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Introduction and statement of the main result

Let M be a compact manifold of dimension n ≥ 3 and let k ≥ 1 be an integer such that k ≤ n 2 if n is even. In their celebrated work, Graham-Jenne-Mason-Sparling [START_REF] Graham | Conformally invariant powers of the Laplacian. I. Existence[END_REF] provided a systematic construction of conformally invariant operators (GJMS operators for short) based on the ambient metric of Fefferman-Graham [START_REF] Fefferman | Conformal invariants. The mathematical heritage of Elie Cartan[END_REF][START_REF] Fefferman | The ambient metric[END_REF]. More precisely, letting M be the set of Riemannian metrics on M , then for all g ∈ M, there exists an operator P g : C ∞ (M ) → C ∞ (M ) such that (i) P g is a differential operator and P g = ∆ k g + lot (ii) P g is natural, that is ϕ P g = P ϕ g for all smooth diffeomorphism ϕ : M → M .

(iii) P g is self-adjoint with respect to the L 2 -scalar product (iv) Given ω ∈ C ∞ (M ) and defining ĝ = e 2ω g, we have that [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF] P ĝ (f ) = e -n+2k 2 ω P g e n-2k 2

ω f for all f ∈ C ∞ (M ).

Here ∆ g := -div g (∇) is the Laplace-Beltrami operator and lot denotes differential terms of lower order. Point (iii) above is due to Graham-Zworski [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. For instance, on R n endowed with its Euclidean metric ξ, one has that P ξ = ∆ k ξ . There is a natural scalar invariant, namely the Q-curvature, attached to the operator P g : this scalar invariant, denoted as Q g , was initially introduced by Branson and Ørsted [START_REF] Branson | Explicit functional determinants in four dimensions[END_REF] for n = 2k = 4 and generalized by Branson [START_REF] Branson | The functional determinant[END_REF][START_REF] Branson | Sharp inequalities, the functional determinant, and the complementary series[END_REF]. When k = 1, the GJMS operator is the conformal Laplacian and the Q-curvature is the scalar curvature (up to a dimensional constant). When k = 2, the GJMS operator is the Paneitz operator introduced in [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF]. When n = 2k, the Q-curvature is Q g := 2 n-2k P g (1): when n = 2k, the definition is much more subtle and involves a continuation in dimension argument (we refer to the survey Branson-Gover [START_REF] Branson | Origins, applications and generalisations of the Q-curvature[END_REF] and to Juhl [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF] for an exposition in book form). In the spirit of classical problems in conformal geometry, our objective here is to prescribe the Q-curvature in a conformal class; that is, given a conformal Riemannian class C on M and a function f ∈ C ∞ (M ), we investigate the existence of a metric g ∈ C such that Q g = f . As one checks (see Proposition 3 below), up to multiplication by a constant, this amounts to finding critical points of the perturbation of the Hilbert functional

C → R g → M Q g dv g V f (M, g) n-2k n
where V f (M, g) := M f dv g is the weighted f -volume of (M, g). This structure suggests to apply variational methods to prescribe the Q-curvature and we define

µ f (C) := inf g∈C M Q g dv g V f (M, g) n-2k n .
Given a metric g ∈ C, the conformal class can be described as

C = {e 2ω g/ ω ∈ C ∞ (M )}.
We assume that n > 2k: in this context, it is more convenient to write a metric ĝ ∈ C as ĝ = u 

P ĝ ϕ = u 1-2 P g (uϕ)
for all ϕ ∈ C ∞ (M ), where 2 := 2n n-2k . Therefore, taking ϕ ≡ 1, we have that

P g u = n -2k 2 Q ĝ u 2 -1 in M
where ĝ = u 4 n-2k g, and then finding a metric in C with f as Q-curvature amounts to solving the variational elliptic equation P g u = n-2k 2 f u 2 -1 . Despite this elegant variational structure, this question gives rise to a crucial intrinsic difficulty due to the essence of the problem, that is the conformal invariance of the operator. More precisely, in the spirit of Bourguignon-Ezin [START_REF] Bourguignon | Scalar curvature functions in a conformal class of metrics and conformal transformations[END_REF], Delanoë and the author proved in [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF] that M X(Q g ) dv g = 0 for all conformal Killing field X on (M, C). When k = 1, this is the celebrated Kazdan-Warner obstruction [START_REF] Kazdan | Scalar curvature and conformal deformation of Riemannian structure[END_REF] to the scalar curvature problem. In particular, if ϕ ∈ C ∞ (S n ) \ {0} is a first eigenfunction of the Laplace-Beltrami operator on the standard sphere (S n , h), then for any = 0, Q h + ϕ is not achived as the Q-curvature of a metric in the conformal class of the standard sphere. Therefore, a function can be arbitrarily close to a Q-curvature but not be a Q-curvature itself: the prescription of the Q-curvature is then a highly unstable problem, and its underlying analysis is intricate. We refer again to [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF] for considerations on the structure of the set of Q-curvatures. In the case k = 1 and n ≥ 3, the problem of prescribing a constant Q-curvature is known as the Yamabe problem: it is not the purpose of the present article to make an extensive historical review of the famous resolution of this problem, and we refer to Lee-Parker [START_REF] Lee | The Yamabe problem[END_REF] and the references therein. Concerning fourth order problems, that is for k = 2, there has been an intensive litterature on the question: here, we refer to the recent surveys of Branson-Gover [START_REF] Branson | Origins, applications and generalisations of the Q-curvature[END_REF], Chang [START_REF] Chang | Conformal invariants and partial differential equations[END_REF], Malchiodi [START_REF] Malchiodi | Conformal metrics with constant Q-curvature[END_REF] and the references therein.

