Since from [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] or [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF], respectively, we also have the uniform L 2 -bound

||∇ṽ k || L 2 = ||∇u k || L 2 ≤ C,
we may extract a subsequence (u k ) such that ṽk → ṽ weakly in H 1 loc (R 2 ), where ṽ is harmonic away from the origin. In addition, ∇ṽ ∈ L 2 (R 2 ); since the point x = 0 has vanishing H 1 -capacity, we then have ∆ṽ = 0 in the distribution sense on all of R 2 and ṽ is a smooth, everywhere harmonic function. Again invoking the fact that ∇ṽ ∈ L 2 (R 2 ), and recalling that ṽ(1) = ṽk (1) = 0, then we see that ṽ vanishes identically; that is, ṽk → 0 weakly in H 1 loc (R 2 ). Recalling that for radially symmetric functions weak H 1 -convergence implies locally uniform convergence away from the origin, we obtain the claim.

Now η k (x) = v k (1)(v k (x) -v k (1)) satisfies the equation (76) -∆η k = λ k r 2 k v k (1)v k e v 2 k -r 2 k v k (1) vk e v 2 k =: I k + II k .
By Lemma 5.6 for any L > 1 we can bound sup B L \B 1/L v k (1)/v k ≤ 2 for sufficiently large k. Lemma 4.1, (47), and (59) then yield

B L |II k | dx ≤ B1 |II k |dx + B L \B1 |II k |dx ≤ o(1) + 2 λ k B Lr k u 2 k e u 2 k dx • λ -1 k B Lr k u2 k e u 2 k dx 1/2 → 0, (77) 
with error o(1) → 0 as k → ∞ for any fixed 40) we can bound the remaining term

L > 1. Upon estimating v k (1)v k e v 2 k ≤ max{v 2 k (1)e v 2 k (1) , v 2 k e v 2 k }, for 1/L ≤ |x| ≤ L by (
I k (x) ≤ (2π) -1 max{P k (r k ), |x| -2 P k (r k |x|)} ≤ C(1 + L 2 ) (78) Moreover, letting vk = v k /v k (1) → 1 in B L \ B 1/L , we have I k = λ k r 2 k v 2 k (1)e v 2 k (1) vk e v 2 k -v 2 k (1) = p k vk e η k (1+v k ) , (79) 
where

p k = (2π) -1 P k (r k ) ≥ p 0 > 0 by (68).
Finally, similar to (62) and in view of (55) we find

B 1/L (0) I k dx = B r k /L (0) λ k u k (r k )u k e u 2 k dx ≤ N k (Lr - k , r k /L) + CΛ u k (s - k ) u k (Lr - k ) → 0, (80) 
if we first let k → ∞ and then pass to the limit L → ∞.

Lemma 5.7. There exist a subsequence

(u k ) such that η k → η ∞ locally uniformly on R 2 \ {0} as k → ∞. Proof. For any L > 1 decompose η k = h k + n k on B L \ B 1/L (0), where ∆h k = 0 in B L \ B 1/L (0)
, and where n k = 0 on ∂(B L \ B 1/L (0)). In view of (77), (78), and passing to a subsequence, if necessary, we may assume that n k → n as k → ∞ in W 1,q on B L \ B 1/L (0) for any q < 2 and therefore also uniformly by radial symmetry.

On the other hand, letting h + k = max{0, h k }, from (78) -(79) for sufficiently large k we obtain the estimate

B L \B 1/L (0) h + k dx ≤ B L \B 1/L (0) (η + k + |n k |) dx ≤ B L \B 1/L (0) e (1+v k )η k dx + C(L) ≤ C(L) < ∞ .
From the mean value property of harmonic functions and Harnack's inequality we conclude that either h k → h locally uniformly on B L \ B 1/L (0), or h k → -∞ and hence η k → -∞ locally uniformly on B L \ B 1/L (0) as k → ∞. But the identity η k (1) = 0 excludes the latter case, and the assertion follows.

Now we can complete the proof of Proposition 5.4. Since ∆η k by ( 76) -( 80) is uniformly bounded in L 1 (B L (0)), the sequence (η k ) is bounded in W 1,q (B L (0)) for any q < 2 and any L > 1 and we may assume that η k → η 0 also weakly locally in W 1,q on R 2 as k → ∞. By Lemmas 5.6 and 5.7 we may then pass to the limit k → ∞ in equation ( 76) to see that η ∞ solves the equation

(81) -∆η ∞ = p ∞ e 2η∞ on R 2 \ {0},
for some constant p ∞ = lim k→∞ p k > 0. Moreover, by Lemma 5.7, and (78) we have p ∞ e 2η∞ = lim

k→∞ p k v2 k e η k (v k (x)+1)) = lim k→∞ vk I k = lim k→∞ r 2 k e k (r k •)
locally uniformly on R 2 \ {0}. Thus, with a uniform constant C for any L > 1 we have

p ∞ B L \B 1/L (0) e 2η∞ dx ≤ lim inf k→∞ B Lr k \B r k /L (0)
e k dx ≤ CΛ.

Passing to the limit L → ∞, we see that e 2η∞ ∈ L 1 (R 2 ). By (77) and (80) we also have lim sup

k→∞ B 1/L (0) |∆η k | dx → 0 as L → ∞.
Hence η ∞ extends to a distribution solution of (81) on all of R 2 . Our claim then follows from the Chen-Li [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF] classification of all solutions η ∞ to equation (81) on R 2 with e 2η∞ ∈ L 1 (R 2 ) in view of radial symmetry of η ∞ together with the fact that η ∞ (1) = η k (1) = 0.

5.3. The general case. For the proof of Theorem 5.1 in the general case fix an index 1 ≤ i ≤ i * and let

x k = x (i) k → x (i) , 0 < r k = r (i)
k → 0 be determined as in Theorem 4.2 so that u k (x k ) = max |x-x k |≤Lr k u k (x) for any L > 0 and sufficiently large k and such that (82)

η k (x) = η (i) k (x) := u k (x k )(u k (x k + r k x) -u k (x k )) → log 1 1 + |x| 2
as k → ∞. For each k we may shift the origin so that henceforth we may assume that x k = 0 for all k. Denote as Ω k = Ω (i) k the shifted domain Ω. We also extend u k by 0 outside Ω k to obtain u k ∈ H 1 (R 2 ), still satisfying (47). To proceed, we need the following estimate similar to the gradient estimate of Druet [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF], Proposition 2. For any k ∈ N, x ∈ Ω we let

Again we let e

k = λ k u 2 k e u 2 k , f k = λ k u k (0)u k e u 2 k
R k (x) = inf 1≤j≤i * |x -x (j) k |.
Proposition 5.8. There exists a uniform constant C such that for all y ∈ Ω there holds sup

z∈B R k (y)/2 (y) |u k (y) -u k (z)|u k (y) ≤ C, uniformly in k ∈ N.
The proof of Proposition 5.8 is given in the next section.

