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Abstract. This report is devoted to the computation of the volume of
whispering gallery modes in optical micro-spheres. We first derive the
mathematical expression of TE and TM modes in a homogeneous dielectric optical
micro-sphere from the general set of Maxwell’s equations. Then we present a
method to numerically compute the volume of whispering gallery TE or TM
modes which do not require any assumptions on the mode numbers as it is usually
the case. Last we present the Matlab Toolbox WGMode written from the present
study designed to explore resonance conditions, to visualize whispering gallery TE
or TM modes in a micro-sphere and to compute the volume of any given mode.
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1. Introduction

Whispering gallery modes (WGM) are specific resonances of a wave field inside a given cavity
with smooth edges. They correspond to waves circling around the cavity, supported by
continuous total internal reflection of the cavity surface, that meet the following resonance
condition: after one round-trip they return to the same point with the same phase and
hence interfere constructively with themselves, forming standing waves, see [14] for details.
WGM’s have attracted much attention due to potential applications in photonics, quantum
electrodynamics, telecommunication, etc. Such applications in technological and scientific
fields are e.g. the realization of micro-lasers, narrow filters, optical switching, ultrafine
sensing, displacement measurements, high resolution spectroscopy, Raman sources and
studies of nonlinear optical effects, see [8] for a review.

The quantum and nonlinear properties of an optical microcavitiy are well described by
its quality-factor Q and its mode volume V. The spontaneous emission rate enhancement of
a two-level system embedded in a cavity is given by the ratio between the quality-factor and
the mode volume [4,5] through the Purcell factor FP :

FP =
3

4π2

Q

V

(
λ

N0

)3

(1.1)

where λ is the resonant wavelength of the cavity and N0 its refractive index. The values of Q
and V also well characterize nonlinear microcavities [3,22]. For example, the power bistability
threshold Pth of a lossless cavity including a Kerr material (with a nonlinear refractive index
N2) is given in a first approximation by:

Pth =
2πN2

0

3
√

3N2λ

V
Q2

. (1.2)

In this report, we give a numerical method to calculate the mode volume V for a dielectric
spherical WGM microresonator, defined as the integral over the whole space of the energy
density normalized by its maximum value inside the micro-sphere, i.e.

V =
1

wmax

∫
R3

w(x1, x2, x3) dx1dx2dx3 (1.3)

where w denotes the energy density given as a function of the position vector x = (x1, x2, x3)
by

w(x) =
1

2

(
ε(x)

2
E(x)E∗(x) +

1

2µ0
B(x)B∗(x)

)
(1.4)

and wmax denotes the maximum value of the energy density inside the micro-sphere and the
quantities E∗ and B∗ stand respectively for the adjoint (conjugate transpose) of the electric
field E and magnetic induction B.

The document is organized as follows. In section 2 we introduce the general framework
for this problem as set by Maxwell’s equations. The problem turns out to solving a vectorial
wave equation in spherical coordinates. The vectorial wave equation can be replaced by
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a simultaneous system of three scalar equations, but the solution of this system for any
component in coordinates systems other than the rectangular coordinates system is most
cases impractical because the three components of the unknown vector field are connected in
each equation. Thus in section 3 we use Hansen method to obtain the solutions of the vector
wave equation in spherical coordinates from the solutions of the corresponding scalar wave
equation. We deduce the expression of TE and TM modes in a spherical microresonator in
terms of vector spherical harmonics functions and the corresponding modal equations that
determine the resonance conditions. The expressions of TE and TM modes are used in
section 4 to compute analytically the TE and TM mode volumes for a dielectric spherical
WGM microresonator. We have also written a Matlab Toolbox named WGMode dedicated
to the study of Whispering gallery modes in spherical microresonator and based on the
results shown in this document. The scripts of the WGMode Matlab Toolbox allow to
explore resonance conditions for TE or TM modes, to visualize whispering gallery TE or TM
modes in a micro-sphere and to compute the volume of any given mode. The features of the
WGMode Matlab Toolbox are presented in section 5.

2. General framework

2.1. Maxwell’s equations

The behavior of the electromagnetic field at time t and position x in an optical device such
as a micro-resonator can be described from the general set of Maxwell’s equations:

curlE(x, t) +
∂

∂t
B(x, t) = 0

divB(x, t) = 0
divD(x, t) = ρ(x, t)

curlH(x, t)− ∂

∂t
D(x, t) = j(x, t)

(2.1)

where B is the magnetic flux (in units of Tesla, T), H is the magnetic field strength (in units
of A/m), D is the electric displacement field (in units of C/m2), E is the electric field (in
units of V/m), ρ is the electric charge density (in units of C/m3) and j is the current density
(the sum of source currents density js and induced currents density jc in units A/m2). These
equations have to be considered in the sense of distributions in R3, see e.g. [13,16].

The magnetic flux B and the magnetic field strength H are connected through the
relation

B(x, t) = µ0 (H(x, t) + M(x, t)) (2.2)

where M is the magnetization vector (in units of A/m) and µ0 denotes the magnetic
permeability in vacuum (µ0 = 4π 10−7 H/m). Similarly, the electric displacement field D
and the electric field E are connected through the relation

D(x, t) = ε0E(x, t) + P(x, t) (2.3)

where P is the electric polarisation vector (in units of C/m2) and ε0 denotes the permittivity
in vacuum (ε0 = 1

36π
10−9 F/m).

In addition to Maxwell’s equations there are constitutive relationships to describe
media’s properties and effects.

2.1.1. Constitutive relationships for linear materials When the media under
consideration can be assumed to be isotropic and linear with respect to their behavior to the
electromagnetic field, the constitutive relationships are in the form

M = χm H
P = ε0χeE
jc = σ E

(2.4)
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where χm and χe are dimensionless quantities known respectively as the magnetic
susceptibility and the electric susceptibility and σ is the electric conductivity. The last
relation is Ohm’s law in a microscopic form. In this study we will assume that all the media
under consideration are free of charge (i.e. we assume that ρ = 0) and non conductive media
(i.e. we assume that σ = 0). Taking into account (2.4), relations (2.2) and (2.3) can be
expressed as {

B = µ H
D = ε E

(2.5)

where the dielectric permittivity ε = ε0(1 + χe) and the magnetic permeability µ = µ0χm
are characteristic constants of linear isotropic media.

The three parameters (µ, σ, ε) describe the electromagnetic properties of a material. It
is common to write the magnetic permeability µ and the electric permittivity ε as

µ = µ0 µr and ε = ε0 εr

where µr and εr denote respectively the relative permeability and relative permittivity (also
called the dielectric constant). They are dimensionless quantities. For most of the media
involved in optical devices, it can be assumed that µr = 1. The speed of light, that is to say
the electromagnetic wave velocity in vacuum, is given by

c =
1

√
µ0ε0

and it is usual in optics to set εr = N2 where N is referred as the optical index of the dielectric
medium. For an electromagnetic wave with wavelength λ and pulsation ω = 2πc/λ, we denote
by

k0 =
2π

λ
=
ω

c

its wavenumber in vacuum and by k = N k0 its wavenumber in a medium characterized by an
optical index N . If we assume that the involved media are linear, isotropic and non dispersive
then

• the magnetic induction B is proportional to the magnetic field H and can be expressed
as B(x, t) = µ(x)H(x, t) where µ is a real valued scalar function of the space variable;

• the electric displacement vector D can be expressed as D(x, t) = ε(x)E(x, t) where ε is
a real valued scalar function of the space variable.

Using the above constitutive relations, it is possible to write Maxwell’s equations (2.1) in
terms of electric field E and magnetic induction B alone as:

curlE(x, t) +
∂

∂t
B(x, t) = 0

divB(x, t) = 0
div (ε(x)E(x, t)) = 0

curl

(
1

µ(x)
B(x, t)

)
− ε(x)

∂

∂t
E(x, t) = 0

(2.6)

2.1.2. Continuity conditions for Maxwell equation The electromagnetic field in
an isotropic and linear homogeneous medium are “regular” and partial differential operators
in Maxwell equations (2.1) can be considered in the usual sense of differential calculus, see
e.g. [7, 15]. In such a case, the electromagnetic fields on both sides of an interface between
two media with different electromagnetic characteristics are interrelated through the following
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conditions: [
E ∧ n

]
= 0 (2.7a)[

B · n
]

= 0 (2.7b)[
εE · n

]
= ρs (2.7c)[ 1

µ
B ∧ n

]
= −jΣ (2.7d)

where jΣ is the surface electrical current density at the interface and ρs is the surface charge
density, n denotes the unit vector normal to the interface between the two different involved
media and the brackets [ ] stand to denote the jump of the quantity inside the brackets across
the boundary.

2.2. Optical micro-spheres

Optical micro-spheres, see Fig. 1, are high quality factor optical resonators used for active
and passive photonic applications such as microlaser cavities and filters. The radius of the
micro-spheres considered typically ranges from around ten up to several hundred of micro-
meters. In the present study, it is assumed that the micro-sphere is made of a homogeneous
isotropic linear medium. Namely, throughout the document, we assume that the micro-sphere
is made of a homogeneous dielectric material where µ = µ0 and ε = N2ε0 with the optical
index N being a positive real number. Typical values for N is around 1.45 for silicate glass.
Moreover we assume that the micro-sphere is uncharged (ρ = 0), non conductive (σ = 0) and
not the place of electrical currents js = 0. The wavelength range of interest is 800 to 1600
nano-meters.

Figure 1. Picture of an optical micro-sphere made at CNRS FOTON Laboratory.

2.3. Harmonic Maxwell equation

2.3.1. Spectral decomposition Because of the linearity of the set of Maxwell’s
equations, its solutions can be decomposed into a superposition of sinusoids by the Fourier
transform method. The sinusoidal solution to the electromagnetic wave equations (2.6) takes
the form

E(x, t) = E0(x) cos(ωt+ φ0(x))

and
B(r, t) = B0(x) cos(ωt+ φ0(x))

where ω is the angular frequency (in units of radians per second), E0 and B0 are the field
amplitude and φ0 is the phase angle (in units of radians).
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It is very convenient in practice to represent sinusoidal fields in complex notation thanks
to Euler’s formula. A phasor representation of the electric field E(x, t) (the same holds for
the magnetic induction B) is the complex number E(x) with a magnitude E0(x) and a phase
φ0 such that

E(x) = E0(x) exp(iφ0(x)).

If we multiply E(x) by exp(iωt) and apply Euler’s formula,

E(x) exp(iωt) = E0(x) exp(i(ωt+ φ0(x))

= E0(x) cos(i(ωt+ φ0(x)) + E0(x) sin(i(ωt+ φ0(x)).

The real part of E(x) exp(iωt) is the electric field E(x, t)

E(x, t) = Re
(
E(x) exp(iωt)

)
. (2.8)

In the sequel, we will use the following phasor representations

E(x, t) = Re
(
E(x) exp(iωt)

)
where E(x) = E0(x) exp(iφ0(x))

and
B(x, t) = Re

(
B(x) exp(iωt)

)
where B(x) = B0(x) exp(iφ0(x))

2.3.2. Maxwell’s equations for sinusoidal electromagnetic waves From
equations (2.6) we deduce that the complex fields E and B satisfy the following set of time
independent equations :

curlE(x) + iωB(x) = 0 (2.9a)

divB(x) = 0 (2.9b)

div (ε(x)E(x)) = 0 (2.9c)

curl

(
1

µ(x)
B(x)

)
− iωε(x)E(x) = 0 (2.9d)

In the case of a homogeneous dielectric domain characterized by a constant electric
permittivity ε and a magnetic permeability µ0, taking the curl of the curl equations in (2.6)
we obtain:

curl curlE = − ∂

∂t
curlB = −µ0ε

∂2E

∂t2

and curl curlB = µ0ε
∂

∂t
curlE = −µ0ε

∂2B

∂t2
.

Then by using the vector identity, see e.g. [15],

curl (curlV) = ∇ (divV)−∆V

where V is any vector function of the space variables, and taking into account that
the electromagnetic field is divergence free in a homogeneous dielectric medium, see
equations (2.6), we find that the electromagnetic field satisfies the wave equations:

∂2

∂t2
E(x, t)− µε ∆E(x, t) = 0

and
∂2

∂t2
B(x, t)− µε ∆B(x, t) = 0.

It follows that the complex vector fields E and B satisfy the vectorial Helmholtz equation in
each domain of constant electric permittivity

∆E(x) + ω2εµ0E(x) = 0 and ∆B(x) + ω2εµ0B(x) = 0 (2.10)
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together with the conditions

divE(x) = 0 and divB(x) = 0. (2.11)

If we introduce the wave number k such that k2 = ω2εµ0 then the complex vector fields E
and B satisfies a system of equations in the form

∆C(x) + k2C(x) = 0 (2.12)

divC(x) = 0 (2.13)

3. Whispering Gallery Modes in an isotropic dielectric
micro-sphere

An isotropic dielectric micro-sphere can retain the light that has been injected into it
from a coupling waveguide (most of the time a micro-taper with strong evanescent field is
required because far field electromagnetic energy could not be captured by a dielectric micro-
sphere). Whispering Gallery Modes (WGMs) are particular form of the electromagnetic
field inside an axisymmetic dielectric waveguide such as micro-sphere when some resonance
conditions are satisfied. Actually, in an isotropic optical micro-sphere, the “dielectric wall”
(corresponding to the difference of dielectric properties inside and outside the micro-sphere)
prevents the trapped light from being scattered easily. When resonance condition is satisfied,
the electromagnetic field of WGMs can be reinforced by coupling in light and forming
spatial coherent modes. A dielectric micro-sphere can accommodate many different discrete
resonance frequencies with respect to its dimension and materials.

