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Remarks on entire solutions for two fourth order elliptic problems

Baishun Lai, Dong

Introduction

In the present note, we are interested in entire solutions for two semilinear biharmonic equations ∆ 2 u = e u in R N (1.1) and ∆ 2 u = -u -p in R N , where p > 0.

(1.2)

Recently, the fourth order equations have attracted the interest of many researchers. In particular, a lot of efforts have been devoted to understand the existence, multiplicity, stability and qualitative properties of solutions for ∆ 2 u = f (u) with classical nonlinearities, like the polynomial growth f (u) = u p , the exponential growth f (u) = e u and the negative power situation f (u) = -u -p . For equation (1.1), in the conformal dimension N = 4, (1.1) appears naturally in conformal geometry as the constant Q-curvature problem, the existence and asymptotic behaviour of solutions with finite total curvature, i.e. e u ∈ L 1 (R 4 ) were studied in [START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF][START_REF] Lin | A classification of solutions of a conformally invariant fourth order equation in R N[END_REF][START_REF] Wei | Nonradial solutions for a conformally invariant fourth order equation in R 4[END_REF]. Entire radial solutions of (1.1) were also studied for N ≥ 5 in [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] and the stability of these entire radial solutions were considered in [START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF][START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF]. In particular, it is proved by [START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF] that (1.1) admits no radial entire solution if N = 2.

Recently, Farina informed us that a very general nonexistence result was proved by Walter in 1957, see [START_REF] Walter | Ganze Lösungen der Differentialgleichung ∆ m u = f (u)[END_REF]. In particular, Walter proved that no classical entire solution exists in R 2 for the polyharmonic problem ∆ 2m u = e u with any positive integer m. Here we give an alternative proof (see Corollary 2.1 and Remark 2.2 below). Indeed, we will make use of a general observation for entire solutions to ∆ 2m u = e u . Theorem 1.1. Let u be a classical solution of

∆ 2m u = e u in R N with m ∈ N * , then ∆ 2m-1 u < 0, i.e. (-∆) 2m-1 u > 0 in R N .
We note that similar results were obtained by [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF][START_REF] Wei | Classification of solutions of higher order conformally invariant equations[END_REF] under additional conditions. The authors in [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF] considered solutions to (1.1) which are stable outside a bounded domain. In [START_REF] Wei | Classification of solutions of higher order conformally invariant equations[END_REF], it was proved that (-∆) m-1 u > 0 for any classical entire solution of (-∆) m u = e u with m ≥ 2, satisfying u(x) = o(|x| 2 ) at infinity.

It is worthy to mention that the corresponding result is no longer true for entire solutions to (-∆) m u = e u with odd m. In fact, Farina and Ferrero prove that when m ≥ 3 is odd, there are infinitely many entire radial solutions of (-∆) 2m+1 u = e u , m ∈ N such that (-∆) 2m u changes sign, see Lemma 6.8 and the proof of Lemma 5.4 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1[END_REF], see also [START_REF] Walter | Zur Existenz ganzer Lösungen der Differentialgleichung ∆ m u = e u[END_REF] for the equation ∆ 2m+1 u = e u .

On the other hand, for N ≥ 3, it is known that (1.1) admits infinitely many smooth radial solutions. These radial solutions are of either exactly quadratic growth or logarithmic growth at infinity for N ≥ 4 (see [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF][START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF]). For N = 3, it is proved in [START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF] that the radial solution is of either exactly quadratic growth or it verifies u(r) ≤ -Cr at infinity for some C > 0. More precisely, let u α,β be the unique radial solution of

∆ 2 u α,β (r) = e u α,β (r) for r ∈ [0, R(α, β)), u α,β (0) = α, ∆u α,β (0) = β, u α,β (0) = (∆u α,β ) (0) = 0, (1.3) 
where [0, R(α, β)) denotes the maximal interval of existence. Noting that the equation (1.3) is invariant under the scaling transformation

u λ (x) = u(λx) + 4 ln λ, λ > 0.
Therefore, we need only to understand the case α = 0. We will denote u 0,β by u β and R(0, β) by R(β) for simplicity. It has been proved in [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF][START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF] that any local solutions to (1.3) satisfies

u β (r) ≥ β 2N r 2 for all r ∈ [0, R(β)). (1.4) 
Furthermore, there exists β 0 ∈ (-∞, 0) such that (i) For β < β 0 , then R(β) = +∞ and in addition to (1.4), one has the upper bound

u β (r) ≤ - β 0 -β 2N r 2 for all r ∈ [0, ∞);
(ii) For β = β 0 , the solution u β 0 , called separatrix verifies

     u β 0 (r) ≤ -Cr, if N = 3 and r large, with C > 0; u β 0 (r) = -4 ln 1 + e α 2 8 √ 6 r 2 , for N = 4; lim r→∞ [u β 0 (r) + 4 ln r] = ln[8(N -2)(N -4)], for N ≥ 5. (iii) For β > β 0 , R(β) < ∞ and lim r R(β) u β (r) = ∞.
An open problem was left for the exact asymptotic behaviour of the separatrix u β 0 in dimension three, see [START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF]. The following result answers this issue.