Recalling that x (i) k = 0, we let

ρ k = ρ (i) k = 1 2 inf j =i |x (j) k |,
and we set ρ k = diam(Ω) if {j; j = i} = ∅, that is, if there is no other concentration point but x and we conclude the estimate

(88) 1 C 3 sup r/2≤|x|≤r u 2 k (x)e u 2 k (x) ≤ (1 + ū2 k (r))e ū2 k (r) ≤ C 3 inf r/2≤|x|≤r (1 + u 2 k (x))e u 2 k (x)
with a uniform constant C 3 . In the following we proceed as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF]; therefore we only sketch the necessary changes we have to perform in the present case.

Because of our choice of origin x (i) k = 0 there holds u k (x) ≤ u k (0) for all |x| ≤ Lr k , k ≥ k 0 (L); hence at this scale there also holds the inequality e k ≤ f k . Similar to Lemma 5.2 with the help of (88) we obtain Lemma 5.9. For any ε > 0, if there is a minimal number 0 < T k ≤ ρ k such that ūk (T k ) = εu k (0), then for any constant b < 2 and sufficiently large k there holds

wk (r) ≤ b log r k r on B T k and we have lim k→∞ Λk (T k ) = lim k→∞ Λ k (T k ) = lim k→∞ σ k (T k ) = 4π.
Next we define for 0 If for some ε > 0 there is no T k = T k (ε) ≤ ρ k as in Lemma 5.9 we continue our argument as described in Case 1 after Proposition 5.11. Otherwise, we proceed by iteration as in the radially symmetric case. Choose a sequence ε k ↓ 0 such that with corresponding numbers

≤ s < t ≤ ρ k N k (s, t) = Bt\Bs e k dx = λ k Bt\Bs u 2 k e u 2
s k = T k (ε k ) ≤ ρ k we have ūk (s k ) → ∞ as k → ∞. Then there holds lim k→∞ Λ k (s k ) = Λ 1 = 4π and lim L→∞ lim k→∞ (Λ k (s k ) -Λ k (Lr k )) = lim k→∞ ūk (s k ) ūk (r k ) = lim k→∞ r k s k = lim k→∞ s k = 0.
By a slight abuse of notation we let r k = r

(1)

k , s k = s (1) 
k . Suppose that for some l ≥ 0 we already have determined numbers r

(1) k < s (1) k < . . . < s (l) k ≤ ρ k such that (91) lim L→∞ lim k→∞ Λ k (s (l) k ) = Λ 1 l = 4πl and (92) lim L→∞ lim k→∞ (Λ k (s (l) k ) -Λ k (Lr (l) k )) = lim k→∞ ūk (s (l) k ) ūk (r (l) k ) = lim k→∞ r (l) k s (l) k = lim k→∞ s (l) k = 0.
Similar to Lemma 5.3 we now have the following result. Lemma 5.10. i) Suppose that for some s

(l) k < t k ≤ ρ k there holds sup s (l) k <t<t k P k (t) → 0 as k → ∞.

Then we have lim

k→∞ N k (s (l) k , t k ) = 0.
ii) Conversely, if for some s (l) k < t k and a subsequence (u k ) there holds

lim k→∞ N k (s (l) k , t k ) = ν 0 > 0, lim k→∞ t k ρ k = 0,
then either ν 0 ≥ π, or we have 

lim inf k→∞ P k (t k ) ≥ ν 0 and lim L→∞ lim inf k→∞ N k (s (l) k , Lt k ) ≥ π, lim L→∞ lim sup k→∞ N k (s (l) k , t k /L) = 0. Proof. i) Because
λ k r 2 ū k (1 + ū2 k )ū k e ū2 k dr.
As in the proof of Lemma 5.3 equation (3) yields the identity

(94) -2πtū k (t)ū k (t) = Bt λ k ūk (t)u k e u 2 k dx - Bt ūk (t) uk e u 2 k dx.
for any t ≤ ρ k . Arguing as in (59) we get that Bt ūk (t) uk e u 2 k dx → 0 as k → ∞. In view of (94) and Jensen's inequality at any sequence of points t = t k where ū k (t) ≥ 0 then there holds

(95) 0 ≤ Bt λ k ūk (t)ū k e ū2 k dx ≤ Bt λ k ūk (t)u k e u 2 k dx = o(1). Conversely, if ū k (r) ≤ 0 = ū k (t 0 ) for t k0 = t 0 ≤ r ≤ t = t k , by (95) we can estimate Bt λ k ūk (t)ū k e ū2 k dx ≤ Bt\Bt 0 λ k ū2 k e ū2 k dx + Bt 0 λ k ūk (t 0 )ū k e ū2 k dx = Ñk (t 0 , t) + o(1). (96) 
Combining the above estimates, similar to (62) for s = s

(l) k ≤ r ≤ t = t k we get -2πrū k (r)ū k (r) = Br λ k ūk (r)ū k e ū2 k dx + o(1) ≤ Ñk (s, r) + Bs λ k ūk (s)ū k e ū2 k dx + o(1) ≤ Ñk (s, r) + Ñk (Lr k , s) + ūk (s) ūk (Lr k ) Λ k (Lr k ) + o(1) = Ñk (s, r) + o(1), (97) 
where o(1) → 0 when first k → ∞ and then L → ∞. k to t k . ii) In view of (98) the second assertion can be proved as in Lemma 5.3.

By the preceding result it now suffices to consider the following two cases. In Case A for any sequence

t k = o(ρ k ) we have sup s (l) k <t<t k P k (t) → 0 as k → ∞,
and then in view of Lemma 5.10 also (99) lim

L→∞ lim k→∞ N k (s (l) k , ρ k /L) = 0,
thus completing the concentration analysis at scales up to o(ρ k ).

In Case B for some s

(l) k < t k ≤ ρ k there holds lim sup k→∞ N k (s (l) k , t k ) > 0, lim k→∞ t k ρ k = 0.
Then, as in the radial case, from Lemma 5.10 we infer that for a subsequence (u k ) and suitable numbers r

(l+1) k ∈]s (l) k , t k [ we have (100) lim L→∞ lim k→∞ N k (s (l) k , Lr (l+1) k ) ≥ π, lim inf k→∞ P k (r (l+1) k ) > 0;
in particular, ūk (r

(l+1) k
) → ∞ as k → ∞. Moreover, as in Lemma 5.10 the bound (100) implies that r

(l+1) k /s (l) k → ∞ as k → ∞. Indeed, assume by contradiction that r (l+1) k ≤ Ls (l)
k for some L > 0. Then from (88), (90), and recalling that N k (s

(l) k /2, s (l) k ) → 0 as k → ∞ we obtain that P k (r (l+1) k ) → 0 contrary to (100). Also note that (101) lim L→∞ lim sup k→∞ N k (s (l) k , r (l+1) k /L) = lim k→∞ r (l+1) k ρ k = lim k→∞ t k ρ k = 0.
Moreover, we have the following analogue of Proposition 5.4.