In the sequel, we will say that a function is admissible if it can be achieved as the Q-curvature of a metric in a given conformal class. As seen above, some functions on the sphere are not admissible for the standard conformal class. Moser [START_REF] Moser | On a nonlinear problem in differential geometry[END_REF] remarked that functions enjoying some symmetries automatically satisfy the Kazdan-Warner identities: indeed, on the standard sphere, given an isometry σ such that ϕ • σ = -ϕ for all first eigenfunction of the Laplace-Beltrami operator (take σ = -Id for instance), then the Kazdan-Warner identity yields 0 for all function invariant by σ. Then, Moser had the idea to impose invariance under a group of isometries to find admissible functions on the sphere for the scalar curvature problem in 2D. This strategy was also used by Escobar-Schoen [START_REF] Escobar | Conformal metrics with prescribed scalar curvature[END_REF] and Hebey [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF] in higher dimensions. In the same spirit, Delanoë and the author [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF] proved that a function on the sphere which is close to Q h and invariant under a group of isometries acting without fixed point is admissible. In the present article, we relax the condition of being close to Q h by imposing cancelation of some derivatives (see Theorem 3 below). In the specific case n = 2k + 1, very few is required; this is the object our main result:

Theorem 1. Let k ≥ 1 and let G be a subgroup of isometries of (S 2k+1 , h). Let f ∈ C ∞ (M ) be a positive G-invariant function and assume that G acts without fixed point (that is |O G (x)| ≥ 2 for all x ∈ S 2k+1 ). Then there exists g ∈ [h] such that Q g = f and G ⊂ Isom g (S n ).
When k = 1, 2, this result is due respectively to Hebey [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF] and to the author [START_REF] Robert | Positive solutions for a fourth order equation invariant under isometries[END_REF]. This theorem is a particular case of more general results proved on arbitrary conformal manifolds (see Proposition 8 and Theorem 3 below). In this article, we make a general analysis of the operator P g and of the blow-up phenomenon attached to it on arbitrary conformal manifolds. In the last section, we apply this analysis to the conformal sphere.
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Miscellaneous on the operator P g

The operator P g can be written (partially) as a divergence form (we refer to Branson-Gover [START_REF] Branson | Origins, applications and generalisations of the Q-curvature[END_REF]): as a preliminary step, we precise this divergence form that will be useful in the sequel: Proposition 1. Let P g be the conformal GJMS operator. Then for any l ∈ {0, ..., k -1}, there exists A (l) (g) a smooth T 0 2l -tensor field on M such that

(3)

P g = ∆ k g + k-1 l=0 (-1) l ∇ j l ...j1 (A (l) (g) i1...i l j1...j l ∇ i1...i l ),
where the indices are raised via the musical isomorphism. In addition for any l ∈ {0, ..., k -1}, A (l) (g) is symmetric in the following sense:

A (l) (g)(X, Y ) = A (l) (g)(Y, X)
for all X, Y T l 0 -tensors on M . In particular, we have that

(4) M uP g (v) dv g = M ∆ k 2 g u∆ k 2 g v + k-1 l=0 A (l) (g)(∇ l u, ∇ l v) dv g for all u, v ∈ C ∞ (M ).
Here, we have adopted the convention

∆ k 2 g u∆ k 2 g v := (∇∆ k-1 2 g u, ∇∆ k-1 2 g v) g
when k is odd.

Proof. The proof uses only the self-adjointness of the operator P g . In the sequel, we note A the adjoint of any operator A with respect to the L 2 -product. As a preliminary, we compute the adjoint of some elementary operators. We adopt here Hamilton's convention [START_REF] Hamilton | The formation of singularities in the Ricci flow[END_REF]: the notation A B denotes a linear combination of contraction of the tensors A, B, g and g -1 . Given B a smooth T 0 q -tensor field on M , we consider the operator Bu := B • ∇ q u = B i1...iq ∇ i1...iq u for all u ∈ C ∞ (M ). We claim that

B = (-1) q B + q-1 l=1 ∇ l u ∇ q-l B.
We prove the claim. We let u, v ∈ C ∞ (M ) be two smooth functions on M . Integrating by parts, we have that

M uBv dv g = M uB i1...iq ∇ i1...iq v dv g = (-1) q M ∇ iq...i1 (uB i1...iq )v dv g = (-1) q M B i1...iq ∇ iq...i1 u + q-1 l=0 ∇ l u ∇ q-l B v dv g .
Therefore, B is defined and

B u = (-1) q B i1...iq ∇ iq...i1 u + q-1 l=0 ∇ l u ∇ q-l B.
For any smooth tensor field T , we define Asym(T )(X, Y, ...) := T (X, Y, ...) -T (Y, X, ...). It follows from the definition of the curvature tensor that

Asym(∇ 2 T ) = T R,
where R is the curvature tensor. Therefore, for any permutation σ of {1, ..., q}, we have that ( 5)

∇ q u -σ • ∇ q u = ∇ q-2 u R,
where σ • T permutes the variables of the covariant tensor T along σ. Therefore, we have that ∇ iq...i1 u -∇ i1...iq u is a contraction of ∇ q-2 u, and therefore we get that B = (-1) q B + lot. This proves the claim.

We are now in position to prove Proposition 1. It follows from the definition of P g that there exists B, a smooth T 0 2k-1 -tensor field on M , such that P g u = ∆ k g u + Bu + lot for all u ∈ C ∞ (M ). Since P g and ∆ g are self-adjoint, we then get that

P g = P g = ∆ k g + B + lot = ∆ k g -B + lot since 2k -1 is odd.
In particular, Bu = lot and therefore, Bu = 0 for all u ∈ C ∞ (M ).

We now take C a smooth (2k-2, 0)-tensor field such that

P g = ∆ k g +C •∇ 2k-2 +lot. We define A as the symmetrized tensor of C, that is via coordinates A(X, Y ) = (-1) k-1 1 2 (C(X, Y ) + C(Y, X)) for all X, Y any T k-1 0
-tensors on M . As easily checked, since changing the order of differentiation involves only lower order terms via with (5), we have that

C • ∇ 2k-2 u = C i1...i k-1 j1...j k-1 ∇ i1...i k-1 j1...j k 1 u = (-1) k-1 A i1...i k-1 j1...j k-1 ∇ i1...i k-1 j1...j k-1 u + ∇ 2k-4 u R = (-1) k-1 A i1...i k-1 j1...j k-1 ∇ j k-1 ...j1i1...i k-1 u + ∇ 2k-4 u R = (-1) k-1 ∇ j k-1 ...j1 A i1...i k-1 j1...j k-1 ∇ i1...i k-1 u +∇ 2k-4 u R + k-1 l=1 ∇ 2k-2-l u ∇ l A
and then

P g = ∆ k g + (-1) k-1 ∇ j k-1 ...j1 A i1...i k-1 j1...j k-1 ∇ i1...i k-1 + lot.

