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THE LIN-NI'S PROBLEM FOR MEAN CONVEX DOMAINS

 show that the bound on the energy is a necessary condition.

Introduction

Let Ω be a smooth bounded domain of R n , n ≥ 2. In [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF], Lin, Ni and Takagi got interest in solutions u ∈ C 2 (Ω) to the elliptic problem

   ∆u + u = n(n -2)u q-1 in Ω u > 0 in Ω ∂ ν u = 0 on ∂Ω (E q )
Date: February 18th 2011. Mathematics Subjet Classification 2010: 35J20, 35J60.

1
where > 0 is a parameter and q > 2. Here and in the sequel, ∆ := -div(∇) is the Laplace operator with minus-sign convention. This problem has its origins in the analysis of the Gierer-Meinhardt model in mathematical biology: this model is a system of nonlinear evolution equations of parabolic type, and the stationary problem with infinite diffusion constant splits into two equations like (E q ). We refer to the surveys [START_REF] Ni | Qualitative properties of solutions to elliptic problems[END_REF][START_REF] Wei | Existence and stability of spikes for the Gierer-Meinhardt system[END_REF] for the justifications of the model and its simplification.

Problem (E q ) enjoys a variational structure, since its solutions are critical points of the functional

u → 1 2 Ω |∇u| 2 dx + 2 Ω u 2 dx - 1 q Ω |u| q dx,
a functional that is defined for all u ∈ H 2 1 (Ω) ∩ L q (Ω), where H 2 1 (Ω) is the standard Sobolev space of L 2 -functions with derivatives also in L 2 endowed with the norm

• 2 + ∇ • 2 .
In particular, it follows from Sobolev's embedding theorem that H 2 1 (Ω) → L q (Ω) continuously in case 2 < q ≤ 2 where 2 := 2n n-2 (we assume here that n ≥ 3): therefore the functional above is defined on H 2 1 (Ω) when 2 < q ≤ 2 . Moreover, the Sobolev embedding above is compact in case q < 2 .

The system (E q ) enjoys at least a solution, namely the constant solution u ≡ n(n-2) 1 q-2 . In a series of seminal works, Lin-Ni-Takagi [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF] and Ni-Takagi [START_REF] Ni | On the shape of least-energy solutions to a semilinear Neumann problem[END_REF][START_REF] Ni | Locating the peaks of least-energy solutions to a semilinear Neumann problem[END_REF] got interest in the potential existence of nonconstant solutions to (E q ). In particular, it is showed in [START_REF] Ni | On the shape of least-energy solutions to a semilinear Neumann problem[END_REF][START_REF] Ni | Locating the peaks of least-energy solutions to a semilinear Neumann problem[END_REF] that for large, solutions concentrate at boundary points of maximum mean curvature. In the present article, we restrict our attention to that case when > 0 is small. In case 2 < q < 2 , variational techniques and the compactness of the embedding imply that for small positive , the constant solution is the sole solution to (E q ). This uniqueness result incited Lin and Ni to conjecture the extension of this result to the critical case q = 2 : Question (Lin-Ni [START_REF] Lin | On the diffusion coefficient of a semilinear Neumann problem[END_REF]): Is the constant solution the only solution to (E 2 ) when > 0 is small?

The mathematical difficulty of this question comes from the conformal invariance of (E 2 ) and its associated unstability. Indeed, for µ > 0 and x 0 ∈ R n , define

U x0,µ (x) := µ µ 2 + |x -x 0 | 2 n-2 2
for all x ∈ R n .

(1.1)

The scalar curvature equation for the pulled back of the spherical metric via the stereographic projection (or direct computations) yields ∆U x0,µ = n(n -2)U 2 -1 x0,µ in R n . Therefore, there is an abundance of solutions to ∆u = u 2 -1 , some of them being peaks blowing-up to infinity since lim µ→0 U x0,µ (x 0 ) = +∞: in this sense, the equation is unstable since it enjoys many solutions that are far from each other.