Proposition 5.11. There exist a subsequence (u k ) such that

η (l+1) k (x) := ūk (r (l+1) k )(u k (r (l+1) k x) -ūk (r (l+1) k )) → η(x)
locally uniformly on R 2 \ {0} as k → ∞, where η solves (33), (34).

Proposition 5.11 is a special case of Proposition 5.12 below, whose proof will be presented in Section 5.5.

From Proposition 5.11 the desired energy quantization result at the scale r (l+1) k follows as in the radial case. If ρ k ≥ ρ 0 > 0 we can argue as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], p. 416, to obtain numbers s (l+1) k satisfying (91), (92) for l + 1 and such that ūk (s

(l+1) k ) → ∞ as k → ∞.
By iteration we then establish (91), (92) up to l = l 0 for some maximal index l 0 ≥ 0 and thus complete the concentration analysis near the point x (i) .

If ρ k → 0 as k → ∞, we distinguish the following two cases. In Case 1 for some ε 0 > 0 and all t ∈ [r

(l+1) k , ρ k ] there holds ūk (t) ≥ ε 0 ūk (r (l+1) k
). The decay estimate that we established in Lemma 5.9 then remains valid throughout this range and (91) holds true for any choice s

(l+1) k = o(ρ k ) for l = l + 1.
Again the concentration analysis at scales up to o(ρ k ) is complete. In Case 2, for any ε > 0 there is a minimal

T k = T k (ε) ∈ [r (l+1) k , ρ k ] as in Lemma 5.9 such that ūk (T k ) = εū k (r (l+1) k ).
Then as before we can define numbers s 91), (92) also hold true for l + 1, and we proceed by iteration up to some maximal index l 0 ≥ 0 where either Case 1 or Case A holds with final radius r (l0) .

(l+1) k < ρ k with ūk (s (l+1) k ) → ∞ as k → ∞ so that (
For the concentration analysis at the scale ρ k first assume that for some number

L ≥ 1 there is a sequence (x k ) such that ρ k /L ≤ R k (x k ) ≤ |x k | ≤ Lρ k and (102) λ k |x k | 2 u 2 k (x k )e u 2 k (x k ) ≥ ν 0 > 0.
By Proposition 5.8 we may assume that |x k | = ρ k . As in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], Lemma 4.6, we then have ūk

(ρ k )/ū k (r (l0) 
k ) → 0 as k → ∞, ruling out Case 1; that is, at scales up to o(ρ k ) we end with Case A. The desired quantization result at the scale ρ k then is a consequence of the following result that we demonstrate in Section 5.5 below. Proposition 5.12. Assuming (102), there exists a finite set S 0 ⊂ R 2 and a subsequence (u k ) such that

η k (x) := u k (x k )(u k (ρ k x) -u k (x k )) → η(x)
locally uniformly on R 2 \ S 0 as k → ∞, where η solves (33), (34). By Proposition 5.12 in case of (102) there holds lim L→∞ lim sup

k→∞ {x∈Ω; ρ k L ≤R k (x)≤|x|≤Lρ k } e k dx = Λ 1 = 4π. Letting X k,1 = X (i) k,1 = {x (j) k ; ∃C > 0 : |x (j) 
k | ≤ Cρ k for all k} and carrying out the above blow-up analysis up to scales of order o(ρ k ) also on all balls of center x (j) k ∈ X k,1 , then from (92) we have lim

L→∞ lim k→∞ Λ k (Lρ k ) = Λ 1 (1 + I 1 ) = 4π(1 + I 1 ),
where I 1 is the total number of bubbles concentrating at the points x

(j) k ∈ X (i) k,1 at scales o(ρ k ).
On the other hand, if (102) fails to hold clearly we have

(103) lim L→∞ lim sup k→∞ {x∈Ω; ρ k L ≤R k (x)≤|x|≤Lρ k } e k dx = 0,
and the energy estimate at the scale ρ k again is complete.

In order to deal with secondary concentrations around x (i) k = 0 at scales exceeding ρ k , with X k,1 defined as above we let

ρ k,1 = ρ (i) k,1 = 1 2 inf {j;x (j) k / ∈X k,1 } |x (j) k |; again we set ρ k,1 = diam(Ω), if {j; x (j) k / ∈ X k,1 } = ∅. From this definition it follows that ρ k,1 /ρ k → ∞ as k → ∞. Then either we have lim L→∞ lim sup k→∞ N k (Lρ k , ρ k,1 L ) = 0,
and we iterate to the next scale; or there exist radii

t k ≤ ρ k,1 such that t k /ρ k → ∞, t k /ρ k,1 → 0 as k → ∞ and a subsequence (u k ) such that (104) P k (t k ) ≥ ν 0 > 0 for all k.
The argument then depends on whether (102) or (103) holds. In case of (102), as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], Lemma 4.6, the bound (104) and Proposition 5.12 imply that ūk (t k )/ū k (ρ k ) → 0 as k → 0. Then all the previous results remain true for r ∈ [Lρ k , ρ k,1 ] for sufficiently large L, and we can continue as before to resolve concentrations in this range of scales.

In case of (103) we further need to distinguish whether Case A or Case 1 holds at the final stage of our analysis at scales o(ρ k ). In fact, for the following estimates we also consider all points

x (j) k ∈ X (i) k,1 in place of x (i) k .
Recalling that in Case A we have (92) and (99), and arguing as above in Case 1, on account of (103) for a suitable sequence of numbers s

(0) k,1 such that s (0) k,1 /ρ k → ∞, t k /s (0) k,1 → ∞ as k → ∞ we find lim L→∞ lim k→∞ Λ(s (0) k,1 ) - x (j) k ∈X (i) k,1 Λ (j) k (Lr (l (j) 0 ) k ) = 0,
where Λ 

(0) k,1 ) = Λ 1 I 1 = 4πI 1
analogous to (91), where I 1 is defined as above. Moreover, in Case 1 we can argue as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], Lemma 4.8, to conclude that ūk (t k )/ū k (r

(l (j) 0 ) k
) → 0 as k → 0; therefore, similar to (92) in Case A, we can achieve that lim k→∞ ūk (s