Iterating these steps yields (3). Integrating by parts then yields (4).

Define the norm u H

2 k := k l=0 ∇ l u 2 and the space H 2 k (M ) as the completion of C ∞ (M ) for the norm • H 2 k .
As a consequence of (4), we get that the bilinear form (u, v) → M uP g v dv g extends to a continuous symmetrical bilinear form on

H 2 k (M ) × H 2 k (M ). We say that P g is coercive if there exists c > 0 such that M uP g u dv g ≥ c u 2 2 for all u ∈ H 2 k (M ).
We then define the norm u Pg := M uP g u dv g for all u ∈ H 2 k (M ).

Proposition 2. Assume that P g is coercive. Then • Pg is a norm on H 2 k equivalent to • H 2 k . Proof. Clearly • Pg is a norm and there exists C > 0 such that • Pg ≤ C • H 2
k . We now argue by contradiction and we assume that the two norms are not equivalent: then there exists

(u i ) i∈N ∈ H 2 k (M ) such that (6) u i H 2 k = 1 and u i Pg = o(1) when i → +∞. Up to a subsequence, still denoted as (u i ), there exists u ∈ H 2 k (M ) such that u i u weakly in H 2 k (M ) and u i → u strongly in H 2 k-1 (M ) when i → +∞.
The coercivity of P g yields u i 2 = o(1) when i → +∞, and then u ≡ 0. Therefore, we have that [START_REF] Branson | Explicit functional determinants in four dimensions[END_REF] u i 0 weakly in H 2 k (M ) and u i → 0 strongly in H 2 k-1 (M ) when i → +∞. Consequently, (6) rewrites [START_REF] Chang | Conformal invariants and partial differential equations[END_REF] lim

i→+∞ M |∇ k u i | 2 g dv g = 1 and lim i→+∞ M (∆ k 2 g u i ) 2 dv g = 0.
The contradiction comes from a Bochner-Lichnerowicz-Weitzenbock type formula.

Here again, we use [START_REF] Branson | Sharp inequalities, the functional determinant, and the complementary series[END_REF]. We fix u, v ∈ C ∞ (M ): we have that (the notation a ≡ b means that the terms are equal up to a divergence)

(∇ k u, ∇ k v) g ≡ g α1β1 ...g α k β k ∇ α1...α k u∇ β1...β k v ≡ -g α1β1 ...g α k β k ∇ β1α1...α k u∇ β2...β k v ≡ -g α1β1 ...g α k β k ∇ α2...α k β1α1 u∇ β2...β k v + ∇ k-1 u ∇ k-1 v R ≡ -g α2β2 ...g α k β k ∇ α2...α k g α1β1 ∇ β1α1 u∇ β2...β k v + ∇ k-1 u ∇ k-1 v ≡ g α2β2 ...g α k β k ∇ α2...α k ∆ g u∇ β2...β k v + ∇ k-1 u ∇ k-1 v R ≡ (∇ k-1 ∆ g u, ∇ k-1 v) g + ∇ k-1 u ∇ k-1 v R.
the same procedure applied to

(∇ k-1 v, ∇ k-1 ∆ g u) g yields (∇ k u, ∇ k v) g ≡ (∇ k-2 ∆ g u, ∇ k-2 ∆ g v) g +∇ k-1 u ∇ k-1 v R + ∇ k-2 ∆ g u ∇ k-2 v R.
Taking u = v = u i , integrating over M and using (7) yields

M |∇ k u i | 2 g dv g = M |∇ k-2 ∆ g u i | 2 g dv g + o(1)
when i → +∞. Iterating this process and considering separately the cases k odd and k even, we get that

M |∇ k u i | 2 g dv g = M (∆ k 2 g u i ) 2 dv g + o(1)
when i → +∞. This is a contradiction with (8) and Proposition 2 is proved.

General considerations on the equivariant Yamabe invariant

We let (M, C) be a conformal Riemannian manifold. We let G ⊂ Dif f (M ) be a subgroup of diffeomorphisms of M . We define

C G := {g ∈ C/ G ⊂ Isom g (M )},
and we assume that C G = ∅. In particular, G is contained in a compact group. Therefore, without loss of generality, we assume that G is a compact group. As easily checked, for any g ∈ C G , we have that

C G = {e 2ω g/ ω ∈ C ∞ G (M )} where C ∞ G (Ω) = {ω ∈ C ∞ (M )/ ω • σ = ω for all σ ∈ G} is the set of G-invariant smooth functions on M . We assume that n > 2k: in this context, it is more convenient to write a metric ĝ ∈ C as ĝ = u 4 n-2k g with u ∈ C ∞ + (M ).
The relation between P g and P ĝ is given by [START_REF] Baird | Prescribed Q-curvature on manifolds of even dimension[END_REF]. With the new parametrization, we have that

C G = {u 4 n-2k g/ u ∈ C ∞ G,+ (M )}, where C ∞ G,+ (M ) := {u ∈ C ∞ G (M )/ u > 0}. Let f ∈ C ∞ G,+ ( 
M ) be a smooth positive G-invariant function. By analogy with the Yamabe invariant, we define

µ f (C G ) := inf g∈C G M Q g dv g V f (M, g) 2 2
where V f (M, g) is the f -volume defined in the introduction and 2 := 2n n-2k . We fix g ∈ C G : as easily checked, we have that

µ f (C G ) = 2 n -2k inf u∈C ∞ G,+ (M ) I g (u)
where

I g (u) := M uP g u dv g M f |u| 2 dv g 2 2
for all u ∈ H 2 k (M ) \ {0}.

Proposition 3. A metric g ∈ C G is a critical point of the functional g → M Qg dvg V f (M,g) 2 2
if and only if there exists λ ∈ R such that Q g = λf .