From an experimental point of view, the modes properties of the micro-sphere can be
evaluated by measuring and analyzing the coupling characteristics and resulting interference
patterns from a micro-taper output. The WGMs are excited either by evanescent field or by
the modes coupling between the WGMs.

We introduce the spherical coordinate system as shown in Fig. 2 where

• the radius or radial distance r is the Euclidean distance between the origin O set at the
microsphere center and the current point P ;

• the inclination (or polar angle) θ is the angle between the zenith direction and the
position vector OP measured between 0 and π radian ;

• the azimuth (or azimuthal angle) ϕ is the signed angle measured between 0 and 2π
radian from the azimuth reference direction to the orthogonal projection of the position
vector OP on the reference plane.

We denote by er, eθ, eϕ the spherical unit vectors and by r = r er = OP the radial vector
where r = ‖OP‖2 is the radial distance.

The analytic solutions of WGMs can be obtained by solving vector Helmhotz equations
(2.12) for the electromagnetic field (E,B) in the domain occupied by the dielectric sphere
and in the outer domain, together with appropriate boundary conditions at the interface
deduced from (2.7a)–(2.7d).

The vectorial wave equation (2.12) can be replaced by a simultaneous system of 3 scalar
equations, but the solution of this system for any component in coordinates systems other
than the rectangular coordinates system is most cases impractical because the 3 components
of the unknown vector field C are connected in each equation. For instance, the vectorial
Laplacian in spherical coordinates reads

∆C =



1

r

∂2(rCr)

∂r2
+

1

r2

∂2Cr
∂ϕ2

+
1

r2 sin2(ϕ)

∂2Cr
∂θ2

+
cotan(ϕ)

r2

∂Cr
∂ϕ
− 2

r2

∂Cϕ
∂ϕ
− 2

r2 sin(ϕ)

∂Cθ
∂θ
− 2Cr

r2
− 2 cotan(ϕ)

r2
Cϕ

1

r

∂2(rCϕ)

∂r2
+

1

r2

∂2Cϕ
∂ϕ2

+
1

r2 sin2(ϕ)

∂2Cϕ
∂θ2

+
cotan(ϕ)

r2

∂Cϕ
∂ϕ
− 2

r2

cotan(ϕ)

sin(ϕ)

∂Cθ
∂θ

+
2

r2

∂Cr
∂ϕ
− 1

r2 sin2(ϕ)
Cϕ

1

r

∂2(rCθ)

∂r2
+

1

r2

∂2Cθ
∂ϕ2

+
1

r2 sin2(ϕ)

∂2Cθ
∂θ2

+
cotan(ϕ)

r2

∂Cθ
∂ϕ

+
2

r2 sin(ϕ)

∂Cr
∂θ

+
2 cotan(ϕ)

r2 sin(ϕ)

∂Cϕ
∂θ
− 1

r2 sin2(ϕ)
Cθ


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Figure 2. Definition of the spherical coordinate system used.

However, when dealing with the spherical coordinates system the method of Hansen
can be used for the determination of 3 independent vector solutions of (2.12). The method
of Hansen is for instance detailed in [15]. It permits to deduce solutions of the vector wave
equation in spherical coordinates directly from the solutions of the corresponding scalar wave
equation.

In the next section we focus on the resolution of the scalar wave equation (i.e. the
component-wise vector wave equation (2.12)). In section 3.2 we will consider the way the
vectorial solution to the vector wave equation (2.12) can be deduced from the solution to the
scalar wave equation by the method of Hansen.

3.1. The scalar wave equation in spherical coordinates

The scalar wave equation reads

∆Ψ(x) + k2Ψ(x) = 0. (3.1)

In spherical coordinates, equation (3.1) is separable. We are looking for solutions in the form

Ψ(r, θ, ϕ) = f1(r)× f2(θ)× f3(ϕ) (3.2)

where f1, f2 and f3 denote 3 complex valued functions of the real variable. The angles ϕ
and θ are the azimuthal angle and the polar angle respectively, see Fig. 2. Relative to the
spherical coordinates system, the Laplace operator has the form [15]

∆Ψ =
1

r2

∂

∂r

(
r2 ∂

∂r
Ψ

)
+

1

r2

(
1

sin θ

∂

∂θ

(
sin(θ)

∂

∂θ
Ψ

)
+

1

sin2 θ

∂2

∂ϕ2
Ψ

)
. (3.3)

In spherical coordinates, the partial differential equation (3.1) lends itself to being separated
into a system of 3 ordinary differential equations: upon substituting ansatz (3.2) in the wave
equation (3.1) one finds that the 3 unknown functions f1, f2 and f3 satisfy

r2 f ′′1 (r) + 2r f ′1(r) + (k2r2 − p2)f1(r) = 0 (3.4a)

1

sin(θ)

d

dθ
(sin(θ) f ′2(θ)) + (p2 − q2

sin2(θ)
) f2(θ) = 0 (3.4b)

f ′′3 (ϕ) + q2 f3(ϕ) = 0 (3.4c)
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where the real parameters p and q are the separation constants.

3.1.1. Angular dependency Since the optical properties of the micro-sphere are
independent of the azimuthal angle ϕ, it is necessary for f3 to be a periodic function with
period 2π. Then, the solution to equation (3.4c) reads

f3(ϕ) = C1 eimϕ + C2 e−imϕ (3.5)

where the separation constant q coincides with an integer m ∈ Z and C1 and C2 denote two
complex constants.

The change of variable η = cos(θ) in equation (3.4b) leads to the equation

(1− η2) g′′2 (η)− 2η g′2(η) + (p2 − m2

1− η2
) g2(η) = 0 (3.6)

where the new unknown function g2 is defined by the relations f2(θ) = g2(cos(θ)). The
solutions to the linear second order ordinary differential equation (ODE) (3.6) are the so-
called hypergeometric functions, see [1] chp. 15. This equation has non zero solutions that
are nonsingular at ±1 if and only if p2 = `(` + 1) with ` being a non negative integer such
that |m| 6 `. In such a case, the solutions to equation (3.6) are the associated Legendre
functions, see [1] chp. 8 or [6] section 8.7 & 8.8, defined for m > 0 by

g2(η) = Pm` (η) := (−1)m (1− η2)
m
2

dm

dηm
P`(η)

where P` denotes the Legendre polynomial of degree ` defined for all x ∈]− 1, 1[ by

P`(x) =
1

2``!

d`

dx`

(
(x2 − 1)`

)
.

The associated Legrendre functions are sometimes defined without the multiplicative constant
(−1)m which is known as the Cordon-Shortley phase factor. Following the standard
convention, we set for negative values of the order

P−m` = (−1)m
(`−m)!

(`+m)!
Pm` .

For a fixed integer m, the associated Legrendre functions satisfy the following orthogonality
conditions for all k, ` ∈ N such that 0 6 m < `∫ 1

−1

Pmk P
m
` dx = 0

and ∫ 1

−1

Pm` P
m
` dx =

2(`+m)!

(2`+ 1)(`−m)!
.

Finally we find the functions product f2(θ) f3(ϕ) in the form of

Y m` (θ, ϕ) = C`m Pm` (cos(θ)) eimϕ − ` 6 m 6 `, ` ∈ N (3.7)

where Y m` is known as the Spherical Surface Harmonics of degree ` and order m, see [2]. The
normalization constant C`m is taken to be

C`m =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
. (3.8)
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With this normalization convention, the complex conjugate of the Spherical Surface
Harmonics of degree ` and order m is

Y m` (θ, ϕ) = (−1)mY −m` (θ, ϕ).

The Spherical Surface Harmonics form a complete set of orthonormal functions and thus
they form an orthonormal basis of the Hilbert space of square-integrable functions on the
unit sphere [2,16]. Namely, on the unit sphere any square-integrable function can be expanded
as a linear combination of Spherical Surface Harmonics as:

g(θ, ϕ) =

+∞∑
`=0

∑̀
m=−`

gm` Y m` (θ, ϕ) (3.9)

where the equality holds in L2([0, π]× [0, 2π],C) and

gm` =

∫ 2π

0

(∫ π

0

g(θ, ϕ)Y m` (θ, ϕ) sin θ dθ

)
dϕ.

3.1.2. Radial dependency There remains to achieve the identification of the radial
function f1. It satisfies the following Spherical Bessel equation deduced from (3.4a)

r2f ′′1 (r) + 2rf ′1(r) + (k2r2 − `(`+ 1))f1(r) = 0. (3.10)

By the change of variable x = kr, equation (3.10) for the new unknown function g1 defined
by g1(x) = f1(x/k) reads

x2 g′′1 (x) + 2x g′1(x) + (x2 − `(`+ 1)) g1(x) = 0. (3.11)

The two linearly independent solutions to the linear second order ordinary differential
equation (3.11) are known as the spherical Bessel functions of the first and second kinds
[1, 6, 17] denoted j` and y`. They are related to the ordinary Bessel functions J` and Y` for
x > 0 by the relations

j`(x) =

√
π

2x
J`+ 1

2
(x), (3.12)

y`(x) =

√
π

2x
Y`+ 1

2
(x) = (−1)`+1

√
π

2x
J−`− 1

2
(x). (3.13)

When dealing with the problem of scattering of electromagnetic waves by a sphere, it is
convenient to introduce the Riccati-Bessel functions of the first and second kinds denoted ψ`
and χ`. They are related to the Spherical Bessel functions and to Bessel functions for x > 0
by the relations

ψ`(x) = x j`(x) =

√
πx

2
J`+ 1

2
(x), (3.14)

χ`(x) = −x y`(x) = −
√
πx

2
Y`+ 1

2
(x). (3.15)

We deduce that the radial function f1 can be expressed as a linear combination of the
Spherical Bessel functions as

f1(r) = α` j`(kr) + β` y`(kr)

where α` and β` denote two complex constant numbers. In terms of the Riccati-Bessel
functions, the unknown function f1 can be expressed as

f1(r) = α`
ψ`(kr)

kr
− β`

χ`(kr)

kr
.
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We conclude that the general solution of the scalar wave equation (3.1) in spherical
coordinates, expressed either in terms of the Spherical Bessel functions or in terms of the
Ricatti-Bessel functions, reads

Ψ(r, θ, ϕ) =

+∞∑
`=0

∑̀
m=−`

(α` j`(k r) + β` y`(k r)) Y m` (θ, ϕ)

=

+∞∑
`=0

∑̀
m=−`

(
α`

ψ`(k r)

kr
− β`

χ`(k r)

kr

)
Y m` (θ, ϕ).

(3.16)

3.2. Hansen method for solving the vector wave equation in spherical
coordinates

We have shown in the previous section that the characteristic solution of the scalar wave
equation (3.1) in spherical coordinates is

Ψm
` (r, θ, ϕ) = z`(k r) Y

m
` (θ, ϕ)

where z` denotes one of the two linearly independent solutions (j` or y`) to the spherical
Bessel equation (3.10). We are now concerned by solving the vector wave equation

∇(divC)− curl curlC + k2C = 0 (3.17)

in a domain which is either the inner or the outer of a ball. Note that for solenoidal (i.e.
divergence free) fields, the vectorial wave equation (3.17) can be simplified into

∆C + k2C = 0. (3.18)

In spherical coordinates, the 3 independent vector solutions of (3.17) can be constructed
form the characteristic solution Ψm

` of the scalar wave equation (3.1) by Hansen method as
described in [15], chap. 7. One solution, denoted Lm` in the sequel, can be found by taking
the gradient of Ψm

` . It reads

Lm` (r, θ, ϕ) = ∇Ψm
` (r, θ, ϕ) =


∂

∂r
Ψm
` (r, θ, ϕ)

1

r

∂

∂θ
Ψm
` (r, θ, ϕ)

1

r sin(θ)

∂

∂ϕ
Ψm
` (r, θ, ϕ)



=


∂

∂r
z`(k r) Y

m
` (θ, ϕ)

1

r
z`(k r)

∂

∂θ
Y m` (θ, ϕ)

1

r sin(θ)
z`(k r)

∂

∂ϕ
Y m` (θ, ϕ)

 .