There are no such solutions in the subcritical case q < 2 (see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]). This conformal dynamic transfers on the Lin-Ni's problem and it follows from the famous Struwe decomposition [START_REF] Struwe | A global compactness result for elliptic boundary problems involving limiting nonlinearities[END_REF] that families of solutions (u ) >0 to (E 2 ) with bounded energy may develop some peaks like (1.1) when → 0: more precisely, there exists N ∈ N such that for any i ∈ {1, ..., N }, there exists sequences (x i, ) ∈ R n , (µ i, ) i ∈ R >0 such that lim →0 µ i, = 0 and, up to the extraction of a subfamily,

u = N i=1 U xi, ,µi, + R (1.2)
where lim →0 R = 0 in H 2 1 (Ω). This decomposition is refered to as the integral decomposition. When there is at least one peak, then there are nonconstant solutions. Conversely, in case there is no peak, elliptic estimates and simple integrations by parts (see Section 2) yield the sole constant solution for small .

In the radial case, that is when Ω is a ball and when u is radially symmetrical, Adimurthi-Yadava solved the problem in [START_REF] Adimurthi; Yadava | Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents[END_REF][START_REF] Adimurthi; Yadava | Nonexistence of positive radial solutions of a quasilinear Neumann problem with a critical Sobolev exponent[END_REF]: when n = 3 or n ≥ 7, the answer to Lin-Ni's question is positive, and it is negative for n ∈ {4, 5, 6}. In the asymmetric case, the complete answer is not known yet, but there are a few results. When n = 3, it was proved independently by Zhu [START_REF] Zhu | Uniqueness results through a priori estimates. I. A three-dimensional Neumann problem[END_REF] and Wei-Xu [START_REF] Wei | Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in R 3[END_REF] that the answer to Lin-Ni's question is positive when Ω is convex. When n = 5, Rey-Wei [START_REF] Rey | Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity[END_REF] constructed solutions to (E 2 ) as a sum of peaks like (1.1) for → 0. In the present paper, we concentrate on the localization of the peaks in the general case.

Let ( α ) α∈N ∈ (0, 1] be a sequence such that lim α→+∞ α = 0.

We consider a sequence (u α ) α∈N ∈ C 2 (Ω) such that

   ∆u α + α u α = n(n -2)u 2 -1 α in Ω u α > 0 in Ω ∂ ν u α = 0 on ∂Ω (1.3)
We assume that there existe Λ > 0 such that

Ω u 2 α dx ≤ Λ (1.4)
for all α ∈ N.

Definition 1. We say that x ∈ Ω is a non-singular point of (u α ) if there exists δ > 0 and C > 0 such that

u α L ∞ (B δ (x)∩Ω) ≤ C
for all α ∈ N. We say that x ∈ Ω is a singular point if it is not a non-singular point.

The singular points are exactly the points where the peaks are located. In the sequel, H(x) denotes the mean curvature at x ∈ ∂Ω of the oriented boundary ∂Ω. With our sign convention, the mean curvature of the oriented boundary of the unit ball is positive. We prove the following theorem: Theorem 1. Let (u α ) α∈N ∈ C 2 (Ω) and > 0 such that (1.3) and (1.4) hold. Let S denote the (possibly empty) set of singular points for (u α ). Assume that n = 3 or n ≥ 7: then S is finite and

S ⊂ {x ∈ ∂Ω/ H(x) ≤ 0}.
As a consequence, we get the following: Theorem 2. [Lin-Ni's conjecture for mean convex domains] Let Ω be a smooth bounded domain of R n , n = 3 or n ≥ 7. Assume that H(x) > 0 for all x ∈ ∂Ω. Then for all > 0, there existe 0 (Ω, Λ) > 0 such that for all ∈ (0, 0 (Ω, Λ)) and for any u ∈ C 2 (Ω), we have that

       ∆u + u = n(n -2)u 2 -1 in Ω u > 0 in Ω ∂ ν u = 0 on ∂Ω Ω u 2 dx ≤ Λ        ⇒ u ≡ n(n -2) n-2 4 
.