Proof. We fix g ∈ C G and t → g(t) ∈ C G a differentiable family of metrics conformal to g such that g(0) = g. In particular, there exists a differentiable family

t → u(t) ∈ C ∞ G,+ (M ) such that g(t) = u(t) 4 
n-2k g and u(0) = 1. We define u := u (0). Using the self-adjointness of P g , straightforward computations yield

d dt M Q g(t) dv g(t) V f (M, g(t)) 2 2 t=0 = 2 M u Q g -f Qf g dv g V f (M, g(t)) 2 2
where

Qf

g = M Q g dv g V f (M, g) . Since u is G-invariant, the function u ranges C ∞ G (M ). Fix v ∈ C ∞ (M )
and let v G be its symmetrization via the Haar measure (which is well-defined since G is compact). We then define u(t) := 1 + tv G for all t ∈ R: since f and Q g are G-invariant (this is a consequence of point (ii) of the characterization of P g and of the definition of Q g ), we get that

M u Q g -f Qf g dv g = M v G Q g -f Qf g dv g = M v Q g -f Qf g dv g .
Therefore, g is a critical point if and only if Q g = f Qf g . This proves Proposition 3.

To carry out the analysis, coercivity and positivity preserving property are required. More precisely, we assume that there exists g ∈ C such that (C) the operator P g is coercive (P P P ) for any u ∈ C ∞ (M ) such that P g ≥ 0 then either u > 0 or u ≡ 0 .

Note that (C) and (P P P ) are conformally invariant: they hold for some g ∈ C iff they hold for all g ∈ C.

Proposition 4. Assume that the metric g is Einstein with positive scalar curvature and n > 2k, then P g satisfies (C) and (P P P ).

Proof. This relies essentially on the the explicit expression of the GJMS operator in the Einstein case: see Proposition 7.9 of Fefferman-Graham [START_REF] Fefferman | The ambient metric[END_REF] and also Gover [START_REF] Gover | Laplacian operators and Q-curvature on conformally Einstein manifolds[END_REF] for a proof via tractors. Indeed, for an Einstein metric g, P g expresses as an explicit product of second-order operators with constant coefficients depending only on the scalar curvature. For positive curvature, a direct consequence is that P g satisfies (P P P ) by k applications of the second-order comparison principle. Moreover, still in this case, since P g = S(∆ g ) with S a polynomial with positive constant coefficients, it follows from Hebey-Robert [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF] that the first eigenvalue of P g is S(0) > 0 (0 is the first eigenvalue of ∆ g ), and then P g satisfies (C).

Due to the lack of compactness of the embedding H 2 k (M ) → L 2 (M ), it is standard to use the subcritical method. Given q ∈ (2, 2 ], we define

I g,q (u) := M uP g u dv g M f |u| q dv g 2 q
for all u ∈ H 2 k (M ) \ {0}, and µ q := inf

u∈H 2 k,G (M )\{0} I g,q (u),
where

H 2 k,G (M ) := {u ∈ H 2 k (M )/ u • σ = u a.
e. for all σ ∈ G}. The first result is that µ q is achieved at a smooth positive minimizer when q < 2 : Proposition 5. We fix q ∈ (2, 2 ), we assume that (C) and (P P P ) hold and that C G = ∅. Then µ q > 0 is achieved. Moreover, there exists u q ∈ C ∞ G,+ (M ) a smooth positive function such that µ q = I g,q (u q ) and (9) P g u q = µ q f u q-1 q in M with M f u q q dv g = 1.

Proof. Since P g is coercive, the norms • H 2 k and • Pg are equivalent, and then, it follows from Hölder's and Sobolev's inequality that

M f |u| q dv g 2 q ≤ M f dv g 2 q -2 2 M f |u| 2 dv g 2 2 (10) ≤ C M f dv g 2 q -2 2 u 2 H 2 k ≤ C M f dv g 2 q -2 2 u 2
Pg , and then I g,q (u)

≥ (C ) -1 M f dv g -2 q + 2 2
for all u ∈ H 2 k (M ) \ {0}, and therefore µ q > 0. The existence of a minimizer is standard and we omit it. Let us take then u ∈ H 2 k,G (M ) \ {0} be a mimimizer. Without loss of generality, we can assume that M f |u| q dv g = 1. The Euler-Lagrange equation for I g,q yields I g,q (u)ϕ = 0 for all ϕ ∈ H 2 k,G (M ). Using the Haar measure and arguing as in the proof of Proposition 3 (see also [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF]), we get that this equality holds for all ϕ ∈ H 2 k (M ). Since the exponent q is subcritical, we get with standard bootstrap arguments that u ∈ C 2k G (M ) and P g u = µ q f |u| q-2 u. We are left with proving that u > 0 or u < 0. We let v ∈ C 2k G (M ) be such that P g v = |P g u| in M . Since u ≡ 0, it follows from (P P P ) that v ≥ |u| and v > 0. Using again the definition of µ q , we have that

µ q ≤ M vP g v dv g M f v q dv g 2 q = µ q M f v|u| q-1 dv g M f v q dv g 2 q ≤ µ q M f v q dv g 1 q M f |u| q dv g q-1 q M f v q dv g 2 q ≤ µ q M f |u| q dv g q-2 q = µ q since v ≥ |u|
Therefore equality holds everywhere and |u| = v > 0. In particular u does not change sign, and we can assume that it is positive. Bootstrap and regularity theory (see [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) then yield u ∈ C ∞ G,+ (M ), and Proposition 5 is proved with u q := u. Proposition 6. We claim that lim q→2 µ q = µ 2 = n-2k 2 µ f (C G ). Proof. Using the Hölder's inequality [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF], we get that

I g,2 (u) ≤ I g,q (u)V f (M, g) 2 q -2 2 for all u ∈ H 2 k (M ) \ {0}, and then µ 2 ≤ µ q V f (M, g) 2 q -2
2 , which yields µ 2 ≤ lim inf q→2 µ q . Conversely, fix > 0 and let u ∈ H 2 k,G (M ) \ {0} be such that I g,2 (u) < µ 2 + . Since lim q→2 I g,q (u) = I g,2 (u), we then get that there exists q 0 < 2 such that µ q < µ 2 + for q ∈ (q 0 , 2 ), and then lim sup q→2 µ q ≤ µ 2 . Therefore, lim q→2 µ q = µ 2 .

For q ∈ (2, 2 ], we define µ q,+ := inf{I g,q (u)/ u ∈ H 2 k,G (M ) \ {0} and u ≥ 0 a.e.}. Arguing as above, we get that lim q→2 µ q,+ = µ 2 ,+ . Since µ q,+ = µ q for all q < 2 with Proposition 5, we then get that µ 2 = µ 2 ,+ .