(0) k,1 ) ūk (r (l (j) 0 ) k ) = lim k→∞ r (l (j) 0 ) k s (0) k,1 = 0 for all x (j) k ∈ X (i)
k,1 where Case 1 holds. We then finish the argument by iteration. For l ≥ 2 we inductively define the sets

X k,l = X (i) k,l = {x (j) k ; ∃C > 0 : |x (j) k | ≤ Cρ k,l-1 for all k} and we let ρ k,l = ρ (i) k,l = 1 2 inf {j;x (j) k / ∈X (i) k,l } |x (j) k |;
as before, we set ρ k,l = diam(Ω), if {j;

x (j) k / ∈ X (i)
k,l } = ∅. Iteratively performing the above analysis at all scales ρ k,l , thereby exhausting all concentration points x (j) k , upon passing to further subsequences, we finish the proof of Theorem 1.1. 5.4. Proof of Proposition 5.8. We argue as in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF], thereby closely following the proof of Druet [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF], Proposition 2. Suppose by contradiction that (105)

L k := sup y∈Ω sup z∈B R k (y)/2 (y) |u k (y) -u k (z)|u k (y) → ∞ as k → ∞ . Let y k ∈ Ω, z k ∈ B R k (y k )/2 (y k ) satisfy (106) |u k (y k ) -u k (z k )|u k (y k ) ≥ L k /2.
Lemma 5.13. We have

u k (y k ) → ∞ k → ∞.
Proof. Suppose by contradiction that u k (y k ) ≤ C < ∞. From (106) we then find that u k (z k ) → ∞ as k → ∞. Also letting ẑk = (y k + z k )/2, we now observe that

R k (z k ), R k (ẑ k ) ≥ R k (y k )/2 > |y k -z k | = 2|y k -ẑk | = 2|ẑ k -z k |; hence y k ∈ B R k (ẑ k )/2 (ẑ k ) , ẑk ∈ B R k (z k )/2 (z k ). But then the estimate L k 2u k (y k ) ≤ |u k (z k ) -u k (y k )| ≤ |u k (z k ) -u k (ẑ k )| + |u k (ẑ k ) -u k (y k )|,
our assumption that u k (y k ) ≤ C, and our choice of

y k , z k imply 1 L k |u k (ẑ k ) -u k (y k )|u k (ẑ k ) + |u k (ẑ k ) -u k (z k )|u k (z k ) → ∞
as k → ∞, and a contradiction to (105) results.

A similar reasoning also yields the following result.

Lemma 5.14. There exists an absolute constant C such that

sup z∈B R k (y)/2 (y) |u 2 k (y) -u 2 k (z)| ≤ CL k ,
uniformly in y ∈ Ω. In fact, we may take C = 6.

Proof. From the identity

u 2 k (y) -u 2 k (z) = (u k (y) -u k (z))(u k (y) + u k (z)) = 2(u k (y) -u k (z))u k (y) -(u k (y) -u k (z)) 2
we conclude the bound

|u 2 k (y) -u 2 k (z)| ≤ 2L k + (u k (y) -u k (z)
) 2 for all y ∈ Ω, z ∈ B R k (y)/2 (y), and we are done unless for some such points y and z there holds (u k (y) -u k (z)) 2 ≥ 4L k . Suppose we are in this case. From (105) we then obtain the estimate u k (y) ≤ √ L k /2 and hence u k (z) ≥ 2 √ L k .

Letting ẑ = (y + z)/2, as in the proof of Lemma 5.13 above we observe that R k (z), R k (ẑ) ≥ R k (y)/2 ≥ |y -z| and

y ∈ B R k (ẑ)/2 (ẑ) , ẑ ∈ B R k (z)/2 (z). Since u k (z) ≥ 2 √ L k , the bound (105) implies that u k (ẑ) ≥ 3 √ L k /2. But then, upon estimating 2L k ≥ |u k (y) -u k (ẑ)|u k (ẑ) + |u k (ẑ) -u k (z)|u k (z) ≥ 3 L k |u k (y) -u k (z)|/2 ≥ 3L k
we arrive at the desired contradiction.

From Theorem 4.2 and Lemma 5.13 it follows that

s k := R k (y k ) → 0 as k → ∞. Set Ω k = {y; y k + s k y ∈ Ω} and scale v k (y) = u k (y k + s k y), vk (y) = uk (y k + s k y), y ∈ Ω k . Letting x (i)
k be as in the statement of Theorem 4.2, we set

y (i) k = x (i) k -y k s k , 1 ≤ i ≤ i * ,
and let

S k = {y (i) k ; 1 ≤ i ≤ i * }.
Note that in the scaled coordinates we have dist(0, S k ) = inf{|y

(i) k |; 1 ≤ i ≤ i * } = 1. Also let p k = z k -y k s k ∈ B 1/2 (0).
Then there holds 

L k /2 ≤ |v k (p k ) -v k (0)|v k (0) ≤ sup y∈Ω k sup z∈B dist(y,S k )/2 (y) |v k (y) -v k (z)|v k (y) = L k ; (
|v 2 k (y) -v 2 k (z)| ≤ CL k .
Since s k = R k (y k ) → 0 we may assume that as k → ∞ the domains Ω k exhaust the domain

Ω 0 = R×] -∞, R 0 [, where 0 < R 0 ≤ ∞.
We also may assume that as k → ∞ either |y

(i) k | → ∞ or y (i) k → y (i) , 1 ≤ i ≤ i * ,
and we let S 0 be the set of accumulation points of S k , satisfying dist(0, S 0 ) = 1. For R > 0 denote as

K R = K k,R = Ω k ∩ B R (0) \ y∈S k B 1/R (y).
Note that we have

R k (y k + s k y) = s k dist(y, S k ) ≥ s k /R for all y ∈ K R .
Thus (40) in Theorem 4.2 implies the bound

(109) λ k s 2 k v 2 k (y)e v 2 k (y) ≤ C = C(R) for all y ∈ K R .
Finally, letting

(110) -v k ∆v k = λ k s 2 k v 2 k e v 2 k -s 2 k vk v k e v 2 k =: I k + II k ,
by (47) we can estimate (111)

||I k || L 1 (Ω k ) = λ k Ω k s 2 k v 2 k e v 2 k dy = λ k Ω u 2 k e u 2 k dx ≤ C;
moreover, by Hölder's inequality and Lemma 4.1 we have

(112) ||II k || 2 L 1 (Ω k ) ≤ λ k Ω u 2 k e u 2 k dx • λ -1 k Ω u 2 t e u 2 k dx → 0 as k → ∞.
In view of (109) we also have the local L 2 -bounds

||I k || 2 L 2 (K R ) ≤ C sup K R λ k s 2 k v 2 k e v 2 k • λ k Ω k s 2 k v 2 k e v 2 k dy ≤ C(R)λ k Ω u 2 k e u 2 k dx ≤ C(R), (113) 
while Lemma 4.1 implies