The method we use to prove Theorem 1 relies on a sharp control of the solutions to (1.3) in the spirit of Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF], our first result being that (see Proposition 5 and (7.3) in Section 7)

u α ≤ C ūα + N i=1 U xi,α,µi,α (1.5) 
where ūα is the average of u α on Ω and the peaks are as in Struwe's decomposition (1.2). In particular, we pass from an integral description to a pointwise description. As in Druet [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF] (see also Ghoussoub-Robert [START_REF] Ghoussoub | Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF] and Druet-Hebey [START_REF] Druet | Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds[END_REF]), this pointwise description allows us to determine exactly where two peaks may interact, and to describe precisely the behavior of u α there. The localization of the singular points then follows from a succession of Pohozaev identities.

These results appeal some remarks. In dimension n = 3, our result must be compared to Zhu's result: in [START_REF] Zhu | Uniqueness results through a priori estimates. I. A three-dimensional Neumann problem[END_REF], no bound on the energy is assumed, but the convexity is required; in our result, we require the bound on the energy, but a weak convexity only is needed. The assumption on the energy (1.4) may seem technical for who is familiar with the Yamabe equation: indeed, in general, see Druet [START_REF] Druet | Compactness for Yamabe metrics in low dimensions[END_REF], Li-Zhu [START_REF] Li | Yamabe type equations on three-dimensional Riemannian manifolds[END_REF], Schoen [START_REF] Schoen | On the number of constant scalar curvature metrics in a conformal class[END_REF] and Khuri-Marques-Schoen [START_REF] Khuri | A compactness theorem for the Yamabe problem[END_REF], any solution to the Yamabe equation automatically satisfies a bound on the energy like (1.4). For the Lin-Ni's problem, this is not the case: recently, it was proved that solutions to (E 2 ) may accumulate with infinite energy when the mean curvature is negative somewhere (see Wang-Wei-Yan [START_REF] Wang | A Neumann Problem with Critical Exponent in Non-convex Domains and Lin-Ni's Conjecture[END_REF]) or when Ω is a ball (see Wang-Wei-Yan [START_REF] Wang | On the Lin-Ni's conjecture in convex domains[END_REF]), a domain with positive mean curvature: therefore, the answer to Lin-Ni's question is negative if one does not impose the bound (1.4).

The influence of curvature is reminiscent in the asymptotic analysis of equations like (1.3). For instance, in Druet [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF][START_REF] Druet | Compactness for Yamabe metrics in low dimensions[END_REF] and in Li-Zhu [START_REF] Li | Yamabe type equations on three-dimensional Riemannian manifolds[END_REF], it is proved that for Yamabetype equations, the peaks are located where the potential of the equation touches the scalar curvature; we refer to Hebey-Robert-Wen [START_REF] Hebey | Compactness and global estimates for a fourth order equation of critical Sobolev growth arising from conformal geometry[END_REF] and Hebey-Robert [START_REF] Hebey | Asymptotic analysis for fourth order Paneitz equations with critical growth[END_REF] for the corresponding localization for fourth-order problems. In Ghoussoub-Robert [START_REF] Ghoussoub | The effect of curvature on the best constant in the Hardy-Sobolev inequalities[END_REF][START_REF] Ghoussoub | Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth[END_REF], that is for a singular Dirichlet-type problem, the peaks are located where the mean curvature is nonnegative: in Theorem 1 above, that is for a Neumann problem, we conversely prove that the peaks are located at points of nonpositive mean curvature. For Neumann-type equations like (1.3), the role of the mean curvature has been enlighted, among others, by Adimurthi-Mancini-Yadava [START_REF] Adimurthi; Mancini | The role of the mean curvature in semilinear Neumann problem involving critical exponent[END_REF], Lin-Wang-Wei [START_REF] Lin | Bubble accumulations in an elliptic Neumann problem with critical Sobolev exponent[END_REF] and Gui-Lin [START_REF] Gui | Estimates for boundary-bubbling solutions to an elliptic Neumann problem[END_REF].