We claim that µ 2 ,+ = n-2k 2 µ f (C G ). Indeed, via local convolutions with a positive kernel, we get that

C ∞ + (M ) is dense in H 2 k,+ (M ) for the H 2 k -norm. A symmetriza- tion via the Haar measure then yields that C ∞ G,+ (M ) is dense in H 2 k,G,+ (M ): clearly this yields µ 2 ,+ = n-2k 2 µ f (C G )
, and the claim is proved.

We define

D 2 k (R n ) as the completion of C ∞ c (R n ) for the norm u → ∆ k 2
ξ u 2 and we define [START_REF] Escobar | Conformal metrics with prescribed scalar curvature[END_REF] 1

K(n, k) := inf u∈D 2 k (R n )\{0} R n (∆ k 2 ξ u) 2 dv ξ R n |u| 2 dv ξ 2 2
.

It follows from Sobolev's embedding theorem that K(n, k) > 0. Moreover, it follows from Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] that the infimum is achieved by U : x → (1 + |x| 2 ) k-n 2 , and that all minimizers are compositions of U by translations and homotheties.

Proposition 7. We have that

(12) µ f (C G ) ≤ 2 n -2k • |O G (x)| 2k n f (x) 2 2 K(n, k) for all x ∈ M , where |O G (x)| denotes the cardinal (possibly ∞) of the orbit O G (x).
Proof. We fix x ∈ M . Without loss of generality, we assume that m := |O G (x)| < +∞ (otherwise ( 12) is clear). We let σ 1 = Id M , ..., σ m ∈ G be such that O G (x) = {x 1 , ..., x m } where x i = σ i (x) for all i ∈ {1, ..., m} are distinct. We let u ∈ C ∞ c (R n ) be a radially symmetrical smooth function and we define for > 0 small the function

u ,i (z) := u 1 exp -1 xi (z) if d g (z, x i ) < i g (M )
and 0 otherwise.

Clearly, u ,i ∈ C ∞ (M ) for > 0 small enough. We now define

u := m i=1 u ,i .
As one checks, since u is radially symmetrical, we have that

u ∈ C ∞ G (M ) is G-invariant for > 0 small enough.
Let us compute I g,2 (u ). We fix δ ∈ (0, i g (M )) and we define the metric g := (exp g )( •): since the elements of G are isometries (and then P g = P σ g = σ P g for all σ ∈ G) and the u ,i 's have disjoint supports, we get that

M u P g u dv g = m i,j=1 M u ,i P g u ,j dv g = m i=1 M u ,i P g u ,i dv g = m i=1 B δ (xi) u ,1 • σ -1 i P g (u ,1 • σ -1 i ) dv g = m B δ (x) u ,1 P g u ,1 dv g = m n-2k B -1 δ (0)
uP g u dv g since lim →0 g = ξ, the Euclidean metric, we get that

M u P g u dv g = n-2k m R n (∆ k 2 ξ u) 2 dv ξ + o(1)
when → 0. Similarly, using the G-invariance of f , we get that

M f |u | 2 dv g = n mf (x) R n |u| 2 dv ξ + o(1)
when → 0, and then

I g,2 (u ) = m 2k n f (x) 2 2 • R n (∆ k 2 ξ u) 2 dv ξ R n |u| 2 dv ξ 2 2 + o(1)
when → 0. Therefore, since µ f (C G ) = µ 2 , taking the limit → 0 and taking the infimum on the u's, we get that

µ 2 ≤ |O G (x)| 2k n f (x) 2 2
• inf

u∈C ∞ c (R n )\{0} radial R n (∆ k 2 ξ u) 2 dv ξ R n |u| 2 dv ξ 2 2
It follows from Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] that the infimum K(n, k) -1 is achieved at smooth radially symmetrical functions, therefore we obtain [START_REF] Fefferman | Conformal invariants. The mathematical heritage of Elie Cartan[END_REF].

The quantization of the formation of singularities

The objective of this section is to prove the following result:

Theorem 2. Let (M, C) be a conformal Riemannian manifold of dimension n ≥ 3 and let k ∈ N be such that 2k < n. Let G be a group of diffeomorphisms such that C G = ∅ and let f ∈ C ∞ G,+ ( 
M ) be a positive G-invariant function. Assume that there exists g ∈ C such that P g satisfies (C) and (P P P ). For any q ∈ (2, 2 ), we let u q ∈ C ∞ G,+ (M ) as in Proposition 5. Then: (i) either lim sup q→+∞ u q ∞ = +∞, and there exists x ∈ M such that ∇f (x) = 0 and

µ f (C G ) = 2 n -2k • |O G (x)| 2k n f (x) 2 2 K(n, k) , (ii) 
or u q ∞ ≤ C for all q < 2 , and there exists u

∈ C ∞ G,+ (M ) such that lim q→2 u q = u in C 2k (M ) and P g u = n-2k 2 µ f (C G )f u 2 -1 in M . In particular, there exists ĝ ∈ C G such that Q ĝ = f and the infimum µ f (C G ) is achieved.
This type of result is classical. The proof of Theorem 2 goes through nine steps. For q ∈ (2, 2 ), we let u q ∈ C ∞ G,+ (M ) be as in Proposition 5 (this is relevant since (C) and (P P P ) hold).

Step 1: We assume that there exists C > 0 such that u q ∞ ≤ C for all q < 2 . We claim that (ii) of Theorem 2 holds. We prove the claim. Indeed, it follows from (9), Proposition 6, the uniform bound of (u q ) q in L ∞ and standard elliptic (see for instance [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]), that, up to a subsequence, there exists u ∈ C 2k (M ) nonnegative such that lim q→2 u q = u in C 2k (M ): therefore, P g u = µ 2 f u 2 -1 in M and M f u 2 dv g = 1. In particular, P g u ≥ 0 and u ≡ 0, and then it follows from (P P P ) that u > 0. Since u q is G-invariant for all q ∈ (2, 2 ), we get that u ∈ C ∞ G,+ (M ). Moreover, I g (u) = µ 2 , and then the metric

u 4 n-2k g is extremal for µ f (C G ): it then follows from Proposition 3 that ĝ := (µ f (C G )) 1/k u 4 n-2k g is also an extremal for µ f (C G ) and Q ĝ = f . This ends Step 1.
From now on, we assume that lim sup q→2 u q ∞ = +∞. For the sake of clearness, we will write (u q ) even for a subsequence of (u q ). For any q ∈ (2, 2 ), we let x q ∈ M be such that [START_REF] Fefferman | The ambient metric[END_REF] u q (x q ) = max M u q and lim q→2 u q (x q ) = +∞.