(3.19)

A second solution is found in the form of the vector

Mm
` (r, θ, ϕ) = ∇Ψm

` (r, θ, ϕ) ∧
(
r er

)
= Lm` (r, θ, ϕ) ∧ r

=


0

1

sin(θ)

∂

∂ϕ
Ψm
` (r, θ, ϕ)

− ∂

∂θ
Ψm
` (r, θ, ϕ)

 =


0

1

sin(θ)
z`(k r)

∂

∂ϕ
Y m` (θ, ϕ)

−z`(k r)
∂

∂θ
Y m` (θ, ϕ)

 .
(3.20)
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The third independent solution is

Nm
` (r, θ, ϕ) =

1

k
curlMm

` (r, θ, ϕ)

=
1

k


− 1

r sin(θ)

(
∂

∂θ

(
sin(θ)

∂

∂θ
Ψm
` (r, θ, ϕ)

)
+

1

sin(θ)

∂2

∂ϕ2
Ψm
` (r, θ, ϕ)

)
−1

r

∂

∂r

(
−r ∂

∂θ
Ψm
` (r, θ, ϕ)

)
1

r

∂

∂r

(
r

sin(θ)

∂

∂ϕ
Ψm
` (r, θ, ϕ)

)


.

The first component of Nm
` can be rewritten as

(Nm
` )1(r, θ, ϕ) =

r

k

(
−∆Ψm

` (r, θ, ϕ) +
1

r2

∂

∂r

(
r2 ∂

∂r
Ψm
` (r, θ, ϕ)

))
.

From the scalar wave equation (3.1) we have ∆Ψm
` = −k2 Ψm

` so that

(Nm
` )1(r, θ, ϕ) =

r

k

(
k2 Ψm

` (r, θ, ϕ) +
1

r2

∂

∂r

(
r2 ∂

∂r
Ψm
` (r, θ, ϕ)

))
=

1

k

∂2

∂r2

(
rΨm

` (r, θ, ϕ)
)

+ krΨm
` (r, θ, ϕ).

Moreover, since Ψm
` (r, θ, ϕ) = z`(r)Y

m
` (θ, ϕ) we deduce that

Nm
` (r, θ, ϕ) =


1

k

( d2

dr2

(
rz`(k r)

)
+ k2r

)
Y m` (θ, ϕ)

1

kr

∂

∂r

(
r z`(k r)

) ∂

∂θ
Y m` (θ, ϕ)

1

kr sin(θ)

∂

∂r

(
r z`(k r)

) ∂

∂ϕ
Y m` (θ, ϕ)

 .

Finally, since z` denotes one of the two linearly independent solutions to the spherical Bessel
equation (3.10), we may rewrite Nm

` as

Nm
` (r, θ, ϕ) =


`(`+ 1)

kr
z`(k r) Y

m
` (θ, ϕ)

1

kr

∂

∂r

(
r z`(k r)

) ∂

∂θ
Y m` (θ, ϕ)

1

kr sin(θ)

∂

∂r

(
r z`(k r)

) ∂

∂ϕ
Y m` (θ, ϕ)

 . (3.21)

The vector functions Lm` , Mm
` and Nm

` have several notable properties that follows
directly from their definition. The vector functions Lm` is irrotational (its curl is zero) whereas
Mm

` and Nm
` are solenoidal (their divergence is zero), i.e.

curlLm` = 0, divMm
` = 0, divNm

` = 0. (3.22)

Moreover the 3 vector functions Lm` , Mm
` and Nm

` are related to each other through the
relations

Mm
` = Lm` ∧ r, Nm

` =
1

k
curlMm

` (3.23)

deduced from their definition and by

Mm
` =

1

k
curlNm

` (3.24)

deduced from the vector wave equation (3.17) for Mm
` .
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In order to simplify the expression of the three independent solutions to the vector wave
equation (3.17), it is convenient to introduce the Vector Spherical Harmonics defined from
the Scalar Spherical Harmonics Y m` as

Z`m = Y m` er, (3.25)

Y`m = r ∇Y m` , (3.26)

X`m = ∇Y m` ∧ r. (3.27)

Note that several conventions are used in the literature to define the Vector Spherical
Harmonics and they are actually defined using a different convention in [19]. Here, the
radial distance r and radial vector r are included in (3.25)–(3.27) so as to guarantee that
the dimension of the Vector Spherical Harmonics are the same as the ordinary Spherical
Harmonics and that the Vector Spherical Harmonics do not depend on the radial spherical
coordinate.

We find that the three independent solutions of the vector wave equation (3.17) are
expressed in terms of the Vector Spherical Harmonics as

Lm` (r, θ, ϕ) =
∂

∂r
z`(k r) Y

m
` (θ, ϕ) er + z`(k r)∇Y m` (θ, ϕ)

= kz′`(k r) Z`m(θ, ϕ) +
1

r
z`(k r) Y`m(θ, ϕ), (3.28)

Mm
` (r, θ, ϕ) = z`(k r)∇Y m` (θ, ϕ) ∧ r

= z`(k r) X`m(θ, ϕ), (3.29)

Nm
` (r, θ, ϕ) =

`(`+ 1)

kr
z`(k r) Y

m
` (θ, ϕ) er +

∂

∂r

(
r z`(k r)

)
∇Y m` (θ, ϕ)

=
`(`+ 1)

kr
z`(k r) Z`m(θ, ϕ) +

1

kr

∂

∂r

(
r z`(k r)

)
Y`m(θ, ϕ) (3.30)

where z` denotes either the spherical Bessel function of first or second kind. The solution to
the vector wave equation (3.17) can be represented as

C(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

αm` Lm` (r, θ, ϕ) + βm` Mm
` (r, θ, ϕ) + γm` Nm

` (r, θ, ϕ) (3.31)

where αm` , β
m
` and γm` denotes complex valued constants.

3.3. TE and TM whispering gallery modes in a micro-sphere

When the desired solution to the vector wave equation (3.17) is solenoidal, which is the case
in the present study for the magnetic induction B and electric field E inside and outside
the sphere, see equations (2.9b) and (2.9d), it can be expanded in terms of Mm

` and Nm
`

only [15]. We can therefore distinguish two types of particular electromagnetic fields to our
problem:

(i) Transverse Electric (TE) modes where the electric field E is collinear to Mm
` , i.e.

E(r, θ, ϕ) = ATE
i/o Mm

` (r, θ, ϕ) (3.32)

where ATE
i/o denotes a complex constant number with a different value depending on the

domain (index i for inside or index o for outside the sphere).

(ii) Transverse Magnetic (TM) modes where the electric field E is collinear to Nm
` , i.e.

E(r, θ, ϕ) = ATM
i/o Nm

` (r, θ, ϕ) (3.33)

where ATM
i/o denotes a complex constant number with a different value depending on the

domain (index i for inside or index o for outside the sphere).
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From equation (2.9a), the magnetic induction is given by B = i
ω
curlE so that from relations

(3.23) and (3.24) we deduce that:

(i) for TE modes the magnetic induction B is collinear to ik
ω
Nm
` , i.e.

B(r, θ, ϕ) = ATE
i/o

ik

ω
Nm
` (r, θ, ϕ); (3.34)

(ii) for TM modes the magnetic induction B is collinear to ik
ω
Mm

` , i.e.

B(r, θ, ϕ) = ATM
i/o

ik

ω
Mm

` (r, θ, ϕ). (3.35)

Since Mm
` is orthogonal to the unit radial vector er, in TE modes the electric field is parallel

to the surface of the microsphere whereas in TM modes, the magnetic induction is parallel
to the surface of the microsphere.

We conclude that the electromagnetic field for TE modes has the following form:

E(r, θ, ϕ) = ATE
i/o z`(kr) X`m(θ, ϕ)

= ATE
i/o

r`(kr)

kr
X`m(θ, ϕ), (3.36)

B(r, θ, ϕ) = ATE
i/o

ik

ω

(
`(`+ 1)

kr
z`(k r) Z`m(θ, ϕ) +

1

kr

∂

∂r

(
r z`(k r)

)
Y`m(θ, ϕ)

)
= ATE

i/o

ik

ω

(
`(`+ 1)

r`(k r)

k2r2
Z`m(θ, ϕ) +

r′`(k r)

kr
Y`m(θ, ϕ)

)
, (3.37)

and for TM modes it has the form:

E(r, θ, ϕ) = ATM
i/o

(
`(`+ 1)

kr
z`(k r) Z`m(θ, ϕ) +

1

kr

∂

∂r

(
r z`(k r)

)
Y`m(θ, ϕ)

)
= ATM

i/o

(
`(`+ 1)

r`(k r)

k2r2
Z`m(θ, ϕ) +

r′`(k r)

kr
Y`m(θ, ϕ)

)
, (3.38)

B(r, θ, ϕ) = ATM
i/o

ik

ω
z`(kr) X`m(θ, ϕ)

= ATM
i/o

ik

ω

r`(kr)

kr
X`m(θ, ϕ), (3.39)

where z` denotes the spherical Bessel function of first kind j` or second kind y` and r` denotes
the Ricatti-Bessel function of first kind ψ` or second kind χ` and ` and m denote the mode
numbers.

The Ricatti-Bessel functions of second kind like the Bessel functions of the second kind
have a singularity at the origin (i.e. at the sphere center). They are therefore not suited
to describe the electromagnetic field inside the microsphere. Inside the sphere, TM and TE
modes are expressed in terms of the Ricatti-Bessel functions of first kind alone, i.e. r` = ψ`.

Outside the sphere, TM and TE modes coincide with waves that propagates outward
from the sphere. With the +iωt convention used here for sinusoidal varying fields, see (2.8),
such waves are expressed as the following linear combination of the Ricatti-Bessel functions
of first kind and second kind corresponding to the so-called second Ricatti-Bessel function of
the third kind

ζ` = ψ` + iχ` (3.40)

Finally, for TE modes the electromagnetic field is given in spherical coordinates by

E(r, θ, ϕ) =


ATE

i
ψ`(kr)

kr
X`m(θ, ϕ) if r 6 R

−ATE
o

ζ`(k0r)

k0r
X`m(θ, ϕ) if r > R

(3.41)

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr
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and

B(r, θ, ϕ) =


ATE

i
ik

ω

(
`(`+ 1)

ψ`(k r)

k2r2
Z`m(θ, ϕ) +

ψ′`(k r)

kr
Y`m(θ, ϕ)

)
if r 6 R

−ATE
o

ik0

ω

(
`(`+ 1)

ζ`(k0 r)

k2
0r

2
Z`m(θ, ϕ) +

ζ′`(k0 r)

k0r
Y`m(θ, ϕ)

)
if r > R

(3.42)
where X`m, Y`m and Z`m denote the vector spherical harmonics and ψ` and ζ` denote
respectively the Ricatti-Bessel functions of first and third kinds. For TM modes the
electromagnetic field reads

E(r, θ, ϕ) =


ATM

i

(
`(`+ 1)

ψ`(k r)

k2r2
Z`m(θ, ϕ) +

ψ′`(k r)

kr
Y`m(θ, ϕ)

)
if r 6 R

−ATM
o

(
`(`+ 1)

ζ`(k0 r)

k2
0r

2
Z`m(θ, ϕ) +

ζ′`(k0 r)

k0r
Y`m(θ, ϕ)

)
if r > R

(3.43)
and

B(r, θ, ϕ) =


ATM

i
ik

ω

ψ`(kr)

kr
X`m(θ, ϕ) if r 6 R

−ATM
o

ik0

ω

ζ`(k0r)

k0r
X`m(θ, ϕ) if r > R

(3.44)

3.4. The modal equation

The electromagnetic field inside and outside the microsphere are connected through the
interface conditions at the sphere boundary deduced from boundary conditions (2.7a)–(2.7d).
They read ∀(θ, ϕ) ∈ [0, π]× [0, 2π][

E(R, θ, ϕ) ∧ er

]
= 0, (3.45a)[

B(R, θ, ϕ) · er

]
= 0, (3.45b)[

εE(R, θ, ϕ) · er

]
= 0, (3.45c)[

B(R, θ, ϕ) ∧ er

]
= 0. (3.45d)

In the next two sections we will study the conditions at which equations (3.45a)–(3.45d) are
satisfied by TE modes and TM modes respectively.

3.4.1. Modal equation for TE modes According to (3.32) and (3.34), the
electromagnetic field (E,B) for TE modes is given by

E(R, θ, ϕ) = ATE
i/o

r`(kR)

kR
X`m(θ, ϕ), (3.46)

B(R, θ, ϕ) = ATE
i/o

ik

ω

(
`(`+ 1)

r`(k R)

k2R2
Z`m(θ, ϕ) +

r′`(k R)

kR
Y`m(θ, ϕ)

)
. (3.47)

Since X`m is orthogonal to er, condition (3.45c) is always satisfied. Condition (3.45a)
implies that we must have [

ATE
i/o

r`(kR)

kR

]
= 0 (3.48)

that is to say

ATE
i

ψ`(kR)

kR
= −ATE

o
ζ`(k0R)

k0R
. (3.49)

Condition (3.45b) implies that[
ATE

i/o`(`+ 1)
r`(k R)

kR2
Z`m(θ, ϕ) · er

]
+

[
ATE

i/o

r′`(k R)

R
Y`m(θ, ϕ) · er

]
= 0
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and thanks to (3.48), the condition reduces to[
ATE

i/o r
′
`(kR)

]
= 0 (3.50)

that is to say to
ATE

i ψ′`(kR) = −ATE
o ζ′`(k0R). (3.51)

Condition (3.45d) is identically satisfied when relations (3.48) and (3.50) are taken into
account. Thus, boundary conditions for TE modes give rise to the following system of
equations to be fulfilled A

TE
i

ψ`(kR)

kR
+ATE

o
ζ`(k0R)

k0R
= 0

ATE
i ψ′`(kR) +ATE

o ζ′`(k0R) = 0

. (3.52)

Whenever the determinant of the linear system is nonzero, its unique solution is the zero
solution. There exists nontrivial solutions if and only if the determinant is zero, that is to
say for k such that

k

k0

ψ′`(kR)

ψ`(kR)
=
ζ′`(k0R)

ζ`(k0R)
. (3.53)

In such a case, there exists an infinite set of solutions to the linear system (3.52) in the form
(ATE

i , ATE
o ) where

ATE
o = −ATE

i
k0

k

ψ`(kR)

ζ`(k0R)
. (3.54)

The value of ATE
i for a given experiment can be computed from the condition that the total

power in the device is imposed or known. Equation (3.53) is referred as the modal equation
for TE whispering gallery modes.