(114) ||II k || 2 L 2 (K R ) ≤ C sup K R λ k s 2 k v 2 k e v 2 k • λ -1 k Ω u2 k e u 2 k dx → 0
as k → ∞, for any R > 0. Similarly, for any R > 0 we find (115)

||∆v k || L 2 (K R ) → 0 (k → ∞).
Also observe that (47) yields the uniform bound (116)

||∇v k || L 2 (Ω k ) ≤ C. Lemma 5.15. We have R 0 = ∞; that is, Ω 0 = R 2 .
Proof. Suppose by contradiction that R 0 < ∞. Choosing R = 2R 0 , from ( 4) and (108) we conclude the uniform bound

sup y∈K R v 2 k (y) ≤ CL k with C = C(R). Letting w k = v k √ L k
, we then have 0 ≤ w k ≤ C, while (115) and (116) give

||∇w k || L 2 (Ω k ) + ||∆w k || L 2 (K R ) → 0 as k → ∞.
Since

w k = 0 on ∂Ω k ∩ K R , it follows that w k → 0 locally uniformly, contradicting the fact that |w k (p k ) -w k (0)|w k (0) ≥ 1/2. Lemma 5.16. As k → ∞ we have v k v k (0) → 1 locally uniformly in R 2 \ S 0 .
Proof. Recall from Lemma 5.13 that

c k := u k (y k ) = v k (0) → ∞ as k → ∞.
Letting 115) and (116) for any R > 0 then we have

w k = c -1 k v k , from (
||∇w k || L 2 (Ω k ) + ||∆w k || L 2 (K R ) → 0 as k → ∞,
and we conclude that w k converges locally uniformly on R 2 \ S 0 to a constant limit function w. Recalling that dist(0, S 0 ) = 1, we obtain that w ≡ w(0) = 1, as claimed.

Define

ṽk (y) = 1 L k (v k (y) -v k (0))v k (0).
We claim that ṽk grows at most logarithmically. To see this, let s 0 ≥ 2 sup i |y (i) | and fix q = 3/2. For any fixed R > 0, any y ∈ K R with |y| ≥ q L s 0 let y l = q l-L y, 0 ≤ l ≤ L, so that y l-1 ∈ B dist(y l ,S k )/2 (y l ) for all l ≥ 1 and sufficiently large k. Note that we have |v k (y 0 ) -v k (0)|v k (0) ≤ CL k . By Lemma 5.16 with error o(1) → 0 as k → ∞ then we can estimate

|ṽ k (y)| ≤ 1 L k L l=1 |v k (y l ) -v k (y l-1 )|v k (0) + C ≤ 1 + o(1) L k L l=1 |v k (y l ) -v k (y l-1 )|v k (y l ) + C ≤ C + (1 + o(1))L ≤ C + (C + o(1)) log |y|. (117) 
Moreover, from (113), (114) and Lemma 5.16 for any R > 0 with a constant C = C(R) we obtain (118)

||∆ṽ k || L 2 (K R ) ≤ sup K R v k (0) L k v k ||v k ∆v k || L 2 (K R ) ≤ C sup K R v k (0) L k v k → 0
as k → ∞. Thus we may assume that ṽk → ṽ locally uniformly away from S 0 , where ṽ satisfies (119) ∆ṽ = 0, ṽ(0) = 0, sup

B 1/2 (0) ṽ ≥ 1/2, |ṽ(y)| ≤ C + C log(1 + |y|).
Fix any point x 0 ∈ S 0 . For any r > 0 upon estimating

v k (0)v k e v 2 k ≤ max{v 2 k (0)e v 2 k (0) , v 2 k e v 2 k } we have L k Br(x0) |∆ṽ k | dx = Br(x0) v k (0)|∆v k | dx = I k + II k ,
where

I k = Br(x0) λ k s 2 k v k (0)v k e v 2 k dx ≤ Cλ k s 2 k v 2 k (0)e v 2 k (0) + λ k Br(x0) s 2 k v 2 k e v 2 k dx ≤ Cλ k R 2 k (y k )u 2 k (y k )e u 2 k (y k ) + λ k Ω u 2 k e u 2 k dx ≤ C
by Theorem 4.2 and (88). Similarly, by Hölder's inequality

|II k | 2 = Br(x0) s 2 k v k (0)| vk |e v 2 k dx 2 ≤ Cλ -1 k Br(x0) s 2 k v2 k e v 2 k dx → 0.
as k → ∞. It follows that ∆ṽ k → 0 in L 1 loc (R 2 ) as k → ∞. The sequence (ṽ k ) therefore is uniformly locally bounded in W 1,q for any q < 2 and the limit ṽ ∈ W 1,q loc (R 2 ) extends as a weakly harmonic function to all of R 2 . The mean value property together with the logarithmic growth condition (119) then implies that ṽ is a constant; see for instance [3], Theorem 2.4. That is, ṽ ≡ ṽ(0) = 0. But by (119) we have sup B 1/2 (0) |ṽ| ≥ 1/2, which is the desired contradiction and completes the proof of Proposition 5.8. 5.5. Proof of Proposition 5.12. We follow closely the proof of Proposition 4.7 in [START_REF] Struwe | Quantization for a fourth order equation with critical exponential growth[END_REF]. Fix an index i ∈ {1, . . . , i } and write

r k = ρ k . Define v k (y) = u k (x (i) k + r k y) where y ∈ Ω k = Ω (i) k = {y; x (i) k + r k y ∈ Ω}. Also let y (j) k = x (j) k -x (i) k r k and S k = S (i) k = {y (j) k ; 1 ≤ j ≤ i }.
By choosing a subsequence we may assume that as k → ∞ either |y 

(j) k | → ∞ or y (j) k → y (j) , 1 ≤ j ≤ i ,
(120) v k -v k (y (0) k ) → 0 as k → ∞ locally uniformly on R 2 \S 0 . Moreover, as k → ∞, the sets Ω k exhaust all of R 2 .
Next we note that η k satisfies the equation

(121) -∆η k = λ k r 2 k v k (y (0) k )v k e v 2 k -r 2 k v k (y (0) k ) vk e v 2 k = I k + II k on Ω k . For L > 1 set K L = B L (0) \ (∪ y0∈S0 B 1/L (y 0 )). Another covering argument together with (88) allows to bound e v 2 k ≤ Ce v 2 k (y (0) k ) = Ce u 2 k (x k ) on K L , where C = C(L)
. By (40) and Lemma 4.1 for any L > 0 we then obtain