Theorem 1.2. Let β 0 be defined as above and N = 3. Then we have, as r → ∞,

u β 0 (r) = α 1 r + α 2 + α 3 r -1 + O(e -cr
) where c > 0 and

α 1 = -1 8π R 3 e u β 0 dx, α 2 = 1 8π R 3 |x|e u β 0 dx, α 3 = -1 24π R 3 |x| 2 e u β 0 dx.
The second part of the note is devoted to consider the classical solutions of equation (1.2). Recently, the radial solutions to (1.2) are studied in [START_REF] Dávila | Multiplicity of solutions for a fourth order problem with power-type nonlinearity[END_REF], and some Liouville type results are obtained for stable entire solutions of (1.2) in [START_REF] Guo | Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents[END_REF]. We can remark that all these results concern the negative exponent -p with p > 1, and it seems curious for us that no study existed for entire solutions of (1.2) with p ≤ 1. Here we prove that no such entire solution could exist if p ∈ (0, 1], that is

Theorem 1.3. If 0 < p ≤ 1, the equation (1.
2) admits no entire smooth solution.

In fact, our proof is inspired by the work of Choi-Xu in [START_REF] Choi | Nonlinear biharmonic equations with negative exponents[END_REF], where the above result has been established for N = 3.

Proof of Theorem 1.1

In this section, we prove Theorem 1.1. In the following, for a given function f , we write

f (r) = - ∂Br(0) f dσ = 1 |∂B r (0)| ∂Br(0) f dσ, ∀ r > 0,
where |∂B r (0)| denotes the volume of the sphere. Furthermore, we will consider ∆ 2m u = e u as a system:

v 1 := u, v k+1 := ∆v k for 1 ≤ k ≤ 2m -1 so that ∆v 2m = e u in R N . (2.1) Proof of Theorem 1.1. First we show that v 2m = ∆ 2m-1 u ≤ 0. If it is not the case, there is a point x 0 ∈ R N such that v 2m (x 0 ) > 0.
Up to a translation, we may assume that x 0 = 0. Therefore with v k given by (2.1), v k (r) satisfy

∆v k = v k+1 for 1 ≤ k ≤ 2m -1, ∆v 2m = e u ≥ e u in R N . (2.2)
Remark that ∆v 2m = r 1-N (r N -1 v 2m ) = e u > 0, so v 2m is increasing w.r.t. the radius r. There holds ∆v 2m-1 ≥ v 2m (0) > 0. Integrating it, we get

v 2m-1 (r) ≥ v 2m-1 (0) + v 2m (0) 2N r 2 . Hence v 2m-1 (r) → ∞ as r → ∞. By iteration, we see that u(r) = v 1 (r) → ∞ as r → ∞. Now Let r = e t , w(t) = u(e t ), direct calculation yields e 4mt e w(t) = e 4mt e u(r) ≤ e 4mt ∆ 2m u(r) = w (4m) (t) + 4m-1 i=1 c i w (i) (t) (2.3) 
where c i are some constants depending only on N and i. Here and after, g (i) denotes the i-th derivative of a function g. Since lim t→∞ w(t) = ∞, there exists T 1 such that e 4mt e w(t) ≥ w 2 (t) for all t ≥ T 1 .

We apply now the test function method developed by [START_REF] Mitidieri | A priori estimates and blou-up of solutions to nonlinear partial differential equations and inqualities[END_REF]. More precisely, we can choose a nonnegative function

φ 0 ∈ C ∞ 0 [0, ∞) satisfying φ 0 > 0 in [0, 2), φ 0 (τ ) = 1 for τ ∈ [0, 1] 0 for τ ≥ 2. and 2 0 |φ (i) 0 (τ )| 2 φ 0 (τ ) dτ := A i < ∞ ∀ i ∈ N. Let T > T 1 , multiplying (2.3) by φ(t) = φ 0 t-T 1
T -T 1 and integrating by parts, we obtain

∞ T 1 φ (4m) (t) + 4m-1 i=1 (-1) i c i φ (i) (t) w(t)dt ≥ ∞ T 1 w 2 (t)φ(t)dt -C. (2.4) 
By Young's inequality, for any > 0, ∃ C > 0 such that

w(t)φ (i) (t) ≤ w 2 (t)φ(t) + C |φ (i) (t)| 2 φ(t) , ∀ t ∈ [T 1 , 2T -T 1 ).
Then, provided that is chosen sufficiently small, (2.4) yields

C 4m i=1 A i (T -T 1 ) 1-2i = C i=4m i=1 2T -T 1 T 1 |φ (i) (t)| 2 φ(t) dt ≥ 2T -T 1 T 1 w 2 (t)φ(t)dt -C , ≥ T T 1 w 2 (t)dt -C ,
with fixed constants C , C > 0. Let T → ∞, we observe a contradiction with w(t) → ∞. So we have v 2m ≤ 0 in R N . Now suppose that there exists x 0 ∈ R N verifying v 2m (x 0 ) = 0, then x 0 is a maximum of v 2m , hence ∆v 2m (x 0 ) ≤ 0 which is just impossible as ∆v 2m = e u , so ∆ 2m-1 u = v 2m < 0 in R N .