We define α q := u q (x q ) -2 n-2k and β q := α q-2 2 -2 q for all q ∈ (2, 2 ). It follows from ( 13) that ( 14) lim q→2 α q = 0 and β q ≥ α q for q → 2 .

We define [START_REF] Graham | Conformally invariant powers of the Laplacian. I. Existence[END_REF] ũq (x) := α n-2k 2 q u q (exp xq (β q x))

for all x ∈ B β -1 q δ (0), where δ ∈ (0, i g (M )).

Step 2: We claim that there exists ũ andx ∞ := lim q→2 x q . We prove the claim. It follows of the naturality of the geometric operator P g and of ( 9) that [START_REF] Hamilton | The formation of singularities in the Ricci flow[END_REF] P gq ũq = µ q f (exp xq (β q •))ũ q q in B β -1 q δ (0) for all q ∈ (2, 2 ), where g q := (exp xq g)(β q •). In particular, since the exponential is a normal chart at x q , we have that lim q→2 g q = ξ in C 2k loc (R n ). Since 0 ≤ ũq ≤ ũq (0) = 1, it follows from standard elliptic theory (see for instance [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) that there exists ũ ∈ C 2k (R n ) such that lim q→2 ũq = ũ in C 2k loc (R n ). In addition, using that P ξ = ∆ k ξ , passing to the limit in ( 17) yields [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. This proves the claim.

∈ C 2k (R n ) such that lim q→2 ũq = ũ in C 2k loc (R n ) where (16) 0 ≤ ũ ≤ ũ(0) = 1 and ∆ k ξ ũ = µ 2 f (x ∞ )ũ 2 -1 in R n ,
Step 3: We claim that there exists C > 0 such that [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF] α q ≤ β q ≤ Cα q when q → 2 .

We prove the claim. We fix R > 0 and we let q be in (2, 2 ): a change of variable and Sobolev's embedding yields

B R (0) ũ2 q dv gq = α q β q n B Rβq (xq) u 2 q dv g ≤ C α q β q n u q 2 Pg
for all q ∈ (2, 2 ). Using [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF] and Proposition 6, letting q → 2 , we get that

β q α q n ≤ C B R (0) ũ2 dv ξ + o(1)
when q → 2 . Since ũ(0) > 0, we the get that β q = O(α q ) when q → 2 . This inequality combined with ( 14) yields [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF]. This proves the claim.

Step 4: We claim that ũ ∈ D 2 k (R n ). We prove the claim. Indeed, for all i ∈ {0, ..., k}, it follows from [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF] and a change of variable that ∇ i ũq L p i (B R (0)) ≤ C ∇ i u q L p i (B Rβq (xq)) ≤ ∇ i ũq L p i (M ) for all q ∈ (2, 2 ), all R > 0 and where p i := 2n n-2k+2i . It follows from Sobolev's inequalities that the right-hand-side is dominated by u q H 2 k , and therefore, letting q → 2 and

R → +∞ yields ∇ i ũ ∈ L pi (R n ) for all i ∈ {0, ..., k}. We let η ∈ C ∞ c (R n ) be such that η |B1(0) ≡ 1: as easily checked, (η(m -1 •)ũ) m ∈ C ∞ c (R n ) is a Cauchy sequence for the D 2
k -norm, and therefore ũ ∈ D 2 k (R n ). This proves the claim.

Step 5: We claim that [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF] 

µ 2 = |O G (x ∞ )| 2k n f (x ∞ ) 2 2 K(n, k)
and lim α→+∞

β q α q = 1
We prove the claim. Since ũ ∈ D 2 k (R n ), we multiply ( 16) by ũ and integrate to get

R n (∆ k 2 ξ ũ) 2 dv ξ = µ 2 f (x ∞ )
R n ũ2 dv ξ . Since ũ ≡ 0, plugging this identity in the Sobolev inequality [START_REF] Escobar | Conformal metrics with prescribed scalar curvature[END_REF] 

yields (20) R n ũ2 dv ξ ≥ 1 µ 2 f (x ∞ )K(n, k) 2 2 -2 We let m := |O G (x ∞ )| if |O G (x ∞ )| < ∞, and any m ∈ N \ {0} otherwise. We let σ 1 , ..., σ m ∈ G be such that σ i (x ∞ ) = σ j (x ∞ ) for all i, j ∈ {1, ..., m}, i = j. We fix δ < min i =j {d g (z, z )/ z = z ∈ O G (x ∞ )}. The G-invariance yields 1 = M f u q q dv g ≥ m i=1 B δ (σi(x∞)) f u q q dv g = m B δ (x∞) f u q q dv g (21) ≥ m B Rβq (xq) f u q q dv g = m β q α q n-2k B R (0)
f (exp xq (β q •))ũ q q dv gq for all q ∈ (2, 2 ) and all R > 0. Letting q → +∞, and then R → +∞ and using [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF], we get that

1 ≥ lim q→2 β q α q n-2k mf (x ∞ ) (µ 2 f (x ∞ )K(n, k)) 2 2 -2 .
In particular, since β q ≥ α q with (18), we get an upper-bound for m, and therefore |O G (x)| < ∞, and we take m = |O G (x)|. The inequality rewrites

µ f (C G ) ≥ 2 n -2k • |O G (x ∞ )| 2k n f (x ∞ ) 2 2 K(n, k) • lim q→2 β q α q 2k(n-2k) n .
It then follows from ( 12) and ( 18) that ( 19) holds. Moreover, we also get that equality holds in [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF] and that ũ is an extremal for the Sobolev inequality [START_REF] Escobar | Conformal metrics with prescribed scalar curvature[END_REF]. This proves the claim.

Step 6: We claim that

(22) f u q q dv g 1 |O G (x)| δ O G (x)
in the sense of measure when q → 2 .