The present paper is devoted to the asymptotic analysis of solutions (u α ) α of (1.3) satisfying (1.4) when n ≥ 3. In Sections 2 to 7, we prove the pointwise control (1.5). Section 8 is devoted to the convergence of the (u α ) α 's at the scale where peaks interact. In Sections 9 and 10, we prove an asymptotic relation mixing the heights of the peaks, the distance between peaks and the mean curvature. Finally, we prove Theorems 1 and 2 in Section 11.

Notations: in the sequel, we define R n -:= {(x 1 , x ) ∈ R n / x 1 < 0} and we assimilate ∂R n -= {(0, x )/ x ∈ R n-1 } to R n-1 . Given two sequences (a α ) α ∈ R and (b α ) α ∈ R, we say that a α b α when α → +∞ if a α = O(b α ) and b α = O(a α ) when α → +∞. For U an open subset of R n , k ∈ N, k ≥ 1, and p ≥ 1, we define H p k (U ) as the completion of C ∞ ( Ū ) for the norm k i=1 ∇ i p . Acknowledgements: This work was initiated and partly carried out during the visits of F.Robert in Hong-Kong. He expresses his thanks J.Wei for the invitations and his gratitude for his friendly support in April 2010. F.Robert was partially supported by the ANR grant ANR-08-BLAN-0335-01 and by a regional grant from Université Nancy 1 and Région Lorraine. The research of J.Wei is partially supported by RGC of HK and "Focused Research Scheme" of CUHK.

L ∞ -bounded solutions

Let Ω ⊂ R n be a smooth domain (see Definition 2 of Section 3 below), n ≥ 3. We consider a sequence (u α ) α∈N of positive solutions of

   ∆u α + α u α = n(n -2)u 2 -1 α in Ω u α > 0 in Ω ∂ ν u α = 0 on ∂Ω (2.1) 
We assume in the following that

Ω u 2 α dx ≤ Λ (2.2)
for some Λ > 0. We claim that u α 0 weakly in H 2 1 (Ω) as α → +∞. (2.3) We prove the claim. Indeed, after integrating (2.1) on Ω, it follows from Jensen's inequality that

1 |Ω| Ω u α dx 2 -1 ≤ 1 |Ω| Ω u 2 -1 α dx = α Ω u α dx n(n -2)|Ω| for all α ∈ N. Then, we get that ūα ≤ α n(n -2) n-2 4 
(2.4) for all α ∈ N, where, given ūα := 1 |Ω| Ω u α dx denote the average of u α on Ω. Multiplying (2.1) by u α and integrating on Ω, we get that (u α ) α is bounded in H 2 1 (Ω). Therefore, up to a subsequence, (u α ) α converges weakly. The convergence (2.3) then follows from (2.4). This proves the claim.

We prove in this section the following: Proposition 1. Assume that the sequence (u α ) α is uniformly bounded in L ∞ (Ω).

Then there exists α 0 > 0 such that u α ≡ α n(n-2) n- 2 4 for all α ≥ α 0 .

Proof of Proposition 1: Assume that there exists M > 0 such that u α ≤ M in Ω for all α > 0. By standard elliptic theory (see Theorem 9.11 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] together with Theorem 6 of Section 11), we deduce then thanks to (2.3) that u α → 0 in L ∞ (Ω).

Multiplying equation (2.1) by u α -ūα (ū α is the average of u α defined above) and integrating by parts, we then get that

Ω |∇u α | 2 dx + α Ω (u α -ūα ) 2 dx = n(n -2) Ω u 2 -1 α (u α -ūα ) dx = n(n -2) Ω u 2 -1 α -ū2 -1 α (u α -ūα ) dx = O u α 2 -2 ∞ + ū2 -2 α Ω (u α -ūα ) 2 dx = o Ω (u α -ūα ) 2 dx = o Ω |∇u α | 2 dx
when α → +∞ thanks to Poincaré's inequality. This yields Ω |∇u α | 2 dx = 0 for α large and thus u α is a constant for α > α 0 for some α 0 > 0. The constant is easily seen to be α n(n-2) n- 2 4 thanks to equation (2.1). This ends the proof of Proposition 1.