3.4.2. Modal equation for TM modes According to (3.33) and (3.35), the
electromagnetic field (E,B) for TM modes is given by

E(R, θ, ϕ) = ATM
i/o

(
`(`+ 1)

r`(k R)

k2R2
Z`m(θ, ϕ) +

r′`(k R)

kR
Y`m(θ, ϕ)

)
, (3.55)

B(R, θ, ϕ) = ATM
i/o

i

ω

r`(kR)

R
X`m(θ, ϕ). (3.56)

Since X`m is orthogonal to er, condition (3.45b) is always satisfied. Condition (3.45d) implies
that we must have [

ATM
i/o r`(kR)

]
= 0 (3.57)

that is to say
ATM

i ψ`(kR) = −ATM
o ζ`(k0R). (3.58)

Condition (3.45a) implies[
ATM

i/o `(`+ 1)
r`(k R)

k2R2
Z`m(θ, ϕ) ∧ er

]
+

[
ATM

i/o

r′`(k R)

kR
Y`m(θ, ϕ) ∧ er

]
= 0.

Since Z`m is collinear to er, the first term in the brackets is always zero and the condition
reduces to [

ATM
i/o

r′`(kR)

k

]
= 0 (3.59)

that is to say
k0 A

TM
i ψ′`(kR) = −k ATM

o ζ′`(k0R). (3.60)
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Condition (3.45c) is identically satisfied when relations (3.57) and (3.59) are taken into
account. Thus, boundary conditions for TM modes give rise to the following system of
equations with unknowns ATM

i and ATM
o to be fulfilled{

ATM
i ψ`(kR) +ATM

o ζ`(k0R) = 0

ATM
i k0 ψ

′
`(kR) +ATM

o k ζ′`(k0R) = 0
. (3.61)

Whenever the determinant of the linear system is nonzero, its unique solution is the zero
solution. There exists nontrivial solutions if and only if the determinant is zero, that is to
say when k is such that

k0

k

ψ′`(kR)

ψ`(kR)
=
ζ′`(k0R)

ζ`(k0R)
. (3.62)

In such a case, there exists an infinite set of solutions to the linear system (3.61) in the form
(ATM

i , ATM
o ) where

ATM
o = −ATM

i
ψ`(kR)

ζ`(k0R)
. (3.63)

The value of ATM
i for a given experiment can be computed from the condition that the total

power in the device is imposed or known. Equation (3.62) is referred as the modal equation
for TM whispering gallery modes.

Remark 1 A TE mode (resp. TM mode) of the sphere is obtained by solving the modal
equation (3.53) (resp. (3.62)). As a consequence, a mode is described in terms of three
integers : the integer ` involved in the modal equation, one integer n used to label the
solutions of the modal equation for a fixed value of ` and the integer m involved in the
expression of the electromagnetic field of the mode, see (3.46)–(3.47) and (3.55)–(3.56). Note
that this underscores a mode degeneracy since there exists 2`+1 modes with the same values
of ` and n, and therefore with the same resonance frequency, but with a different value for
m and therefore with a different expression for the electromagnetic field. It can be shown
that the mode number ` is equal to the number of wavelengths taken to travel around the
sphere and that the radial mode number n is equal to the number of intensity maxima of
the mode in the radial direction er The index m is called the azimuthal mode number. It
can take 2`+ 1 values from −` to ` and it is related to the sinusoidal variation of the mode
with the azimuthal angle ϕ. Moreover, `− |m|+ 1 is the number of intensity maxima in the
polar direction eθ. Thus modes with index n = 1 correspond to the best confined modes in
the radial direction and modes for which m = ` are the best confined in the polar direction.
The mode satisfying these conditions and corresponding to the highest value of ` for which
the modal equation (3.65) has a solution is termed the fundamental mode. �

3.5. Simplification of the modal equations

We have established in the previous section that the modal equations for TE and TM modes
were in the form

P
ψ′`(kR)

ψ`(kR)
=
ζ′`(k0R)

ζ`(k0R)
(3.64)

with P = k/k0 = N for TE modes and P = k0/k = 1/N for TM modes where N is the
optical index of the micro-sphere, k0 = 2π/λ where λ is the wavelength, k = k0N and R is
the micro-sphere radius. In equation (3.65), ψ` and ζ` denote Riccati-Bessel functions of the
first kind and of the third kind respectively.

Note that we can either solve equation (3.64) for determining the mode numbers ` for
a given wavelength λ or conversely, solve equation (3.64) for determining the wavelengths λ
for a given mode number `.

In practice, for most applications, the micro-sphere radius R is large relative to the
wavelength λ of the optical wave (and therefore the mode index ` is large, see remark 1). As
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a consequence, the radiative leakage of the energy is small and a good approximation consists
in assuming the radiative part outside the sphere as negligible. This approximation leads to
consider the following form for the modal equation [14,19]

P
ψ′`(kR)

ψ`(kR)
=
χ′`(k0R)

χ`(k0R)
(3.65)

where χ` denotes Riccati-Bessel function of the second kind with order `. This
approximation relies on asymptotic expansions of Bessel’s functions for large order, see
e.g. [10] formula 10.19.2 that implies that ζ`(z) ≈ iχ`(z) for large `. One should note that
this assumption implies that Im(k) = 0 and k ∈ R.

3.6. Numerical resolution of the modal equations

For numerical purposes it is convenient to express the modal equation (3.65) in terms of
Bessel function of first and third kind. For all ν ∈ R and x ∈ C we have [1, 6]

ψν(x) =

√
πx

2
Jν+ 1

2
(x) (3.66)

χν(x) =

√
πx

2
Yν+ 1

2
(x) (3.67)

It follows that

ψ′ν(x) =

√
π

8x
Jν+ 1

2
(x) +

√
πx

2
J ′ν+ 1

2
(x), (3.68)

χ′ν(x) =

√
π

8x
Yν+ 1

2
(x) +

√
πx

2
Yν+ 1

2

′(x). (3.69)

Taking into account relations (3.66) to (3.69), the modal equation (3.65) can be reformulated
as

Y`+ 1
2

′(k0R)

Y`+ 1
2
(k0R)

− P
J ′
`+ 1

2
(kR)

J`+ 1
2
(kR)

=
1

2

(
P

kR
− 1

k0R

)
. (3.70)

Derivative of Bessel functions satisfy for all ν ∈ R the recurrence relation [1, 6]

J ′ν(x) = Jν−1(x)− ν

x
Jν(x) and Y ′ν(x) = Yν−1(x)− ν

x
Yν(x)

so that we can express the modal equation (3.65) as

Y`− 1
2
(k0R)

Y`+ 1
2
(k0R)

− P
J`− 1

2
(kR)

J`+ 1
2
(kR)

= `

(
1

k0R
− P

kR

)
. (3.71)

For TE modes we have P = N so that the second hand side of equation (3.71) is zero, whereas
for TM modes we have P = 1/N and therefore the second hand side of equation (3.71) is
`

k0R
(1− 1

N2 ).
For a given mode number `, the wavelengths λ for which resonance occurs are obtained

by solving equation (3.71). That is to say they are obtained by looking for the zeros of the
modal function

F` : λ ∈ ]0,+∞[ 7−→
Y`− 1

2
(k0R)

Y`+ 1
2
(k0R)

− P
J`− 1

2
(kR)

J`+ 1
2
(kR)

− `
(

1

k0R
− P

kR

)
. (3.72)

It is known, see [19], that for a given λ, the mode numbers ` are such that

2π(R+ δP )

λ
< `+

1

2
< N

2π(R+ δP )

λ
(3.73)
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where

δP ≈
λ

2πN

P√
N2 − 1

.

The bounds for ` given by (3.73) imply that for a fixed value of ` the wavelengths λ for which
resonance occurs are such that

2πR

`+ 1
2
− α

< λ <
2πRN

`+ 1
2
− αN

(3.74)

where we have set α = P/(N
√
N2 − 1).

In this study, typical values for the physical parameters are λ = 810 nm for the
wavelength, N = 1.45 for the optical index of the micro-sphere and R = 50µm for the
radius of the micro-sphere. The mode number ` varies between 194 and 281, see [19]. We
have k0 = 7.75 106 and k = 1.12 107. It follows that k0R = 387.850 and kR = 562.383.
Moreover,

Y194.5(387.850) ≈ −0.021806760787795, and J194.5(387.850) ≈ 0.037705042371296

Therefore the evaluation of the ratios Y`− 1
2
(k0R)/Y`+ 1

2
(k0R) and J`− 1

2
(kR)/J`+ 1

2
(kR)

involve quantities with very comparable values which is a condition for high accuracy results.
We can speed up the computations for solving equation (3.71) by using the following

recurrence relation for Bessel functions of first kind [1, 6]

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x). (3.75)

We have the same recurrence relation for Bessel functions of second kind. If we define the
sequence of functions (uν)ν such that uν = Jν+1/Jν , then for all x ∈ R where x do not
coincide with a zero of the Bessel functions of first kind, the values of uν(x) can be computed
from the value of u0(x) through the recurrence relation

uν(x) =
2ν

x
− 1

uν−1(x)
. (3.76)

Therefore we can compute the ratios Y`+ 1
2
(k0R)/Y`− 1

2
(k0R) and J`+ 1

2
(kR)/J`− 1

2
(kR) from

the values Y 3
2
(k0R)/Y 1

2
(k0R) and J 3

2
(kR)/J 1

2
(kR) through the recurrence relation (3.76).

3.7. Numerical results

3.7.1. A first numerical comparison with existing results In F. Treussart Phd
thesis [19] is given a micro-sphere of raduis 10µm and optical index 1.45 is considered on
p. 34 and the TE wave functions for the index ` = 100 are drawn. We give in Table 1 the
values of the resonance frequencies for such a micro-sphere. The higher frequency (n = 1)
is found to be 844.4558 nm. The corresponding value of the size parameter x = 2πR/λ is
74.405141 nm. The value proposed in [19] is 74.4064. The 5th higher frequency (n = 5)
is found to be 697.3817 nm. The corresponding value of the size parameter x = 2πR/λ
is 90.096790 nm. The value proposed in [19] is 90.0955. The values in F. Treussart Phd
thesis [19] are therefore in a good agreement with the one obtained by solving (3.65) by the
method outlined in section 3.6.

We have depicted in Figure 3 the variation of the electric field as a function of the
normalized radial distance r/R. These figures are in a good agreement with the figures given
in F. Treussart Phd thesis [19] p. 34.
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Figure 3. Radial function dependency of the TE modes for the wavelength
844.4558 nm (n = 1) on the left and 697.3817 nm (n = 5) on the right.

3.8. An additional numerical experiment

We consider a micro-sphere of radius R = 25µm and optical index N = 1.453. We proceed
in two steps. First, assume that we are interested with resonance conditions for a wavelength
λ of the optical wave around 810 nm. We solve the modal equation (3.71) for λ = 810 nm
in order to determine the values of ` for which the resonance occurs. Equation (3.71) is
numerically solved with Matlab using the fsolve command. The bounds for the modes
number ` given by (3.73) indicate that the area of interest in units of nm is the interval
[194.37, 282.65].

In Fig. 4 is depicted the modal function (3.72) for TE modes (where P = N) on the
interval [0, 300]. It reads

Fλ : ` ∈ ]0,+∞[ 7−→
Y`− 1

2
(k0R)

Y`+ 1
2
(k0R)

−N
J`− 1

2
(kR)

J`+ 1
2
(kR)

. (3.77)

We have also provided a zoom on the area of interest [194.37, 282.65].
Altogether we have computed 34 possible values for the mode number ` solution to the

modal equation (3.71) for λ = 810 nm. They are given in table 2. There are only 15 of
them that satisfy the bound conditions for ` given by 194.3741 < ` < 282.6521, see (3.73).
None of them corresponds to an integer value. However, we obtained that for the wavelength
λ = 810 nm, the maximal value for ` can be round up to 271.

n λ n λ
1 844.4558 2 794.0584
3 755.9579 4 724.4811
5 697.3817 6 673.5653
7 652.2256 8 632.441

Table 1. Resonance frequencies in units nm for ` = 100.
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S. Balac & P. Féron : WGMs volume computation in optical micro-spheres 21

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Modale function for TE modes

190 200 210 220 230 240 250 260 270 280 290
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Modale function for TE modes

Figure 4. Modal function Fλ as defined in (3.77) for the TE modes on the
interval [0, 300] on the left and on interval [194.37, 282.65] on the right.

n ` n ` n ` n `
1 270.5228 2 261.4707 3 254.0764 4 247.5544
5 241.6034 6 236.0682 7 230.8552 8 225.9032
9 221.1691 10 216.6217 11 212.2377 12 208.0007
13 203.9018 14 199.9331 15 196.04 16 192.0764
17 185.0595 18 180.8581 19 173.8883 20 166.8353
21 157.4217 22 148.0025 23 138.5273 24 125.4683
25 124.8045 26 111.7137 27 110.8961 28 94.844
29 73.4437 30 72.727 31 44.3423 32 43.9475
33 41.2785 34 40.4173

Table 2. The 34 possible values for the mode numbers `.