We prove the claim. Since equality holds in [START_REF] Juhl | Families of conformally covariant differential operators, Q-curvature and holography[END_REF], that lim q→2 αq βq = 1 and that ( 19) holds, we get with a change of variables that [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] lim

R→+∞ lim q→2 B Rβq (xq) f u q q dv g = f (x ∞ ) R n ũ2 dv ξ = 1 m .
For δ > 0, we let B δ (O G (x ∞ )) be the union of balls of radius δ centered at the orbit. Therefore, since M f u q q dv g = 1, ( 21), ( 23) and the G-invariance yield ( 24)

lim q→2 M \B δ (O G (x∞))
f u q q dv g = 0 for all δ > 0. Consequently, lim q→2 B δ (z) f u q q dv g = 1 m for all δ > 0 small enough and all z ∈ O G (x). Assertion [START_REF] Lee | The Yamabe problem[END_REF] then follows. This proves the claim.

Step 7: We claim that there exists C > 0 such that [START_REF] Moser | On a nonlinear problem in differential geometry[END_REF] d(x, O G (x q )) n-2k 2 u q (x) ≤ C for all x ∈ M and all q ∈ (2, 2 ). We prove the claim. This pointwise inequality has its origins in Druet [START_REF] Druet | The best constants problem in Sobolev inequalities[END_REF]. We define w q (x) :

= d(x, O G (x q )) n-2k 2 
u q (x) for all q ∈ (2, 2 ) and all x ∈ M . We argue by contradiction and assume that lim q→2 w q ∞ = +∞. We define (y q ) q∈(2,2 ) ∈ M such that [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF] max y∈M w q (y) = w q (y q ) → +∞ when q → 2 . We define γ q := u q (y q ) -2 n-2k for all q ∈ (2, 2 ). It follows from ( 26) that ( 27) lim q→2 u q (y q ) = +∞ and lim q→2 γ q = 0.

As easily checked, coming back to the definitions of α q and β q , it follows from (19) that lim q→2 u q (x q ) 2 -q = 1. Therefore, since u q (y q ) ≤ u q (x q ) for all q and (27) holds, we get that lim q→2 γ 2 -q q = 1. We define ūq (x) := γ n-2k 2 q u q (exp yq (γ q x))

for all q ∈ (2, 2 ) and all x ∈ B δγ -1 q (0) where δ ∈ (0, i g (M )). Arguing as in Step 2 and using that lim q→2 γ 2 -q q = 1, we get that (28) P ḡq ūq = µ q (1 + o(1))f (exp yq (γ q •))ū q q in B δγ -1 q (0)

The case of the sphere

We consider here the standard unit n-sphere S n endowed with its standard round metric h and the associated conformal class C

:= [h]. Proposition 9. Let G be a subgroup of Isom h (S n ) and let f ∈ C ∞ G,+ (S n ) be a smooth positive function. Let p ∈ S n be such that ∇ i f (p) = 0 for all i ∈ {1, ..., n - 2k} and |O G (p)| ≥ 2. Then µ f (C G ) < 2 n -2k • |O G (p)| 2k n K(n, k)f (p) 2 2 
.

Proof. Given λ > 1 and x 0 ∈ S n , we let φ λ : S n → S n be such that φ

λ (x) = π -1 x0 (λ -1 π x0 (x)) if x = x 0 and φ λ (x 0 ) = x 0
, where π x0 is the stereographic projection of pole x 0 . Up to a rotation, we can assume that x 0 := (0, ..., 0, 1) is the north pole: then we have that (π -1 N ) h = U for all x ∈ S n and that ∇ i f (p) = 0 for all i ∈ {1, ..., n -2k}. Then there exists g ∈ [h] such that Q g = f and G ⊂ Isom g (S n ).

4 n

 4 -2k g with u ∈ C ∞ + (M ), the set of positive smooth functions. With this parametrization, we have thatC = {u 4 n-2k g/ u ∈ C ∞ + (M )}, and the relation (1) between P g and P ĝ rewrites[START_REF] Baird | Prescribed Q-curvature on manifolds of even dimension[END_REF] 

4 n-2k 1 ξ-2k 2 .S n f u 2 β dv h 2 2 .( 1 -( 1 --2 2 n=.Theorem 3 .

 1221123 , where U 1 (x) := (1 + |x| 2 )/2 k-n/2 . As easily checked, φ λ is a conformal diffeomorphism and standard computations yield φ λ h = u 4 n-2k x0,β h where β := (λ 2 + 1)(λ 2 -1) -1 andu x0,β (x) := β 2 -1 β -cos d h (x, x 0 ) n-2k2for all x ∈ S n and β > 1. In particular, we have that (34)S n u 2 p,β dv h = ω nwhere ω n > 0 is the volume of (S n , h). It follows from the conformal law (2) that (35)P h u x0,β = c n,k Q h u 2 -1 x0,β in S n with c n,k := n We now fix p ∈ S n as in the statement of Proposition 9 and we let σ 1 , ...σ m ∈ G be such that O G (p) = {σ 1 (p), ..., σ m (p)} and |O G (p)| = m ≥ 2. We defineu β := m i=1 u σi(p),βfor all β > 1. One checks that u β is positive and G-invariant. Let us estimateI h (u β ) := S n u β P h u β dv hThe G-invariance and (35) yieldS n u β P h u β dv h = c n,k Q h m i,j=1 S n u σi(p),β u 2 -1 σj (p),β dv h = mc n,k Q h (ω n + d β )where we have used (34) and whered β := m i=2 S n u β,p u 2 -1 β,σi(p) dv hfor all β > 1. Standard computations yieldd β = (1 + o(1))Λ p,G (β 2 -1) n-2k 2 when β → 1, where Λ p,G := S n cos d h (x, p)) k-n/2 dv h • m i=2 cos d h (p, σ i (p))) k-n/2 dv h > 0.Concerning the denominator, it follows from the cancelation hypothesis on the derivatives of f that |f (x)-f (p)| ≤ Cd h (x, O G (p)) n-2k+1 for all x ∈ S n . Therefore, rough estimates yieldS n (f -f (p))u 2 β dv h ≤ C(β 2 -1) (p) dv h + 2 i =j S n u σi(p),β u 2 -1 σj (p),β dv h ≥ m (ω n + 2 d β ) Noting Λ p,G > 0 and that c n,k Q h ω 2 K(n, k) -1(since pulling back u β,p by the stereographic projections gives U 1 , an extremal for (11)), these estimates yieldI h (u β ) ≤ |O G (p)|Coming back to the definition of µ f (C G ), this proves Proposition 9.Proof of Theorem 1: In the case n = 2k + 1, it follows from Proposition 4 and 9 that Case (i) of Theorem 2 cannot hold. Therefore Case (ii) holds, and Theorem 1 is proved. More generally, Propositions 4 and 7, Theorem 2 and Proposition 9, yield: Let k ≥ 1 and let G be a subgroup of isometries of (S n , h), n > 2k.Let f ∈ C ∞ (M ) be a positive G-invariant function and assume that G acts without fixed point (that is |O G (x)| ≥ 2 for all x ∈ S n ). Assume that there exists p ∈ S n such that |O G (p)|