As an immediate consequence of Theorem 1.1, we can claim Corollary 2.1. For any m ∈ N * , the equation ∆ 2m u = e u admits no classical entire solution in R 2 .

Proof. We suppose by contradiction that u is a smooth function verifying

∆ 2m u = e u in R 2 . Using Theorem 1.1, v := ∆ 2m-1 u < 0 in R 2 . Moreover, v (r) = 1 2πr Br(0) ∆vdx = 1 2πr Br(0) ∆ 2m udx = 1 2πr Br(0) e u dx ≥ C r , ∀ r ≥ 1,
where C is a positive constant. Hence

v(r) -v(1) = r 1 v (r)dr ≥ C ln r, ∀ r ≥ 1.
This contradicts the fact v(r) < 0 if we tend r to ∞, so we are done.

Remark 2.2. By adapting similar approach, the results of Theorem 1.1 and Corollary 2.1 hold true for the equation ∆ 2m u = f (u) with general convex, positive nonlinearity f verifying lim inf t→∞ f (t)t -1-µ > 0 for some µ > 0.

(2.5)

We should mention that Walter proved in [START_REF] Walter | Ganze Lösungen der Differentialgleichung ∆ m u = f (u)[END_REF] the nonexistence of smooth entire solution to ∆ 2m u = f (u) in R 2 for any m ∈ N * and any positive function f satisfying (2.5), without the convexity assumption.

3 Proof of Theorem 1.2

We will use here the notations in Introduction for radial solutions, and also the results (i)-(iii) cited there, given by [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF][START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF]. Recall that u β is the unique radial solution of

∆ 2 u β = e u β , ∆u β (0) = β, u β (0) = u β (0) = (∆u β ) (0) = 0; (3.1) 
and the solution exists globally if and only if β ≤ β 0 . First, we show the following characterization of the separatrix solution u β 0 .

Proposition 3.1. For any β ≤ β 0 , lim r→∞ ∆u β (r) ≤ 0 and lim r→∞ ∆u β (r) = 0 if and only if β = β 0 .

Proof. For any solution u of (1.1),

d∆u(r) dr = r N -1 r 0 s 1-N e u ds > 0.
According to Theorem 1.1, lim r→∞ ∆u β (r) = σ ≤ 0 exists. For β < β 0 , we see that σ < 0, since u β ≤ -Cr 2 by (i) and σ = 0 implies readily that u β (r) = o(r 2 ) at ∞.

Similarly, we easily obtain lim r→∞ ∆u β 0 = 0 for N ≥ 4 by (ii). Consider now u β 0 when N = 3. In fact, we will prove that if σ < 0, then β < β 0 .

For N = 3, (1.3) reads (r 4 u (r)) = r 4 e u , ∀ r > 0.

(

Integrating over [0, r], we see that for all r ≥ 1,

r 4 u (r) = r 0 s 4 e u(s) ds ≤ ∞ 0 s 4 e u(s) ds < ∞.
Here we used the fact that u(r) ≤ -Cr for r large. Thus u (r) < Cr -4 for r ≥ 1. Suppose now σ = lim r→∞ ∆u(r) < 0 for some entire solution u of (3.1) with N = 3. As Direct computation shows that ũ is supersolution of (3.2) in R 3 and

u (r) = r -2
ũ (r) = -2 r + 1 r + 1 , ũ (r) = -2 - 1 (r + 1) 2 , ũ (r) = 2 (r + 1) 3 .
Hence, if we fix ∈ (0, -σ/6) and some large enough r 0 , there hold u (i) (r 0 ) < ũ(i) (r 0 ) for 0 ≤ i ≤ 3. By continuous dependence on initial data, there is β 1 > β = -∆u(0) such that u (i) β 1 (r 0 ) < ũ(i) (r 0 ) for 0 ≤ i ≤ 3. We claim then u β 1 (r) < ũ(r) for all r ≥ r 0 .