We can now start the second computational step. We fix the mode number to be ` = 271
and we look for the wavelength around 810 nm for which the resonance condition is realized.
We solve the modal equation (3.71) for ` = 271 in order to determine the values of λ for
which the resonance occurs. Equation (3.71) is numerically solved with Matlab using the
fsolve command. The bounds for the mode numbers ` given by (3.74) indicate that the area
of interest for λ in units of nm is the interval [580.5908, 844.9405].

In Fig. 5 is depicted the modal function F` as given by (3.72) for ` = 271 in the interval
[580.5908, 844.9405]. Altogether we have computed 21 possible values for the wavelength λ
solution to the modal equation (3.71) for ` = 271. They are given in table 3. We found
that, around 810 nm, for a mode number ` = 271, the resonance occurs for a wavelength of
808.6189 nm.
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Figure 5. Modal function F` as defined in (3.72) for the TE modes on the interval
[580.5908, 844.9405].

n λ n λ n λ n λ
1 808.6189 2 782.8448 3 762.5956 4 745.3336
5 730.0277 6 716.1493 7 703.4341 8 691.5913
9 680.5414 10 670.1525 11 660.2922 12 650.9607
13 642.0786 14 633.5929 15 625.451 16 617.6526
17 610.1715 18 602.9812 19 596.0553 20 589.3408
21 582.8113

Table 3. The 21 possible values for the wavelength λ (in units of nm) for which
the resonance occurs for the mode number ` = 271.

We have depicted in Fig. 6 the radial function dependency of the TE modes for several
resonance wavelengths as given by Table 3. On the top line is depicted the radial function
dependency of the TE modes for λ = 808.6189 nm. We have also depicted the radial function
dependency of the TE modes for the 2nd, 3rd and 10th resonance wavelength to compare
the behavior of the field inside the sphere when the wavelength decreases.
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Figure 6. Radial function dependency of the TE modes for the 1th, 2nd, 3rd,
10th resonance wavelength (from up left to right down).

We have depicted in Fig. 7 the euclidean norm of the electric field inside the sphere
in the plane of azimuthal angle ϕ = 0 for TE modes with degree and order (`,m) =
(271, 271),(`,m) = (271, 270) and (`,m) = (271, 10). We can see that the intensity of the
mode decreases very quickly with m.
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Figure 7. Norm of the electric field inside the sphere in the plane of azimuthal
angle ϕ = 0 for TE modes with degree and order (`,m) = (271, 271),(`,m) =
(271, 270) and (`,m) = (271, 10).

4. Computation of the volume of a whispering gallery mode

The volume of a whispering gallery mode in a micro-sphere is defined, see [18, 19], as the
integral over the whole space of the energy density normalized by its maximum value inside
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the micro-sphere, i.e.

V =
1

wmax

∫
R3

w(x1, x2, x3) dx1dx2dx3 (4.1)

where w denotes the energy density given as a function of the position vector x = (x1, x2, x3)
by

w(x) =
1

2

(
ε(x)

2
E(x)E∗(x) +

1

2µ0
B(x)B∗(x)

)
(4.2)

and wmax denotes the maximum value of the energy density inside the micro-sphere. In
relation (4.2), the quantity E∗ (resp. B∗) stands for the adjoint (conjugate transpose) of E
(resp. B) so that E(x)E∗(x) = E(x) ·E(x) = ‖E(x)‖22 = |E1(x)|2 + |E2(x)|2 + |E3(x)|2.

When we assume that the energy losses by diffraction and diffusion can be neglected, the
energy conservation law implies that the contribution of the electric field and the magnetic
field to the energy density are equal, see [7] and Appendix B. Namely, we have∫∫∫

R3

ε(x)

2
‖E(x)‖2 dx =

∫∫∫
R3

1

2µ0
‖B(x)‖2 dx. (4.3)

As a consequence, the volume of a WGM is most often computed in the literature
[11,12,18,19,21] from the following formula:

V =
1

ε0N2E2
max

∫∫∫
R3

ε(x) ‖E(x)‖2 dx (4.4)

where Emax denotes the maximum value of the Euclidean norm of the electric field.
Formula (4.4) is well suited for the computation of the mode volume of a TE mode in a
spherical optical micro-resonator because of the simple expression of the electric field for TE
mode, see (3.36). It should be noted however that the normalization constant is not the same
in (4.1) and in (4.4).

For TM modes, computation of the mode volume from (4.4) is a little more tricky
because it is the magnetic induction that has the simplest expression, see (3.39). Thanks
to (4.3), it is however possible to express the integral in (4.4) in terms of B. Unfortunately,
the normalization constant in (4.4) can’t be expressed in terms of B and changing it for
maxx∈R3 ‖B(x)‖2 would not be consistent when comparing volumes of TE and TM modes.
Thus, we will compute the volume of TM mode from the following formula

V =
c2

N2E2
max

∫∫∫
R3

‖B(x)‖2 dx (4.5)

where c is the speed of light in free space.

4.1. Volume of a TE mode

For TE modes we found that the electromagnetic field is given in spherical coordinates by

E(r, θ, ϕ) =


ATE

i
ψ`(kr)

kr
X`m(θ, ϕ) if r < R

−ATE
o

χ`(k0r)

k0r
X`m(θ, ϕ) if r > R

(4.6)

and

B(r, θ, ϕ) =


ATE

i
ik

ω

(
`(`+ 1)

ψ`(k r)

k2r2
Z`m(θ, ϕ) +

ψ′`(k r)

kr
Y`m(θ, ϕ)

)
if r < R

−ATE
o

ik

ω

(
`(`+ 1)

χ`(k0 r)

k2
0r

2
Z`m(θ, ϕ) +

χ′`(k0 r)

k0r
Y`m(θ, ϕ)

)
if r > R

(4.7)
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where X`m, Y`m and Z`m denote the vector spherical harmonics as defined by (3.25)–(3.27)
and ψ` and χ` denote respectively the Ricatti-Bessel functions of first and second types.

One should note that due to the assumption introduced in Section 3.5 p. 17, k is real
and k > 0.

4.1.1. Computation of the volume integral Since the electric field decays
very quickly outside the micro-sphere, the integral (B.6) in spherical coordinates can be
approximated by

V =
1

ε0N2

∫ L

0

∫ π

0

∫ 2π

0

ε(r)
‖E(r, ϕ, θ)‖22

E2
max

r2 sin(θ) dϕdθdr (4.8)

where L is a positive number, large enough so that the electromagnetic field can be neglected
at a radial distance greater than L. Using Chasles’s theorem, we split the integration domain
in two parts such that the first integral is over the domain inside the micro-sphere and the
second integral is over the exterior domain. Accordingly we set V = Vi+Vo. The first integral
over the interior domain reads

Vi =
1

k2

|ATE
i |2

E2
max

∫ R

0

∫ π

0

∫ 2π

0

ψ2
` (kr) ‖X`m(ϕ, θ)‖22 sin(θ) dϕdθdr

=
1

k2

|ATE
i |2

E2
max

(∫ R

0

ψ2
` (kr) dr

) (∫ π

0

∫ 2π

0

‖X`m(ϕ, θ)‖22 sin(θ) dϕdθ

)
. (4.9)

The second integral term in (4.9) is known to be∫ π

0

∫ 2π

0

X`m(ϕ, θ) ·X∗`m(ϕ, θ) sin(θ) dϕdθ = `(`+ 1).

Therefore, we have

Vi =
`(`+ 1)

k2

|ATE
i |2

E2
max

∫ R

0

ψ2
` (kr) dr

=
`(`+ 1)

k

|ATE
i |2

E2
max

π

2

∫ R

0

r J2
`+ 1

2
(kr) dr. (4.10)

The integral in (4.10) can be evaluated exactly thanks to the following formula, see [6]
formula 5.54 p. 629,∫

xJp(αx)2 dx =
x2

2

(
Jp(αx)2 − Jp−1(αx)Jp+1(αx)

)
.

We conclude that

Vi =
`(`+ 1)πR2

4k

|ATE
i |2

E2
max

(
J`+ 1

2
(kR)2 − J`− 1

2
(kR)J`+ 3

2
(kR)

)
. (4.11)

The integral over the exterior domain reads

Vo =
1

N2

|ATE
o |2

E2
max

∫ L

R

∫ π

0

∫ 2π

0

χ2
`(k0r)

k2
0

‖X`m(ϕ, θ)‖22 sin(θ) dϕdθdr

=
1

N2k2
0

|ATE
o |2

E2
max

(∫ L

R

χ2
`(k0r) dr

) (∫ π

0

∫ 2π

0

‖X`m(ϕ, θ)‖22 sin(θ) dϕdθ

)
=
`(`+ 1)

N2k2
0

|ATE
o |2

E2
max

∫ L

R

χ2
`(k0r) dr

=
`(`+ 1)

N2k0

|ATE
o |2

E2
max

π

2

∫ L

R

r Y 2
`+ 1

2
(k0r) dr (4.12)
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The integral in (4.12) can be evaluated exactly thanks to the following formula, see [6] formula
5.54 p. 629, ∫

xYp(αx)2 dx =
x2

2

(
Yp(αx)2 − Yp−1(αx)Yp+1(αx)

)
.

We conclude that

Vo =
`(`+ 1)π

4N2k0

|ATE
o |2

E2
max

(
L2 Y`+ 1

2
(k0L)2 − L2 Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

−R2 Y`+ 1
2
(k0R)2 +R2 Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

)
. (4.13)

For TE mode, according to relation (3.54) we have

ATE
o = −ATE

i
k0

k

ψ`(kR)

χ`(k0R)
= ATE

i

√
k0

k

J`+ 1
2
(kR)

Y`+ 1
2
(k0R)

.

Since k = Nk0, we finally conclude that

Vo =
`(`+ 1)π

4N3k0

|ATE
i |2

E2
max

J`+ 1
2
(kR)2

Y`+ 1
2
(k0R)2

(
L2 Y`+ 1

2
(k0L)2 − L2 Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

−R2 Y`+ 1
2
(k0R)2 +R2 Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

)
(4.14)

=
`(`+ 1)π

4N3k0

|ATE
i |2

E2
max

J`+ 1
2
(kR)2

(
L2

Y`+ 1
2
(k0L)2

Y`+ 1
2
(k0R)2

− L2
Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

Y`+ 1
2
(k0R)2

−R2 +R2
Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

Y`+ 1
2
(k0R)2

)
(4.15)

4.1.2. Computation of the maximum value of the electric field inside the
micro-sphere Inside the micro-sphere at a point with spherical coordinates (r, θ, ϕ), the
electric field for a TE mode reads

E(r, θ, ϕ) = ATE
i

ψ`(kr)

kr
X`m(θ, ϕ).

The maximum value of the euclidean norm of the electric field over the micro-sphere is given
by

Emax = ATE
i sup

(r,θ,ϕ)∈[0,R]×[0,π]×[0,2π]

∣∣∣∣ψ`(kr)kr

∣∣∣∣ ‖X`m(θ, ϕ)‖2

= ATE
i sup

r∈[0,R]

∣∣∣∣ψ`(kr)kr

∣∣∣∣× sup
(θ,ϕ)∈[0,π]×[0,2π]

‖X`m(θ, ϕ)‖2 (4.16)

We first compute the maximum over [0, R] of |j`(kr)| = |ψ`(kr)/kr|. It follows from
the known behavior of the spherical Bessel function of the first kind, see e.g. [1, 6], that the
global maximum of |j`| coincides with the first local maximum of j`. Thus, we are looking
for the first zero of the derivative of the spherical Bessel function of the first kind and order
` denoted j′`. For all x ∈ R, we have [1, 6]

j′`(x) =
` j`−1(x)− (`+ 1) j`+1(x)

2`+ 1

and

j′`(x) = 0 ⇐⇒ `j`−1(x)− (`+ 1)j`+1(x) = 0

⇐⇒ (`+ 1) J`+ 3
2
(x)− ` J`− 1

2
(x) = 0. (4.17)
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Thus the problem turns out to solving the nonlinear equation (4.17). More precisely, we
have to compute the first positive root of equation (4.17). Numerical methods for solving a
nonlinear equation require either the knowledge of an interval where the root is isolated, or
a first guess for this solution. An approximation based on an asymptotic expansion for the
first zero (denoted a′`,1) of j′` for large ` is given in [1] (see formula 10.1.59 on p. 441):

a′`,1 = (`+ 1
2
) + 0.8086165 (`+ 1

2
)1/3 − 0.236680 (`+ 1

2
)−1/3

− 0.20736 (`+ 1
2
)−1 + 0.0233 (`+ 1

2
)−5/3. (4.18)

Actually, a′`,1 can be considered as a good initial guess for the first zero of j′` even for small `.
For instance for ` = 5 we have a′`,1 = 6.7606 whereas an accurate value for the first zero of j′`
computed with the symbolic computation software Maple is found to be 6.7564. Thus, from
a computational point of view we use the matlab command fsolve to solve (4.17) with an
initial guess for the solution given by (4.18).