for all q ∈ (2, 2 ), where lim q→2 o(1) = 0 uniformly. We fix R > 0. It follows from the definition (26) of w q and y q that (29) d(exp yq (γ q x), O G (x q )) n-2k 2 ūq (x) ≤ d(y q , O G (x q )) n-2k 2 for all x ∈ B R (0) and q ∈ (2, 2 ). The limit w q (y q ) → +∞ when q → 2 rewrites lim q→2 γ -1 q d g (y q , O G (x q )) = +∞: therefore, there exists q 0 ∈ (2, 2 ) such that d(exp yq (γ q x), O G (x q )) ≥ d(y q , O G (x q ))/2 for all x ∈ B R (0) and all q ∈ (q 0 , 2 ), and it follows from (29) that 0 ≤ ūq (x) ≤ 2 n-2k 2 for all x ∈ B R (0) and all q ∈ (q 0 , 2 ). It then follows from (28) and standard elliptic theory (see for instance [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) that there exists ū ∈ C 2k (R n ) such that lim q→2 ūq = ū in C 2k loc (R n ). Moreover, ū ≥ 0 and ū(0) = lim q→2 ūq (0) = 1, and then ū ≡ 0. In particular, (30) lim

where y ∞ := lim q→2 y q . Since lim q→2 γ -1 q d g (y q , O G (x q )) = +∞ and γ q ≥ α q = (1 + o(1))β q when q → 2 , we get that for any R, R > 0

and these points are distinct: as easily checked, we have that ∪ m i=1 B R βq (σ i (x q )) ⊂ B R βq (O G (x q )) and the balls are distinct. Therefore

f u q q dv g for all q ∈ (2, 2 ) and R, R > 0. Letting q → 2 , then R, R → +∞ and using [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] and (30), we get that

a contradiction since ū ≡ 0. Then [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF] does not hold and therefore [START_REF] Moser | On a nonlinear problem in differential geometry[END_REF] holds. This proves the claim.

Step 8: We claim that (31) lim

We prove the claim. We fix Ω ⊂⊂ M \ O G (x ∞ ) a relatively compact subset. It follows from Step 7 that there exists C(Ω) > 0 such that u q (x) ≤ C(Ω) for all x ∈ Ω and all q ∈ (2, 2 ). It then follows from ( 9) and standard elliptic theory (see for instance [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) that there exists

It then follows from (24) that u ∞ ≡ 0, and then (31) holds. This proves the claim.

The following remark will be useful in the sequel: since u q 2 Pg = µ q → µ 2 when q → 2 and u q → 0 in C 2k outside the orbit, we get from the compact embedding

Step 9: We claim that ∇f (x ∞ ) = 0.

We prove the claim. Indeed, this is equivalent to proving that X(f )(x ∞ ) = 0 for all vector field X on M . With no loss of generality, we assume that ∇X(x ∞ ) = 0 (this is always possible by modifying X in a normal chart at x ∞ ) and that X has its support in B δ (x ∞ ), where δ < min{d g (z, z )/ z = z ∈ O G (x ∞ )}. We are going to estimate M X(u q )∆ k g u q dv g with two different methods. We detail here the case k = 2l even and we leave the odd case to the reader.

Integrating by parts, we have that

Using the explicit contraction in (5), we get that

Therefore, we have that (for convenience, we omit the curvature tensor R)

for all i ∈ {1, ..., l}, and then, denoting as ∇ {m} T any linear combination of covariant derivatives of T up to order m, we get that

and then

Since k = 2l, it follows from (32) and the Cauchy-Schwarz inequality that

when q → 2 . Moreover, since ∇X(x ∞ ) = 0 and (31) holds, we get that

when q → 2 . Therefore, integrating by parts, we get that

when q → 2 and where div g (X) = ∇ i X i . Since ∇X(x ∞ ) = 0, (31) holds and u q H 2 k ≤ C for all q → 2 , we get that the right-hand-side above goes to zero, and then (33) lim q→2 M X(u q )∆ 2l g u q dv g = 0.

We now estimate M X(u q )∆ 2l g u q dv g using equation [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF]. It follows from ( 4) that

It then follows from (32) and an integration by parts that M X(u q )∆ 2l g u q dv g = M X(u q )P g u q dv g + o(1)

when q → 2 . We now use equation [START_REF] Delanoë | On the local Nirenberg problem for the Q-curvatures[END_REF] to get that M X(u q )∆ 2l g u q dv g = µ q M f X(u q )u q-1 q dv g + o(1)

= µ q M f X u q q q dv g = -µ q q M (X(f ) + f div g (X))u q q dv g + o(1)

when q → 2 . It now follows from Proposition 6, [START_REF] Lee | The Yamabe problem[END_REF] and

.

This limit combined with (33) yields X(f )(x ∞ ) = 0, which, as already mentioned, proves that ∇f (x ∞ ) = 0. This ends Step 9.

Theorem 2 is a direct consequence of Steps 1 to 9.

As a direct byproduct of Theorem 2, we have the following proposition:

Proposition 8. Let (M, C) be a conformal Riemannian manifold of dimension n ≥ 3 and let k ∈ N be such that 2k < n. Let G be a group of diffeomorphisms such that C G = ∅ and let f ∈ C ∞ G,+ (M ) be a positive G-invariant function. Assume that there exists g ∈ C G such that P g satisfies (C) and (P P P ). We assume that A similar result was proved in [START_REF] Hebey | Changements de métriques conformes sur la sphère. Le problème de Nirenberg[END_REF] for k = 1 and in [START_REF] Baird | Prescribed Q-curvature on manifolds of even dimension[END_REF] when n = 2k.