K L |II k | 2 dx ≤ Cλ k r 2 k v 2 k (y (0) k )e v 2 k (y (0) k ) • λ -1 k B L (0) r 2 k v2 k e v 2 k dx = Cλ k r 2 k u 2 k (x k )e u 2 k (x k ) • λ -1 k B Lr k (x (i) k ) u2 k e u 2 k dx → 0 as k → ∞. Next rewrite I k as I k = λ k r 2 k v 2 k (y (0) k )e v 2 k (y (0) k ) vk e η k (v k +1) , where vk = v k v k (y (0) k ) 
. From (120) we get that vk → 1 locally uniformly on R 2 \S 0 while from (102) we conclude that

λ k r 2 k v 2 k (y (0) k )e v 2 k (y (0) k ) = λ k r 2 k u 2 k (x k )e u 2 k (x k ) → µ 0
for some µ 0 > 0 as k → ∞. Since by Proposition 5.8 η k is locally uniformly bounded, from (121) and the above considerations via standard L 2 -theory we obtain that η k is uniformly locally bounded in H 2 away from S 0 . Hence we conclude that η k converges locally uniformly away from S 0 and weakly locally in H 2 to some limit η 0 ∈ H 2 loc (R 2 \ S 0 ) which is smooth away from S 0 and which satisfies the equation

(122) -∆η 0 = µ 0 e 2η0 on R 2 \ S 0 . Recalling that vk I k = λ k r 2 k v 2 k e v 2 k , from (47) we can estimate R 2 e 2η0 dx ≤ lim L→∞ lim inf k→∞ K L v2 k e η k (v k +1) dx = lim L→∞ lim inf k→∞ K L µ -1 0 vk I k dx ≤ µ -1 0 lim sup k→∞ Ω λ k u 2 k e u 2 k dx ≤ CΛ
as before, and e 2η0 ∈ L 1 (R 2 ).

Similar to (77) we can moreover estimate for every L ≥ 1

B L (y0) |II k |dx → 0 as k → ∞,
and analogous to (80) we have This shows that η 0 extends as a distribution solution of (122) on all of R 2 . The claim then follows from the classification result of Chen-Li [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF].

In the case of Proposition 5.11 we argue similarly by scaling with r k = r (l+1) k . Note that in this case S 0 = {0}.

Applications

In this final section we will use Theorem 1.1 to obtain solutions to (2) in the supercritical high energy regime.

Let Ω be a bounded domain in R 2 . Recall the Moser-Trudinger inequality (123) sup

u∈H 1 0 (Ω);||∇u|| 2 L 2 (Ω)
≤1 Ω e 4πu 2 dx < ∞; see [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], [START_REF] Trudinger | On embeddings into Orlicz spaces and some applications[END_REF]. The exponent α = 4π is critical for this Orlicz space embedding in the sense that for any α > 4π there holds (124) sup

u∈H 1 0 (Ω);||∇u|| 2 L 2 (Ω)
≤1 Ω e αu 2 dx = ∞.

Indeed, suppose that B R (0) ⊂ Ω. Following Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], for 0 < ρ < R consider the functions

m ρ,R (x) = 1 √ 2π            log R ρ , 0 ≤ |x| ≤ ρ, log R r log R ρ , ρ ≤ |x| = r < R, 0, R ≤ |x|. Note that ||∇m ρ,R || 2 L 2 (Ω) = 1
, and for any α > 4π we have ( 125)

Ω e αm 2 ρ,R dx → ∞ as ρ → 0.
After scaling, (123) gives ( 126)

c α = c α (Ω) := sup u∈H 1 0 (Ω);||∇u|| 2 L 2 (Ω) ≤α E(u) < ∞
for any α ≤ 4π, while for any α > 4π from (124) we have (127) sup

u∈H 1 0 (Ω);||∇u|| 2 L 2 (Ω) ≤α E(u) = ∞.
If we normalize vol(Ω) = π, the constant c 4π (Ω) is maximal when Ω = B 1 (0) =: B, as can be seen by symmetrization. Let c * = c 4π (B).

6.1. Solutions with "large" Moser-Trudinger energy on non-contractible domains. We obtain the following analogue of a result by Coron [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF]; our result also is related to Theorem 1.1 in [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF].

Theorem 6.1. For any c * > c * there are numbers R 1 > R 2 > 0 with the following property. Given any domain Ω ⊂ R 2 with vol(Ω) = π containing the annulus B R1 \ B R2 (0) and such that 0 / ∈ Ω, for any constant c 0 with c 4π (Ω) < c 0 < c * problem (2) admits a positive solution u with E(u) = c 0 .

The proof of Theorem 6.1 relies on the following observation. Lemma 6.2. Let (u k ) be a sequence in H 1 0 (Ω) such that

E(u k ) ≥ c > c 4π (Ω), Ω |∇u k | 2 dx → 4π as k → ∞.
Then there exists a point x 0 ∈ Ω such that |∇u k | 2 dx w * 4πδ x0 weakly in the sense of measures as k → ∞ suitably.

Proof. We may assume that u k w u weakly in H 1 0 (Ω) and pointwise almost everywhere as k → ∞. Negating our claim, there exist α 1 , r 1 > 0 with α 1 < 4π such that sup

k∈N, x1∈Ω Br 1 (x1)∩Ω |∇u k | 2 dx ≤ α 1 .
But then by a reasoning as in the proof of Lemma 3.3 in [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF] we conclude that the functions e u 2 k are uniformly bounded in L q for some q > 1, and by Vitali's convergence theorem we have

E(u) = lim k→∞ E(u k ) ≥ c > c 4π (Ω).
Since Ω |∇u| 2 dx ≤ 4π, the latter contradicts (126), which proves our claim.

The proof of Theorem 6.1 now is achieved via a saddle-point construction similar to Section 3.4 in [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF]. We may assume that 0 < R 1 < 1/2. Given such R 1 , fix R = R 1 /4. For each R 2 < R 1 /8 = R/2, moreover, we let τ = τ R2 ∈ C ∞ 0 (B R (0)) be a cut-off function 0 ≤ τ ≤ 1 satisfying τ ≡ 1 on B R2 (0) and such that τ 0 in H 1 (R 2 ) as R 2 → 0.