We then have to compute the maximum value of the euclidean norm of the vectorial
spherical harmonic X`m inside the micro-sphere. We have X`m = ∇Y m` ∧ r and

Y m` (θ, ϕ) = C`,m Pm` (cos(θ)) eimϕ where C`,m =

√
(2`+ 1)(`−m)!

4π(`+m)!
.

It follows that

∇Y m` (θ, ϕ) ∧ r =
1

sin(θ)

∂Y m`
∂ϕ

(θ, ϕ) eθ −
∂Y m`
∂θ

(θ, ϕ) eϕ

= C`,m eimϕ

(
im

sin(θ)
Pm` (cos(θ)) eθ + sin(θ) (Pm` )′(cos(θ)) eϕ

)
and

‖X`m(θ, ϕ)‖22 = C2
`,m

(
m2

sin2(θ)
Pm` (cos(θ))2 + sin2(θ) (Pm` )′(cos(θ))2

)
.

We are looking for the maximum of ‖X`m(θ, ϕ)‖22, which is actually independent of ϕ, for all
θ ∈ [0, π]. The derivative of the associated Legendre function Pm` is given by, see [6] (formula
8.733 p. 965),

∀x ∈ ]− 1, 1[ (Pm` )′(x) =
1

1− x2

(
Pm` (x)− (`−m+ 1) Pm`+1(x)

)
.

Therefore we have

‖X`m(θ, ϕ)‖22 =
C2
`,m

sin2(θ)

(
(m2 + 1)Pm` (cos(θ))2 + (`−m+ 1)2 Pm`+1(cos(θ))2

− 2(`−m+ 1)Pm` (cos(θ)) Pm`+1(cos(θ))
)
.

Unfortunately, the previous expression is not well suited for numerical computation purposes.
Indeed for ` larger than 150 the values of the associated Legendre function Pm` is not anymore
representable in the floating point arithmetic in Matlab. As a consequence, we introduce
the Schmidt semi-normalized associated Legendre functions Sm` instead of the associated
Legendre function Pm` . They are related to each others by the relation

∀x ∈]− 1, 1[ Sm` (x) =


P`(x) if m = 0

(−1)m

√
2(`−m)!

(`+m)!
Pm` (x) if m > 0

. (4.19)
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We set

D`,m =


1 if m = 0

(−1)m

√
(`+m)!

2(`−m)!
if m > 0

so that for all x ∈] − 1, 1[ we have Pm` (x) = D`,m Sm` (x). Moreover one can readily check
that

D`+1,m = D`,m

√
`+ 1 +m

`+ 1−m.

In terms of the Schmidt semi-normalized associated Legendre functions, we have

‖X`m(θ, ϕ)‖22 =
C2
`,mD

2
`,m

sin2(θ)

(
(m2 + 1)Sm` (cos(θ))2 + ((`+ 1)2 −m2)Sm`+1(cos(θ))2

− 2
√

(`+ 1)2 −m2 Sm` (cos(θ)) Sm`+1(cos(θ))
)

(4.20)

where

C2
`,mD

2
`,m =


2`+ 1

4π
if m = 0

2`+ 1

8π
if m > 0

.

Since there is no obvious way for determining the maximum of ‖X`m(θ, 0)‖22 as given by
(4.20), we proceed by using a brute force method that consists in comparing the values of
‖X`m(θ, 0)‖22 over a sufficiently accurate subdivision of the interval [0, π].

4.2. Volume of a TM mode

For TM modes the electromagnetic field reads

E(r, θ, ϕ) =


ATM

i

(
`(`+ 1)

ψ`(k r)

k2r2
Z`m(θ, ϕ) +

ψ′`(k r)

kr
Y`m(θ, ϕ)

)
if r < R

−ATM
o

(
`(`+ 1)

χ`(k0 r)

k2
0r

2
Z`m(θ, ϕ) +

χ′`(k0 r)

k0r
Y`m(θ, ϕ)

)
if r > R

(4.21)
and

B(r, θ, ϕ) =


ATM

i
ik

ω

ψ`(kr)

kr
X`m(θ, ϕ) if r < R

−ATM
o

ik0

ω

χ`(k0r)

k0r
X`m(θ, ϕ) if r > R

(4.22)

where X`m, Y`m and Z`m denote the vector spherical harmonics as defined by (3.25)–(3.27)
and ψ` and χ` denote respectively the Ricatti-Bessel functions of first and second types.

4.2.1. Computation of the volume integral The integral (4.5) in spherical
coordinates reads

V =

∫ L

0

∫ π

0

∫ 2π

0

‖B(x)‖22
E2

max

r2 sin(θ) dϕdθdr (4.23)

where L is a positive number, large enough so that the electromagnetic field can be neglected
at a radial distance greater than L. Using Chasles’s theorem, we split the integration domain
in two parts V = Vi + Vo such that the first integral holds over the domain inside the micro-
sphere and the second integral holds over the exterior domain. The first integral reads

Vi =
1

k2

|ATM
i |

2

E2
max

∫ R

0

∫ π

0

∫ 2π

0

ψ2
` (kr) ‖X`m(ϕ, θ)‖22 sin(θ) dϕdθdr

=
1

k2

|ATM
i |

2

E2
max

(∫ R

0

ψ2
` (kr) dr

) (∫ π

0

∫ 2π

0

‖X`m(ϕ, θ)‖22 sin(θ) dϕdθ

)
. (4.24)
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The second integral term in (4.24) is known to be [1, 6]∫ π

0

∫ 2π

0

X`m(ϕ, θ) X∗`m(ϕ, θ) sin(θ) dϕdθ = `(`+ 1).

Therefore we have

Vi =
`(`+ 1)

k2

|ATM
i |2

E2
max

∫ R

0

ψ2
` (kr) dr

=
k`(`+ 1)

k2

|ATM
i |2

E2
max

π

2

∫ R

0

r J2
`+ 1

2
(kr) dr. (4.25)

The integral in (4.25) can be evaluated exactly thanks to the following formula, see [6] formula
5.54 p. 629, ∫

xJp(αx)2 dx =
x2

2

(
Jp(αx)2 − Jp−1(αx)Jp+1(αx)

)
.

We get

Vi =
`(`+ 1)πR2

4k

|ATM
i |2

E2
max

(
J`+ 1

2
(kR)2 − J`− 1

2
(kR)J`+ 3

2
(kR)

)
. (4.26)

The integral over the domain exterior to the sphere reads

Vo =
c2

N2

∫
R3

‖B(x)‖22
E2

max

dx

=
1

k2

|ATM
o |2

E2
max

∫ L

R

∫ π

0

∫ 2π

0

χ2
`(k0r) ‖X`m(ϕ, θ)‖22 sin(θ) dϕdθdr

=
1

k2

|ATM
o |2

E2
max

(∫ L

R

χ2
`(k0r) dr

) (∫ π

0

∫ 2π

0

‖X`m(ϕ, θ)‖22 sin(θ) dϕdθ

)
=
`(`+ 1)

k2

|ATM
o |2

E2
max

∫ L

R

χ2
`(k0r) dr

=
`(`+ 1)

k2

|ATM
o |2

E2
max

k0π

2

∫ L

R

r Y 2
`+ 1

2
(k0r) dr. (4.27)

The integral in (4.27) can be evaluated exactly thanks to the following formula, see [6] formula
5.54 p. 629, ∫

xYp(αx)2 dx =
x2

2

(
Yp(αx)2 − Yp−1(αx)Yp+1(αx)

)
.

We conclude that

Vo =
`(`+ 1)πk0

4k2

|ATM
o |2

E2
max

(
L2 Y`+ 1

2
(k0L)2 − L2 Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

−R2 Y`+ 1
2
(k0R)2 +R2 Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

)
. (4.28)

For TM mode, according to relation (3.54) we have

ATM
o = −ATM

i
ψ`(kR)

χ`(k0R)
= ATM

i

√
k

k0

J`+ 1
2
(kR)

Y`+ 1
2
(k0R)

.

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr
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Therefore

Vo =
`(`+ 1)π

4k

|ATM
i |2

E2
max

J`+ 1
2
(kR)2

Y`+ 1
2
(k0R)2

(
L2 Y`+ 1

2
(k0L)2 − L2 Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

−R2 Y`+ 1
2
(k0R)2 +R2 Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

)
(4.29)

=
`(`+ 1)π

4k

|ATM
i |2

E2
max

J`+ 1
2
(kR)2

(
L2

Y`+ 1
2
(k0L)2

Y`+ 1
2
(k0R)2

− L2
Y`− 1

2
(k0L)Y`+ 3

2
(k0L)

Y`+ 1
2
(k0R)2

−R2 +R2
Y`− 1

2
(k0R)Y`+ 3

2
(k0R)

Y`+ 1
2
(k0R)2

)
. (4.30)

4.2.2. Computation of the maximum value of the electric field inside the
micro-sphere It remains to compute E2

max the maximum value of the euclidean norm of
the electric field. Since the electromagnetic field for a WGM is at its peak inside the cavity,
we deduce from (3.38) that

E2
max(r, θ) =

C2
`,m

k2r2

(
`2(`+ 1)2 |ψ`(kr)|2

k2r2
Pm` (cos θ)2

+ |ψ′`(kr)|2
((

sin(θ)(Pm` )′(cos θ)
)2

+
( m

sin(θ)
Pm` (cos θ)

)2))
. (4.31)

Analytical computation of the maximum value of E2
max over [0, R] × [0, π] is out of reach.

Therefore, in the Matlab toolbox we proceed by using numerical optimization methods and
to this purpose, we express E2

max in terms of Schmidt semi-normalized associated Legendre
functions Sm` and Bessel’s functions:

E2
max(r, θ) =

C2
`,mD

2
`,m

k2r2

π

2

(
`2(`+ 1)2

|J`+ 1
2
(kr)|2

kr
Sm` (cos θ)2

+
∣∣∣(kr) 1

2 J`− 1
2
(kr)− `(kr)−

1
2 J`+ 1

2
(kr)

∣∣∣2 ((m2 + 1)Sm` (cos θ)2 (4.32)

− 2
√

(`+ 1)2 −m2 Sm` (cos θ)Sm`+1(cos θ) + ((`+ 1)2 −m2)Sm`+1(cos θ)2
)
.

In order to compute the global maximum of E2
max over [0, R]× [0, π] we use Matlab fminunc

routine designed to find minimum of unconstrained multivariable functions. Namely, a Trust
Region Method algorithm is chosen which requires to provide the gradient of E2

max. The
initial guess for the optimization algorithm is obtained by comparing the values of E2

max over
a coarse grid of the domain [0, R]× [0, π].

4.3. Numerical results

We have written a Matlab program to compute the volume of any whispering gallery
(WG) TE or TM mode on the basis of the formulas obtained in the last section. The
program is available from the author. The Matlab script entitled volmod is documented
in the next section. To illustrate the numerical computation of the volume of a WG mode,
we have considered again a sphere of radius R = 25µm and optical index N = 1.453.
According to the results presented in section 3.7, we have considered the TE mode with
indexes (`,m) = (271, 271) for a wavelength λ = 808.62 nm. The exterior integration domain
was bounded at a distance L = 1.2R. The mode volume was found to be 319.216µm3.
This value is very closed to the one obtained by F. Treussart in his Phd Thesis by means
of asymptotic expansions formulas. Using formula (1.58) of Treussart Phd [19], we find an
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approximated mode volume of 315.4740µm3. The detail of the calculations leading to F.
Treussart approximate formula is given in Appendix.