For the rest of the article, we assume that lim α→+∞ u α ∞ = +∞.

(2.5)

Under this assumption, the sequence (u α ) will develop some concentration points.

In sections 4 to 7, we provide sharp pointwise estimates on u α and thus describe precisely how the sequence (u α ) behaves in C 1 Ω . In section 8 to 10, we get precise informations on the patterns of concentration points which can appear. This permits to conclude the proof of the main theorems in section 11.

Smooth domains and extensions of solutions to elliptic equations

We first define smooth domains:

Definition 2.
Let Ω be an open subset of R n , n ≥ 2. We say that Ω is a smooth domain if for all x ∈ ∂Ω, there exists δ x > 0, there exists U x an open neighborhood of x in R n , there exists ϕ :

B δx (0) → U x such that (i) ϕ is a C ∞ -diffeomorphism (ii) ϕ(0) = x (iii) ϕ(B δx (0) ∩ {x 1 < 0}) = ϕ(B δx (0)) ∩ Ω (iv) ϕ(B δx (0) ∩ {x 1 = 0}) = ϕ(B δx (0)) ∩ ∂Ω
The outward normal vector is then defined as follows: Definition 3. Let Ω be a smooth domain of R n . For any x ∈ ∂Ω, there exists a unique ν(x) ∈ R n such that ν(x) ∈ (T x ∂Ω) ⊥ , ν(x) = 1 and (∂ 1 ϕ(0), ν(x)) > 0 for ϕ as in Definition 2. This definition is independent of the choice of such a chart ϕ and the map

x → ν(x) is in C ∞ (∂Ω, R n ).
Let Ω be a smooth bounded domain of R n as above. We consider the following problem:

∆u = f in Ω ∂ ν u = 0 in ∂Ω (3.1)
where u ∈ C 2 (Ω) and f ∈ C 0 (Ω). Note that the solution u is defined up to the addition of a constant and that it is necessary that Ω f dx = 0 (this is a simple integration by parts). It is useful to extend solutions to (3.1) to a neighborhood of each point of ∂Ω. For this, a variational formulation of (3.1) is required: multiplying (3.1) by ψ ∈ C ∞ (Ω) and integrating by parts leads us to the following definition:

Definition 4. We say that u ∈ H 1 1 (Ω) is a weak solution to (3.1) with f ∈ L 1 (Ω) if Ω (∇u, ∇ψ) dx = Ω f ψ dx for all ψ ∈ C ∞ (Ω).
In case u ∈ C 2 (Ω), as easily checked, u is a weak solution to (3.1) iff it is a classical solution to (3.1).

We let ξ be the standard Euclidean metric on R n and we set

π : R n → R n (x 1 , x ) → (-|x 1 |, x )
Given a chart ϕ as in Definition 2, we define

πϕ := ϕ • π • ϕ -1 .
Up to taking U x0 smaller, the map πϕ fixes U x0 ∩ Ω and ranges in Ω. We prove the following useful extension lemma: Lemma 1. Let x 0 ∈ ∂Ω. There exist δ x0 > 0, U x0 and a chart ϕ as in Definition 2 such that the metric g :

= π ϕ ξ = (ϕ • π • ϕ -1 ) ξ is in C 0,1 (U x0 ) (that is Lipschitz continuous), g|Ω = ξ, the Christoffel symbols of the metric g are in L ∞ (U x0 ) and dϕ 0 is an orthogonal transformation. Let u ∈ H 1 1 (Ω ∩ U x0 ) and f ∈ L 1 (Ω ∩ U x0 ) be functions such that Ω (∇u, ∇ψ) dx = Ω f ψ dx for all ψ ∈ C ∞ c (Ω ∩ U x0 ). (3.2) For all v : Ω ∩ U x0 → R, we define ṽ := v • πϕ in U x0 .
Then, we have that

ũ ∈ H 1 1 (U x0 ), ũ|Ω = u, f ∈ L 1 (U x0
) and

∆ g ũ = f in the distribution sense,
where ∆ g := -div g (∇).