For x 0 ∈ R 2 let m ρ,R,x0 (x) = m ρ,R (x -x 0 ). With a suitable number 0 < ρ < R to be determined, for any x 0 with |x 0 | = 3R, any 0 ≤ s < 1 then we define v s,x0 (x) = m sρ,R,(1-s)x0 (x)(1 -τ (x)) ∈ H 1 0 (B R1 \ B R2 (0)). Provided that Ω contains the annulus B R1 \B R2 (0), these functions then also belong to H 1 0 (Ω). Given c * > c * , we fix the numbers 0 < ρ < R, 0 < R 2 < R/2 so that (128) inf dist(m(u s,x0 (t)), Ω) → 0 as s 0 → 0, uniformly in t ≥ 0. Recall that 0 / ∈ Ω. Thus, for some sufficiently small number 0 < s 0 < 1 and sufficiently large T > 0 with a uniform constant δ > 0 we have inf Then clearly H(•, T + 1) ≡ const, whereas H(x 0 , r) → x 0 /|x 0 | as r → 0, uniformly in x 0 , which is impossible. The contradiction proves the claim.

Proof of Theorem 6. 

) 132 
Fix u 0 = u s1,x0 (0) ≥ 0 and let u(t) be the solution to the initial value problem (3) - [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] with initial data u(0) = u 0 with associated parameter λ(t). We claim that u(t) is uniformly bounded and hence converges to a solution u ∞ > 0 of [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF] with

Ω |∇u ∞ | 2 dx > 4π and E(u ∞ ) = c 0 .
This will finish the proof of the Theorem.

Indeed, suppose by contradiction that u(t) blows up as t → ∞. For a sequence of numbers t k → ∞ as constructed in Lemma 4.1 then as k → ∞ we have λ k := λ(t k ) → λ ∞ ≥ 0; moreover, we may assume that u k := u(t k ) w u ∞ in H 1 0 (Ω) and pointwise almost everywhere, where u ∞ solves (2). Finally, Theorem 1.1 and (132) also give the bound (133)

Ω |∇u ∞ | 2 dx < 4π.
It then follows that λ ∞ = 0. Indeed, if we assume λ ∞ > 0, from [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] and the dominated convergence theorem we infer

E(u ∞ ) = lim k→∞ E(u k ) = c 0 > c 4π (Ω),
which is impossible in view of (133) and (126). But with λ ∞ = 0 in view of (2) also u ∞ must vanish identically, and from Theorem 1.1 it follows that Proof. Any u ∈ K 4π solves (2). Given a sequence (u k ) ⊂ K 4π , we may assume that u k u ∞ weakly in H 1 0 (Ω) as k → ∞ while by ( 9) the associated numbers λ k → λ ∞ ≥ 0. If λ ∞ > 0, from [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] and the dominated convergence theorem as above we conclude that E(u k ) → E(u ∞ ), so that E(u ∞ ) = β * 4π and u ∞ = 0. But by a result of P.-L. Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF], Theorem I.6, this implies that the functions e u 2 k are uniformly bounded in L q for some q > 1, and u k → u ∞ strongly in H 1 0 (Ω), as claimed. On the other hand, if λ ∞ = 0, from (2) we conclude that also u ∞ must vanish and E(u ∞ ) = 0. Theorem I.6 in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] then implies weak convergence for some x 0 ∈ Ω in the sense of measures, and by Flucher [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF], Lemma 4 and Theorem 5, we have E(u k ) < β * 4π for large k, contradicting our choice of (u k ).

In view of Lemma 6.4 now Lemma 5.3 from [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] remains valid for a general domain and there exist numbers α * > 4π, ε > 0 such that for any 4π < α < α * there holds β * α := sup 

(3) u t e u 2 =

 2 ∆u + λue u 2 in [0, ∞[×Ω with initial and boundary data (4) u(0) = u 0 , u = 0 on [0, ∞[×∂Ω.

1. 1 .

 1 Fixed volume. Fixing the volume is equivalent to the constraint[START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] E(u(t)) = E(u 0 ) =: c 0 for all t, which can be achieved by imposing the condition

  -∆η = e 2η on R 2 induced by stereographic projection from S 2 , with

5 . 2 .

 52 This concludes the proof of Theorem 5.1 in the radial case. Proof of Proposition 5.4. Throughout this section we let r k = r (l+1) k , etc., and we set r

  , and for 0 < r < R we set Λ k (r) = Br e k dx, σ k (r) = Br f k dx, satisfying (49). Also introduce the spherical mean ūk (r) = ∂Br u k do of u k on ∂B r , and so on, and set ẽk = λ k ū2 k e ū2 k . The spherical mean wk of the functionw k (x) = u k (0)(u k (x) -u k (0)), satisfies the equation -∆ wk = fkdk , (83)where fk = λ k u k (0)u k e 2u 2k and where dk = u k (0) uk e u 2 k → 0 in L 1 (B Lr k ) for any L > 0 as k → ∞ similar to (59).Note that by Jensen's inequality we have (84) ẽk ≤ ēk ; hence Λk (r) := Br ẽk dx ≤ Λ k (r), Br fk dx = σ k (r). Observe that in analogy with (49) Theorem 4.2 implies lim L→∞ lim k→∞ Λk (Lr k ) = lim L→∞ lim k→∞ Λ k (Lr k ) = lim L→∞ lim k→∞ σ k (Lr k ) = Λ 1 . (85)

  now use Proposition 5.8 to deal with concentrations around the point x (i) k at scales which are small with respect to ρ k . Indeed, for |x| ≤ ρ k we have |x| = R k (x); therefore, by Proposition 5.8 and Lemma 5.14 below for any 0 < r ≤ ρ k with a uniform constant C there holds

  are computed as above with respect to the concentration point x (j) k . In particular, with such a choice of s (0) k,1 we find the intermediate quantization result lim k→∞ Λ k (s

  and we let S 0 = S (i) 0 be the set of accumulation points of S k . Note that 0 ∈ S 0 . Finally we let y points x k for which (102) holds and which satisfy |y (0) k | = 1. Choosing another subsequence we may assume that y (0) k → y (0) as k → ∞. Recalling that v k (y (0) k ) → ∞ by (102) and observing that R 2 \S 0 is connected, from Proposition 5.8 and a standard covering argument we obtain that

B 1 /

 1 L (y0) I k dx → 0 for any y 0 ∈ S 0 if we let first k → ∞ and then L → ∞. Hence for such y 0 we conclude that lim sup k→∞ B 1/L (0) |∆η k |dx → 0 as L → ∞.