The main advantage of the present work is that no assumption on the values of the mode
indexes ` and m is done. For instance, we have obtained that the WG TE-mode volume for
(`,m) = (271, 270) is 433.353µm3 and for (`,m) = (271, 250) it is 602.255µm3. In Fig. 8,
we have depicted the variation of the volume (in units of µm3) of the WG mode ` = 271 as
a function of index m ∈ [0, `]. We have to mention that the computation of the volume of a
WG mode is very fast. For instance, computations leading to Fig. 8 which necessitated the
computation of the volume of 272 modes took 75 s on a AMD-A8 Personal desktop Computer
with 8 Go RAM. This means that the computation of the volume for one mode took less
that 0.3 s.
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Figure 8. Volume in µ-m of the WG modes with index ` = 271 as a function of
index m ∈ [0, `].
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5. WGMode : a Matlab Toolbox dedicated to the study of
whispering gallery modes in optical micro-spheres

The WGMode Matlab Toolbox is constituted of various Matlab scripts to study whispering
gallery modes in optical micro-spheres. It is governed by the CeCILL-C license under French
law and abiding by the rules of distribution of free software. It can be used, modified
and/or redistributed under the terms of the CeCILL-C license as circulated by CEA, CNRS
and INRIA at the following URL http://www.cecill.info. The scripts of the WGMode
Matlab Toolbox allow to explore resonance conditions for TE or TM modes, to visualize
whispering gallery TE or TM modes in a micro-sphere and to compute the volume of any
given mode. Namely, the WGMode Matlab Toolbox contains the following Matlab scripts
:

• ELLRES computes, for a given wavelength, the values of the mode index ` for which a
resonance occurs

• WVLRES computes, for a given couple of mode index (`,m), the values of the
wavelength for which a resonance occurs

• VOLMOD computes the volume of a whispering gallery TE or TM modes in a micro-
sphere

• PLTMOD plot the whispering gallery modes

The toolbox also provides a collection of special functions:

• SLEGEND associated Legendre function with Schmidt semi-normalization

• SBESSELJ spherical Bessel function of the first kind

• SBESSELY spherical Bessel function of the second kind

• SBESSELH spherical Bessel function of the third kind (Hankel function)

• DSLEGEND derivative of the associated Legendre function with Schmidt semi-
normalization

• DSBESSELJ derivative of the spherical Bessel function of the first kind

• DSBESSELY derivative of the spherical Bessel function of the second kind

• DSBESSELH derivative of the spherical Bessel function of the third kind (Hankel
function)

• HANSENM Hansen solution Mm
` of the spherical vectorial wave equation

• HANSENN Hansen solution Nm
` of the spherical vectorial wave equation

Last, the WGMode Matlab Toolbox contains low level internal functions:

• MODEQEL Modale equation for TE or TM modes for a fixed wavelength and a variable
mode index

• MODEQVW Modale equation for TE or TM modes for a fixed mode index ` and a
variable wavelength

• PLOTD plot a discontinuous function removing the draw line at function discontinuity
jumps

• VSHNOR computes the square of the euclidean norm of the vector spherical harmonics

In order to illustrate the use of the WGMode Matlab Toolbox, we consider the case
of a micro-sphere of radius 100µm and optical index 1.453. We are interested in resonance
conditions around a wavelength of 1480 nm.

First, we use the script entitled ellres to determine the mode index ` for which
resonance occurs at 1480 nm.
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>> ellres

Micro-sphere radius [micro-m] = 100

Optical index of the micro-sphere = 1.453

Wavelength [nm] = 1480

TE or TM mode ? (TE/TM) : TE

Modes number ell :

1 425.8768

2 429.7629

3 433.6548

4 437.5904

5 441.5826

6 445.6311

7 449.7355

8 453.8967

9 458.1165

10 462.3977

11 466.7431

12 471.1563

13 475.6411

14 480.2019

15 484.8438

16 489.5723

17 494.3939

18 499.3159

19 504.3468

20 509.4962

21 514.7759

22 520.1993

23 525.783

24 531.5469

25 537.5159

26 543.7219

27 550.2064

28 557.0256

29 564.2598

30 572.0302

31 580.5386

32 590.1758

33 601.9616

The mode indexes are not integer numbers. We round up the propound values to the
nearest integer. For instance, the largest index will be 602. Then we determine the exact
wavelength around 1480 nm for which resonance occurs for a mode index of 602. This can
be achieved with the script entitled wvlres. The wvlres Matlab script provides a draw of
the modal function which enables to localize the position of its zeros corresponding to the
resonance wavelengths and a list of these values computed by mean of the fsolve Matlab
command.

>> wvlres

Micro-sphere radius [micro-m] = 100

Optical index of the micro-sphere = 1.453

Mode index ell = 602

TE or TM mode ? (TE/TM) : TE
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Modale function for TE modes

λ [nm]

Resonance wavelength [nm]:

1 1479.8985

2 1451.776

3 1429.2495

4 1409.8056

5 1392.306

6 1376.3241

7 1361.4329

8 1347.4901

9 1334.3536

10 1321.8337

11 1309.9302

12 1298.5009

13 1287.5934

14 1277.0178

15 1266.869

16 1257.0048

17 1247.5199

18 1238.2722

19 1229.309

20 1220.583

21 1212.094

22 1203.8422

23 1195.7801

24 1187.9077

25 1180.1776

26 1172.6845

27 1165.3338

28 1158.1253

29 1151.1065

30 1144.1826

31 1137.4009

32 1130.7615

33 1124.2644

34 1117.8621

35 1111.6022

36 1105.437

37 1099.3667

38 1093.4387

39 1087.5581

40 1081.8198

41 1076.1288

42 1070.5802

43 1065.079

44 1059.7201

45 1054.4086

46 1049.1445

The script wvlres also proposes to draw the radial behavior of any of the computed
modes at resonance.

Draw the radial behavior of the mode for some of the computed

wavelength? (y/n) : y

Wavelength number of the mode: 1

Draw for another wavelength? (y/n) : y

Wavelength number of the mode: 20
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Draw for another wavelength? (y/n) : n

>>

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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−3

r/R

   Radial function dependency for ell = 602 and λ [nm] = 1479.8985

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2

−1

0

1

2

3

4
x 10

−3

r/R

   Radial function dependency for ell = 602 and λ [nm] = 1220.583

An expert mode can be activated by setting the variable expert mode to 1. This enables
the user to access extra plotting functionality such as the possibility to represent the radial
behavior of a mode at a frequency other than a resonance frequency for comparison purposes.

The script entitled volmod achieves the computation of the volume of a given mode. For
instance, when we want to know the volume of the TE mode defined by the indexes ` = 602
and m = 600 we can proceed as follows:

>> volmod

Micro-sphere radius [micro-m] = 100

Optical index of the micro-sphere = 1.453

Wavelength [nm] = 1479.8985

TE or TM mode ? (TE/TM) : TE

Mode number ell = 602

Mode number m = 600

Mode volume (in micron.m^3)= 12589.4749

>>

Last, the script entitled pltmod draws the norm of both the electric field and magnetic
induction for a mode defined by the indexes ` and m in a plane given in spherical coordinates
by either a user defined azimuth ϕ or a user defined inclination angle θ, see Figure 2 on p.8.

>> pltmod

Micro-sphere radius [micro-m] R = 25

Optical index of the micro-sphere = 1.453

TE or TM mode : TE

Wavelength [nm] = 804.57

Mode number ell = 271

Mode number m = 271

Plot required in an azimuthal plane phi=cste (A)

or in a polar plane theta=cste (P) = A

Azimuthal angle [radian] : phi = 0

Minimum radial distance (% R) = 0

Maximal radial distance (% R) = 1

Minimum polar angle [radian] = 0

Maximal polar angle [radian] = pi

>>
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z = r cos(θ) x 10−5

x 
=

 r
 s

in
(θ

) 
x 
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The plotting area can be delimited to the area of interest as illustrated below.

>> pltmod

Micro-sphere radius [micro-m] R = 25

Optical index of the micro-sphere = 1.453

TE or TM mode : TE

Wavelength [nm] = 804.57

Mode number ell = 271

Mode number m = 271

Plot required in an azimuthal plane phi=cste (A)

or in a polar plane theta=cste (P) = A

Azimuthal angle [radian] : phi = 0

Minimum radial distance (% R) = 0.8

Maximal radial distance (% R) = 1

Minimum polar angle [radian] = pi/2-pi/8

Maximal polar angle [radian] = pi/2+pi/8

>>

z = r cos(θ) x 10−5

x 
=

 r
 s

in
(θ

) 
x 

10
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5

|E|  for ell=271, m=271, azimuth=0
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>> pltmod

Micro-sphere radius [micro-m] R = 25

Optical index of the micro-sphere = 1.453

TE or TM mode : TE

Wavelength [nm] = 804.57

Mode number ell = 271

Mode number m = 271

Plot required in an azimuthal plane phi=cste (A)

or in a polar plane theta=cste (P) = P

Polar angle [radian] : theta = pi/2

Minimum radial distance (% R) = 0
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Maximal radial distance (% R) = 1

Minimum azimutal angle = 0

Maximal azimutal angle = 2*pi

>>
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x 
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−
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Conclusion

In this report we have proceeded to a mathematical study of whispering gallery (WG) modes
in an optical micro-sphere starting from the general set of Maxwell equations. We have
obtained the general expression of TE and TM modes using the method of Hansen for solving
the vectorial wave equation in spherical coordinates. From the knowledge of the mathematical
expression of TE and TM WG modes we have obtained a general analytical expression for
the volume of a WG mode in terms of the spherical Bessel functions and spherical surface
harmonics. We have written a Matlab Toolbox that implements the WG mode volume
formulas and allows to compute with high accuracy the volume of any WG mode whatever
are the indexes of the mode. This Toolbox is of interest since up to now only estimations of
the volume of modes for mode index m ≈ ` based on asymptotic formulas were available.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: with Formulas, Graphs,
and Mathematical Tables. Dover books on mathematics. Dover Publications, 1965.

[2] K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere: An
Introduction. Lecture Notes in Mathematics. Springer, 2012.

[3] J. Bravo-Abad, A. Rodriguez, P. Bermel, S.G. Johnson, J.D. Joannopoulos, and M. Soljacic.
Enhanced nonlinear optics in photonic-crystal microcavities. Opt. Express, 15(24):16161–
16176, Nov 2007.

[4] E.M.Purcell. Proceedings of the American Physical Society. Phys. Rev., 69:674–674, Jun 1946.
[5] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg. Enhanced

spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev.
Lett., 81:1110–1113, Aug 1998.

[6] I. S. Gradstein and I. M. Ryzhik. Table of Integrals, Series, and Products. Table of Integrals,
Series, and Products Series. Elsevier Science, 2007.

[7] J. D. Jackson. Classical Electrodynamics Third Edition. Wiley, third edition, 1998.
[8] A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki. Review of

applications of whispering-gallery mode resonators in photonics and nonlinear optics. IPN
Progress Report, 42-162:1–51, 2005.

[9] K. Okamoto. Fundamentals of Optical Waveguides (Optics and Photonics). Academic Press,
2000.

[10] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark. NIST Handbook of Mathematical
Functions. Cambridge University Press, 2010.

[11] A. N. Oraevsky. Review: Whispering-gallery waves. Quantum Electronics, 32:377–400, May
2002.

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr
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des ions néodyme. PhD thesis, Université Pierre et Marie Curie, Paris, France, 1997.
[20] F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and
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Appendix A. F. Treussart approximation formula for volume
of modes with large mode number

In this appendix we detail the way to obtain F. Treussart approximation formula for mode
volume (formula 1.58 p. 51 of his Phd thesis [19]) and we analyze and quantify the various
approximations leading to this formula.

According to [19], the volume of a whispering gallery mode in a micro-sphere is defined
as the integral over the whole space of the energy density normalized by its maximum value
inside the micro-sphere, i.e.

V =
1

wmax

∫
R3

w(x1, x2, x3) dx1dx2dx3 (A.1)

where w denotes the energy density given as a function of the position vector x = (x1, x2, x3)
by

w(x) =
1

2

(
ε(x)

2
E(x)E∗(x) +

1

2µ0
B(x)B∗(x)

)
(A.2)

and wmax denotes the maximum value of the energy density inside the micro-sphere. In
relation (A.2), the quantity E∗ (resp. B∗) stands for the adjoint (conjugate transpose) of E
(resp. B).

When we assume that the energy losses by diffraction and diffusion can be neglected, the
energy conservation law implies that the contribution of the electric field and the magnetic
field to the energy density in (A.1) are equal [7]. As a consequence,

V =
1

wmax

∫
R3

ε(x)

2
E(x)E∗(x) dx. (A.3)

Changing the normalization constant wmax to maxx∈S(0,R)

( ε(x)
2

E(x)E∗(x)
)
, F. Treussart

obtains the following expression for the mode volume:

V =
1

ε0N2

∫
R3

ε(x)
‖E(x)‖22
E2

max

dx (A.4)

where Emax denotes the maximum value of the euclidean norm of the electric field.
In his Phd thesis [19], F. Treussart only deals with the case of TE modes. For TE modes

the electric field is given in spherical coordinates by

E(r, θ, ϕ) =


ATEi

ψ`(kr)

kr
X`m(θ, ϕ) if r < R

−ATEo
χ`(k0r)

k0r
X`m(θ, ϕ) if r > R

(A.5)

where X`m denotes the vector spherical harmonics and ψ` and χ` denote respectively the
Ricatti-Bessel functions of first and second types.

The integral (A.4) in spherical coordinates then reads

V =
1

ε0N2

∫ L

0

∫ π

0

∫ 2π

0

ε(r)
‖E(r, θ, ϕ)‖22

E2
max

r2 sin(θ) dϕdθdr

=
1

ε0N2 E2
max

(∫ R

0

ε |ATEi |2
ψ2
` (kr)

k2
dr +

∫ L

R

ε0 |ATEo |2
χ2
`(k0r)

k2
0

dr

)
×
(∫ π

0

∫ 2π

0

‖X`m(θ, ϕ)‖22 sin(θ) dϕdθ

)
. (A.6)

where L is a positive number large enough so that the electromagnetic field can be neglected
at a radial distance greater than L.
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The second integral term in (A.6) is known to be∫ π

0

∫ 2π

0

X`m(θ, ϕ) ·X∗`m(θ, ϕ) sin(θ) dϕdθ = `(`+ 1).