Here, by "distribution sense", we mean that

Ux 0 (∇ũ, ∇ψ) g dv g = Ux 0 f ψ dv g for all ψ ∈ C ∞ c (U x0 ),
where dv g is the Riemannian element of volume associated to g and (•, •) g is the scalar product on 1-forms.

Proof of Lemma 1: Given a chart φ at x 0 defined on B δx 0 (0) as in Definition 2, we define the map

ϕ : B δx 0 (0) → R n (x 1 , x ) → x 1 ν( φ(0, x )) + φ(0, x )
The inverse function theorem yields the existence of δ x0 > 0 and U x0 ⊂ R n open such that ϕ : B δx 0 (0) → U x0 is a smooth diffeomorphism being a chart at x 0 as in Definition 2. Moreover, the pull-back metric satisfies the following properties:

(ϕ ξ) 11 = 1, (ϕ ξ) 1i = 0 ∀i = 1.
In particular, up to a linear transformation on the {x 1 = 0} hyperplane, we can assume that dϕ 0 is an orthogonal transformation. It is easily checked that ((ϕ • π) ξ) ij = (ϕ ξ) ij • π outside {x 1 = 0} for all i, j, and then we prologate (ϕ • π) ξ as a Lipschitz continuous function in U x0 , and so is g := (ϕ • π • ϕ -1 ) ξ. In addition, as easily checked, if Γk ij 's denote the Christoffel symbols for the metric g, we have that Γk ij ∈ L ∞ . Therefore, the coefficients of ∆ g are in L ∞ and the principal part is Lipschitz continuous.

We fix ψ ∈ C ∞ c (U x0 ). For convenience, in the sequel, we define π

:= π|R n + , that is π : R n + → R n - (x 1 , x ) → (-x 1 , x ).
Clearly, π is a smooth diffeomorphism. As for πϕ , we define

π ϕ := ϕ • π • ϕ -1
that maps (locally) Ω c to Ω. With changes of variable, we get that

Ux 0 (∇ũ, ∇ψ) g dv g = Ω∩Ux 0 (∇u, ∇(ψ + ψ • π -1 ϕ • ϕ -1 )) dx and Ux 0 f ψ dv g = Ω∩Ux 0 f (ψ + ψ • π -1 ϕ ) dx.
It then follows from (3.2) that ∆ g ũ = f in U x0 in the distribution sense. This ends the proof of Lemma 1.

In the particular case of smooth solutions, we have the following lemma:

Lemma 2. Let x 0 ∈ ∂Ω. There exist δ x0 > 0, U x0 and a chart ϕ as in Definition 2 such that the metric g := (ϕ

• π • ϕ -1 ) ξ is in C 0,1 (U x0 ) (that is Lipschitz continuous), g|Ω = ξ, the Christoffel symbols of the metric g are in L ∞ (U x0 ) and dϕ 0 is an orthogonal transformation. We let u ∈ C 2 (Ω ∩ U x0 ) and all f ∈ C 1 loc (R) be such that ∆u = f (u) in Ω ∩ U x0 ∂ ν u = 0 in ∂Ω ∩ U x0 and we define ũ := u • ϕ • π • ϕ -1 in U x0 .
Then, in addition to the regularity of g, we have that

ũ ∈ C 2 (U x0 ), ũ|Ω = u and ∆ g ũ = f (ũ) for all x ∈ U x0 ,
where ∆ g := -div g (∇).

Exhaustion of the concentration points

We prove in this section the following : Proposition 2. Let (u α ) α∈N ∈ C 2 (Ω) and Λ > 0 such that (1.3) and (1.4) hold for all α ∈ N. Then there exists N ∈ N , N sequences (x i,α ) i=1,...,N of points in Ω and N sequences µ 1,α ≥ µ 2,α ≥ • • • ≥ µ N,α of positive real numbers such that, after passing to a subsequence, the following assertions hold :

(i) For any

1 ≤ i ≤ N , x i,α → x i as α → +∞ for some x i ∈ Ω and µ i,α → 0 as α → +∞. Moreover, either d(xi,α,∂Ω) µi,α → +∞ as α → +∞ or x i,α ∈ ∂Ω.
(ii) For any