2 Ω

 2 0 -1) dx > c * for all such domains Ω. This is possible by(125). Fixing such a domain Ω, finally, for any given c 4π (Ω) < c 0 < c * we letw s,x0 = √ α s,x0 v s,x0, where for each s, x 0 the number α s,x0 is uniquely determined such thatE(w s,x0 ) = 1 (e αs,x 0 v 2 s,x 0 -1) dx = c 0 .Observe that (126) and (128) imply the bounds 4π < α s,x0 < 8π for each s, x 0 , and(129) α s,x0 → 4π as s → 0 uniformly in |x 0 | = 3R by (125).Let u s,x0 (t) be the solution to the initial value problem (3) -(5) with initial data u s,x0 (0) = w s,x0 ≥ 0. Lemma 6.3. With a uniform constant α 0 > 4π there holds(130) sup 0<s≤1,|x0|=3R Ω |∇u s,x0 (t)| 2 dx ≥ α 0 for all 0 ≤ t < ∞.Proof. Otherwise by[START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] we have ||∇u s,x0 (t)|| 2 L 2 → 4π as t → ∞, uniformly in s and x 0 , and from Lemma 6.2 we conclude that sup 0<s≤1,|x0|=3R dist(m(u s,x0 (t)), Ω) → 0 as t → ∞, where m(u) = Ω x|∇u| 2 dx Ω |∇u| 2 dx is the center of mass. Moreover, by (129), (8), and Lemma 6.2 we have sup 0<s≤s0, |x0|=3R

  |x0|=3R |m(u s,x0 (t))| ≥ δ > 0, provided that either 0 < s ≤ s 0 or t ≥ T . Identifying ∂B 3R (0) with S 1 and letting π S 1 (p) = p/|p| for p ∈ R 2 \{0}, then for sufficiently small 0 < s 0 < 1 and sufficiently large T > 0 we can define a homotopy H = H(•, r) : S 1 ×]0, T + 1] → S 1 by lettingH(x 0 , r) =      π S 1 (m(u r,x0 (0))), 0 < r ≤ s 0 , π S 1 (m(u s0,x0 (r -s 0 ))), s 0 ≤ r ≤ T + s 0 , π S 1 (m(u r-T,x0 (T ))),T + s 0 ≤ r ≤ T + 1.

6 . 2 .

 62 k | 2 dx = 4πl, for some l ∈ N, contradicting (132). The proof is complete. Saddle points of the Moser-Trudinger energy. By[START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF], Corollary 7, on any bounded domain Ω ⊂ R 2 the Moser-Trudinger energy E attains its maximum β * 4π := c 4π (Ω) in the set M 4π defined in[START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF]. Moreover, we have Lemma 6.4. The set K 4π of maximizers of E in M 4π is compact.

  ε = {u ∈ M α ; ∃v ∈ K 4π : ||∇(u -v)|| L 2 < ε} .Moreover, for any such α there exists u ∈ N α,ε where β * α = E(u) is attained, and u solves (2) for some λ ≥ 0. By (127) the setΓ α = {γ ∈ C 0 ([0, 1[; M α ); γ(0) = u, E(γ(1)) > β *α }, then is non-void for any 4π < α < α * . Since any γ ∈ Γ α necessarily passes through the set N α,2ε \ N α,ε we have ) → 0 as α → 0 ,

  Integrating from t 0 to t and using (17), for any t ∈ [t 0 , t 1 ] we get is large enough. For such t 0 then t 1 = ∞, and we conclude

		1 16C 2 1	, from (23) at any time t ∈ [t 0 , t 1 ] we obtain
	(26)			1 2	d dt	Ω	u 2 t e u 2	dx ≤ C	Ω	u 2 t e u 2	dx.
	(27)	u 2 t e u 2	dx ≤		u 2 t e u 2	dx + C	∞	u 2 t e u 2	dx < 2ε 0 ,
	{t}×Ω					{t0}×Ω			t0	Ω
	if t 0 lim sup								
	t→∞	{t}×Ω					

  by Lemma 4.1, (40), and (47), we can easily bound the contribution from the second integral

	Bt

  k = d k for simplicity. Coupled with the uniform bound u k (t) ≥ εu k (r k ) for r k ≤ t ≤ T k ,the estimate (59) yields decay of B T k |d k |dx. Thus, for Lr k ≤ t = t k ≤ T k from (69) and Proposition 5.4 we have 2πtw k

  of the estimate (89) it is enough to prove the Lemma with N k (s, t) and P k (t) replaced by Ñk (s, t) and Pk (t). For s = s

		(l) k < t we integrate by
	parts as before to obtain
		t
	(93)	2 Ñk (s, t) ≤ Pk (t) -4π
		s

we can choose 4π < α 1 < α * such that (137) c α-4π < β α for all α ∈]4π, α 1 [.

Clearly, we may assume that α 1 ≤ 8π.

Theorem 6.5. For any 4π < α < α 1 there exists a pair of solutions u, u ∈ M α of (2)

This result completes Theorem 1.8 from [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] where the existence of a pair of solutions of (2) only was shown for almost every 4π < α < α 1 .

Proof of Theorem 6.5 Let 4π < α < α 1 . It remains to find u. Fix some γ ∈ Γ α with inf

Fix a number β with β α < β < β * α . As long as E(u(s, t)) ≤ β let u(s, t) ≥ 0 be the solution to the initial value problem (3), ( 4), [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] with initial data u(s, 0) = γ(s) ≥ 0, and let u(s, t) = u(s, t(s)) for all t ≥ t(s) if there is some first t(s) ≥ 0 where E(u(s, t(s))) = β. Note that by the implicit function theorem the family u(s, t) thus defined depends continuously both on s and t unless u t (s, t(s)) = 0 for some s with E(u(s, t(s))) = β, that is, unless there is a solution 0 < u ∈ M α of ( 2) with E(u) = β, in which case the proof is complete.

For t > 0 let 0 ≤ s(t) < 1 be such that

and let s 1 be a point of accumulation of (s(t)) t>0 as t → ∞. Note that similar to (132) by ( 13) for any fixed time t 0 we have

Fix u 0 = γ(s 1 ) ≥ 0 and let u(t) with associated parameter λ(t) be the solution to the initial value problem (3), ( 4), [START_REF] Struwe | Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF] with initial data u(0) = u 0 , satisfying (138) c α-4π < E(γ(s 1 )) = E(u(0)) ≤ E(u(t)) ≤ β α < β < β * α for all t. We claim that u(t) is uniformly bounded and thus converges to a solution 0 < u ∞ ∈ M α of (2) with 0 < E(u ∞ ) < β * α . For this we argue as in the proof of Theorem 6.1. Indeed, suppose by contradiction that u(t) blows up as t → ∞. For a sequence of numbers t k → ∞ as constructed in Lemma 4.1 then as k → ∞ we have λ k := λ(t k ) → λ ∞ ≥ 0; moreover, we may assume that u k := u(t k ) w u ∞ in H 1 0 (Ω) and pointwise almost everywhere, where 22) and the dominated convergence theorem we infer E(u k ) → E(u ∞ ) ≤ c α-4π , contradicting (138). But with λ ∞ = 0 in view of (2) also u ∞ must vanish identically, and Theorem 1.1 yields the contradiction α = 4π. The proof is complete.