Therefore by using Chasles’s theorem we obtain

V =
`(`+ 1)

k2

|ATEi |2

E2
max

(∫ R

0

ψ2
` (kr) dr +

|ATEo |2

|ATEi |2

∫ L

R

χ2
`(k0r) dr

)
=
`(`+ 1)

k3

|ATEi |2

E2
max

(∫ kR

0

ψ2
` (s) ds+

|ATEo |2

|ATEi |2

∫ kL

kR

χ2
`(k0s/k) ds

)
=
`(`+ 1)

k3

|ATEi |2

E2
max

∫ kL

0

f`(s) ds

where f` denotes the piecewise constant positive valued function

f`(s) =


ψ2
` (s) if s ∈ [0, kR](
k0

k

)2
ψ`(kR)2

χ`(k0R)2
χ2
`(s/N) if s ∈ [kR, kL]

since according to (3.54) we have

ATEo = −ATEi
k0

k

ψ`(kR)

χ`(k0R)
.

The first approximation in F. Treussart approach consists in writting∫ kL

0

f`(s) ds ≈
∫ a1

0

ψ2
` (s) ds (A.7)

where a1 denotes the first zero of ψ`. An approximate value of a1 for large ` is given by
(see [1] formula 9.5.4 p. 371):

a1 ≈ (`+ 1/2) + 1.8557571 (`+ 1/2)1/3 + 1.033150 (`+ 1/2)−1/3

− 0.00397 (`+ 1/2)−1 − 0.0908 (`+ 1/2)−5/3 + 0.043 (`+ 1/2)−7/3. (A.8)

To illustrate the quality of the approximation, we have drawn the graph of the function
f` for a micro-sphere of radius R = 67.5µm and optical index N = 1.46 for wavelength around
1550 nm. In Fig. A1 we have depicted the graphs of function f` over [0, kL] for L = 1.2R
and ψ2

` over [0, a1] where a1 denotes the first zero of ψ`, for ` = 387 and λ = 1548.93 nm (it
corresponds to the higher wavelength value for this mode index `, that is to say to n = 1).
We can observe that the approximation is very good.

However the quality of the approximation decreases very quickly when the mode index
n increases. In Fig. A2 we have depicted the graphs of function f` over [0, kL] for L = 1.2R
and ψ2

` over [0, a1] for ` = 377 and λ = 1548.20 nm (it corresponds to the second higher
wavelength value for this mode index `, that is to say to n = 2) and for ` = 368 and
λ = 1550.28 nm (it corresponds to the 5th higher wavelength value for this mode index `,
that is to say to n = 5).

Thus, the approximation (A.7) works well for the higher wavelength resonance value
(mode index n = 1) but the error increases quickly when n becomes higher due to the
oscillations of the Bessel functions ψ` after its first zero and this behavior is not taken into
account.

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr
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Figure A1. Left: graphs of function f` over [0, kL] for L = 1.2R (red line) and
ψ2
` over [0, a1] (black line) where a1 denotes the first zero of ψ`. Right: zoom on

the area of interest.
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Figure A2. Graphs of function f` over [0, kL] for L = 1.2R (red line) and ψ2
`

over [0, a1] (black line) where a1 denotes the first zero of ψ`. Left: for ` = 377,
λ = 1548.20 nm and n = 2. Right: for ` = 368, λ = 1550.28 nm and n = 5.

The main advantage of the approximation formula (A.7) is that the right-hand side
integral can be computed exactly as follows. First, using formula 5.54.2 p. 629 of [6] we have∫

ψ2
` (s) ds =

π

2

∫
s J`+ 1

2
(s)2 ds =

π s2

4

(
J`+ 1

2
(s)2 − J`− 1

2
(s) J`+ 3

2
(s)
)

=
s2

2

(
ψ`(s)

2 − ψ`−1(s) ψ`+1(s)
)
. (A.9)

Since ψ`(a1) = J`+ 1
2
(a1) = 0, we deduce that∫ a1

0

ψ2
` (s) ds = −a1

2
ψ`−1(a1) ψ`+1(a1).
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We can simplify the result as follows. We have (see [1] formula 10.1.21 p. 439)

ψ′`(x) = − `
x
ψ`(x) + ψ`−1(x),

and ψ′`(x) =
`+ 1

x
ψ`(x)− ψ`+1(x)

Since ψ`(a1) = 0 by product of the 2 above identities we deduce that

ψ′`(a1)2 = −ψ`−1(a1) ψ`+1(a1)

and we conclude that ∫ a1

0

ψ2
` (s) ds =

a1

2
ψ′`(a1)2. (A.10)

The result can also be expressed in terms of the spherical Bessel function j` as follows∫ a1

0

ψ2
` (s) ds =

a1

2
j′`(a1)2. (A.11)

We now have to compute E2
max where Emax denotes the maximum value of the electric

field inside the micro-sphere. We have

Emax = ATEi sup
(r,θ,ϕ)∈[0,R]×[0,π]×[0,2π]

∣∣∣∣ψ`(kr)kr

∣∣∣∣ ‖X`m(θ, ϕ)‖2

= ATEi sup
r∈[0,R]

∣∣∣∣ψ`(kr)kr

∣∣∣∣× sup
(θ,ϕ)∈[0,π]×[0,2π]

‖X`m(θ, ϕ)‖2 (A.12)

We first compute the maximum over [0, R] of |j`(kr)| = |ψ`(kr)/kr|. It follows from
the known behavior of the spherical Bessel function, see e.g. [1,6], that the global maximum
of |j`| coincides with the first local maximum of j`. Thus, we are looking for the first zero
a′1 of the derivative of the spherical Bessel function of order `. An approximation based on
an asymptotic expansion for the first zero (denoted a′`,1) of j′` for large ` is given in [1] (see
formula (10.1.59) p. 441):

a′`,1 = (`+ 1
2
) + 0.8086165 (`+ 1

2
)1/3 − 0.236680 (`+ 1

2
)−1/3

− 0.20736 (`+ 1
2
)−1 + 0.0233 (`+ 1

2
)−5/3. (A.13)

Actually, a′`,1 can be considered as an approximation for the first zero of j′` even for small `.
For instance for ` = 5 we have a′`,1 = 6.7606 whereas an accurate value for the first zero of
j′` computed with the symbolic computation software Maple is found to be 6.7564. Thus,

sup
r∈[0,R]

∣∣∣∣ψ`(kr)kr

∣∣∣∣ = j`(a
′
1). (A.14)

Let us now consider the computation of

sup
(θ,ϕ)∈[0,π]×[0,2π]

‖X`m(θ, ϕ)‖2.

From (3.27) and (3.7), we have

‖X`m(θ, ϕ)‖22 = X`m(θ, ϕ) X`m(θ, ϕ)∗

= C2
`,m

(
m2

sin2(θ)
Pm` (cos(θ))2 + sin2(θ)

(
Pm`
′(cos(θ))

)2)

Technical Report - CNRS UMR 6082 FOTON - http://foton.cnrs.fr
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where Pm` denotes the Associated Legendre function of degree ` and order m and the constant
C`m is defined in (3.8), namely

C`m =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
.

Let us consider the special case when m = `. We have

P `` (x) =
(−1)` (2`)!

2` `!
(1− x2)

`
2

so that

P `` (cos(θ)) =
(−1)` (2`)!

2` `!
sin`(θ)

and (P `` )′(cos(θ)) =
(−1)`+1 (2`)!

2` (`− 1)!
sin`−2(θ) cos(θ).

We deduce that

‖X`m(θ, ϕ)‖22 = C2
``

(
(2`)!

2` `!

)2

`2 sin2`−2(θ) (2− sin2(θ))

and

sup
(θ,ϕ)∈[0,π]×[0,2π]

‖X`m(θ, ϕ)‖2 =
(2`+ 1)(2`)!`2

4π4`(`!)2
sup
θ∈[0,π]

sin2`−2(θ) (2− sin2(θ))

=
(2`+ 1)(2`)!`2

4π4`(`!)2
sup
x∈[0,1]

x`(2− x)

=
(2`+ 1)(2`)!`2

4π4`(`!)2
g(1) =

(2`+ 1)(2`)!`2

4π4`(`!)2
.

Finally, we conclude that for m = ` the volume of the TE mode can be approach by

V =
2π 4` (`!)2 (`+ 1)

(2`+ 1) (2`)! `

a3
1

k3

j′`(a1)2

j`(a′1)2
. (A.15)

For large values of ` we can use Stirling’s formula to approach the factorial terms. We obtain

V =
2π

3
2 (`+ 1)

(2`+ 1)
√
`

a3
1

k3

j′`(a1)2

j`(a′1)2
. (A.16)

F. Treussart formula is deduced by using the relation k = 2πN/λ and for large values of `
the approximation

(`+ 1)

(2`+ 1)
√
`
≈ 1

2
√
`
.

Appendix B. Mode volume formula in lossless media

The volume of a whispering gallery mode in a micro-sphere is defined, see [18, 19], as the
integral over the whole space of the energy density normalized by its maximum value inside
the micro-sphere, i.e.

V =
1

wmax

∫
R3

w(x1, x2, x3) dx1dx2dx3 (B.1)
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where w denotes the energy density given as a function of the position vector x = (x1, x2, x3)
by

w(x) =
1

2

(
ε(x)

2
E(x)E∗(x) +

1

2µ0
B(x)B∗(x)

)
(B.2)

and wmax denotes the maximum value of the energy density inside the micro-sphere. In
relation (B.2), the quantity E∗ (resp. B∗) stands for the adjoint (conjugate transpose) of E
(resp. B) so that E(x)E∗(x) = E(x) ·E(x) = ‖E(x)‖22 = |E1(x)|2 + |E2(x)|2 + |E3(x)|2.

In this appendix, we show that when we assume that the energy losses by diffraction
and diffusion can be neglected, the energy conservation law implies that the contribution of
the electric field and the magnetic field to the energy density in (B.1) are equal, i.e.∫

R3

ε(x)

2
E(x)E∗(x) dx =

1

2µ0

∫
R3

B(x)B∗(x) dx. (B.3)

To prove this result, we use the following expression deduced from harmonic Maxwell’s
equation (2.9d)

E(x) =
1

iωε(x)µ0
curlB(x). (B.4)

It follows from (B.3) that

I =

∫
R3

ε(x)

2
E(x)E∗(x) dx =

∫
R3

1

2ω2ε(x)µ2
0

curlB(x) curlB∗(x) dx

=
1

2ω2N2ε0µ2
0

∫
B(0,R)

curlB(x) curlB∗(x) dx

+
1

2ω2ε0µ2
0

∫
B′(0,R)

curlB(x) curlB∗(x) dx

where N is the micro-sphere optical index, B(0, R) denotes the ball with radius R and center
the origin and B′(0, R) its complement in R3. Then using Green’s formula for the curl
operator in each domain B(0, R) and B′(0, R), we get

I =
1

2ω2N2ε0µ2
0

∫
B(0,R)

B∗(x) curl(curlB(x)) dx

+
1

2ω2ε0µ2
0

∫
B′(0,R)

B∗(x) curl(curlB(x)) dx

+

∫
S(0,R)

[
1

2ω2ε(x)µ2
0

B∗(x) (curlB(x) ∧ n)

]
dσ(x)

where S(0, R) denotes the sphere with radius R and center the origin, n its unit outward
normal vector and the brackets [ ] mean that we have to take into account the jump across
the surface of the quantity inside the brackets. From harmonic Maxwell’s equations (2.9a)
and (2.9d), we deduce that

curl(curlB(x)) = iωµ0ε curl(E) = ω2µ0εB(x).

Therefore,

I =
1

2µ0

∫
B(0,R)

B(x) B∗(x) dx +
1

2µ0

∫
B′(0,R)

B(x) B∗(x) dx

+
1

2ω2µ2
0

∫
S(0,R)

[
1

ε(x)
B∗(x) (curlB(x) ∧ n)

]
dσ(x) (B.5)

Then, combining relation (B.4) with the interface condition (2.7a) for Maxwell’s equations
gives [

1

ε(x)
curlB(x) ∧ n

]
= 0.
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Moreover, from the interface conditions (2.7b) and (2.7d), we deduce that [B · n] = 0 and
[B ∧ n] = 0, that is to say that B is continuous across the surface S(0, R). It means that we
have [

1

ε(x)
B∗(x) (curlB(x) ∧ n)

]
= B∗(x)

[
1

ε(x)
(curlB(x) ∧ n)

]
= 0

and the expression of I given in (B.5) can be simplified as follows

I =
1

2µ0

∫
R3

B(x) B∗(x) dx.

Finally, we have proven relation (B.3) and we can conclude that the mode volume can be
expressed either as

V =
1

wmax

∫
R3

ε(x)

2
E(x)E∗(x) dx (B.6)

or as

V =
1

wmax

∫
R3

1

2µ0
B(x)B∗(x) dx. (B.7)
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