(3.3)

If it is not the case, then

r 1 = sup {s > r 0 s.t. u β 1 (r) < ũ(r) in [r 0 , s]} < ∞.
By (3.2), we have (r 4 u β 1 (r)) < (r 4 ũ (r)) in [r 0 , r 1 ), and successive integrations yield that u β 1 < ũ on [r 0 , r 1 ), hence u β 1 (r 1 ) < ũ(r 1 ) . This contradicts the definition of r 1 , so the claim (3.3) holds true. By the point (iii), u β 1 is defined then for all r ≥ 0 which means that β 1 ≤ β 0 , so β < β 0 .

Proof of Theorem 1.2. To simplify the presentation, we erase the index β 0 and denote u β 0 by u. Recall that u ≤ -Cr for some C > 0 by (ii). Let v = -∆u, then we have

v(r) = β 0 - r 0 s -2 s 0
t 2 e u(t) dtds, ∀ r > 0.

Applying Proposition 3.1, as lim r→∞ v(r) = 0, we get

v(r) = ∞ r s -2 s 0 t 2 e u(t) dtds = 1 r r 0 t 2 e u(t) dt + ∞ r te u(t) dt = 1 4πr R 3 e u dx - 1 r ∞ r t 2 e u dt + ∞ r te u dt.
For any s ≥ r > 0,

w (s) = -s 1-N s 0 t N -1 f (t)dt ≤ -s 1-N r 0 t N -1 f (t)dt,
so we get, using the monotonicity of u, w(r) ≥ w(2r)

+ 2r r s 1-N r 0 t N -1 f (t)dtds ≥ w(2r) + Cr 2-N r 0 t N -1 f (t)dt ≥ Cr 2-N r 0 t N -1 u -p (t)dt ≥ Cr 2 u -p (r), (4.3) 
Inserting into (4.2), we have

u(r) ≥ u(0) + Cr 4 u -p (r) ≥ Cr 4 u -p (r).
Hence (4.1) follows.

Combining (4.1) and Corollary 4.3, if u is a classical solution of (1.2), necessarily there holds p ≥ 1. Finally, we will exclude the case p = 1. Let u be a smooth entire solution to ∆ 2 u = -u -1 , then u is a subsolution to the following equation ∆ 2 U (r) + U -1 (r) = 0, U (0) = u(0), U (0) = u (0), U (0) = U (0) = 0. (

Consider

Z(r) = u(0) + u (0) 2 r 2 .
Obviously, Z is biharmonic and a supersolution of (4.4). A comparison principle (see Lemma 3.2 in [START_REF] Mckenna | Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry[END_REF]) ensures that Z ≥ u, and there is a solution U to (4.4) satisfying u ≤ U ≤ Z.

By Lemma 4.1, W := ∆U > 0, so U is increasing. As ∆W = -U -1 < 0, W is decreasing and W (r) ≥ Cr 2 U -1 (r), see for example (4.3). By This implies that W (r) < 0 for r large enough, which contradicts W > 0. 

  Consider now the function ũ defined byũ(r) = -r 2 + ln(1 + r) -b where > 0, b ≥ ln max R + ψ with ψ(r) := r(1 + r) 5 2(r + 4) e -r 2 in R + .

  Corollary 4.3, lim r→∞ W (r) = α > 0

Remark 4 . 4 .

 44 The proof of Theorem 1.3 also means that no solution exists in dimension 1 or 2 for any p > 0. It answers Question 2 of McKenna and Reichel in[START_REF] Mckenna | Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry[END_REF].
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Then it is easy to get the claimed expansion for u.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the following lemma.

Indeed, this Lemma is an immediate consequence of the followin result.

Proof. First we show by contradiction that ∆u ≥ 0. Suppose that there is x 0 ∈ R N verifying ∆u(x 0 ) < 0. By translation, we can assume that x 0 = 0. Let w = ∆u, then ∆u = w and ∆w = ∆ 2 u < 0 where u and w are the average over sphere for u and w. Consequently

We get u(r) goes to -∞ as r tends to infinity, which is impossible since u is lower bounded. So ∆u ≥ 0 in R N . Now if there is x 1 ∈ R N such that ∆u(x 1 ) = 0. Thus x 1 is a minimum point of ∆u and ∆ 2 u(x 1 ) ≥ 0, which contradicts the hypothesis, so the proof is completed.

From the above proof, as w ≤ w(0), we immediately have

Proof of Theorem 1.3. For N = 1, we have u > 0 from Lemma 4.1 and u (4) < 0. However, except being constant, no function can be concave and lower bounded on R, so we get the nonexistence of entire solution for u (4) = u -p in R for any p > 0. For N = 2, the superharmonic function ∆u is bounded from below by Lemma 4.1, so it must be constant, again it cannot verify the (1.2), so we are done.

Consider from now on N ≥ 3, we claim that if u is a smooth solution of (1.2), then there exists C > 0 such that u(r) ≥ Cr On the other hand, By Jensen's inequality, f (r) := -∆w(r) = u -p (r) ≥ u -p (r) > 0.