1 ≤ i < j ≤ N , |x i,α -x j,α | 2 µ i,α µ j,α + µ i,α µ j,α + µ j,α µ i,α → +∞ as α → +∞ . (iii) For any 1 ≤ i ≤ N , we define ũi,α := µ n-2 2 i,α u α (x i,α + µ i,α . ) if lim α→+∞ d (x i,α , ∂Ω) µ i,α = +∞, and ũi,α := µ n-2 2 i,α ũα • ϕ ϕ -1 (x i,α ) + µ i,α . if x i,α
∈ ∂Ω for all α ∈ N where ũα is the extension of u α around x 0 := lim α→+∞ x i,α and ϕ are as in Lemma 2. Then

lim α→+∞ ũi,α -U 0 C 1 (K∩ Ωi,α) = 0 (4.1)
for all compact subsets K ⊂⊂ R n \ S i if x i,α ∈ ∂Ω and K ⊂⊂ R n \ S i ∪ π -1 (S i ) if x i,α
∈ ∂Ω where the function U 0 is given by

U 0 (x) := 1 + |x| 2 1-n 2
and S i is defined by

S i := lim α→+∞ x j,α -x i,α µ i,α , i < j ≤ N .
In the definition of S i , we allow the limit to be +∞ (and in fact, we discard these points).

(iv) We have that

R n-2 2 α u α - N i=1 U i,α → 0 in L ∞ Ω as α → +∞ where R α (x) := min 1≤i≤N |x i,α -x| 2 + µ 2 i,α and 
U i,α (x) := µ 1-n 2 i,α U 0 x -x i,α µ i,α .
Proof of Proposition 2: For N ≥ 1, we say that property P N holds if there exist N sequences (x i,α ) i=1,...,N of points in Ω and

N sequences µ 1,α ≥ µ 2,α ≥ • • • ≥ µ N,α
of positive real numbers such that, after passing to a subsequence, assertions (i)-(ii)-(iii) of the claim hold for these sequences. We divide the proof of Proposition 2 in three steps.

Step 2.1: We claim that there exists N max ≥ 1 such that (P N ) can not hold for N ≥ N max .

Proof of Step 2.1: Let N ≥ 1 be such that (P N ) holds. Let (x i,α ) i=1,...,N be N sequences of points in M and µ 1,α ≥ µ 2,α ≥ • • • ≥ µ N,α be N sequences of positive real numbers such that the assertions (i)-(ii)-(iii) of Proposition 2 hold after passing to a subsequence. Let R > 0 and set

Ω i,α (R) = B Rµi,α (x i,α ) \ i<j≤N B 1 R µi,α (x j,α ) .
It easily follows from (ii) that

Ω i,α (R) ∩ Ω j,α (R) = ∅
for α large enough. Thus we can write that

Ω u 2 α dx ≥ N i=1 Ωi,α(R)∩Ω u 2 α dx
for α large enough. It follows then from (iii) that

Ω u 2 α dx ≥ N 2 R n U 2 0 dx -η(R) + o(1)
where η(R) → 0 as R → +∞. Letting R → +∞ and thanks to (2.2), we then get that

N ≤ 2Λ R n U 2 0 dx .
This ends the proof of Step 2.1.

Step 2.2: We claim that P 1 holds.

Proof of Step 2.2. We let x α ∈ Ω be such that

u α (x α ) = max Ω u α (4.2)
and we set

u α (x α ) = µ 1-n 2 α . (4.
3) Thanks to (2.5), we know that µ α → 0 as α → +∞. We set

v α (x) := µ n 2 -1 α u α (x α + µ α x) (4.4) for x ∈ Ω α = {x ∈ R n s.t. x α + µ α x ∈ Ω}. It is clear that ∆v α + α µ 2 α v α = n(n -2)v 2 -1 α in Ω α with ∂ ν v α = 0 on ∂Ω α and 0 ≤ v α ≤ v α (0) = 1 in Ω α .
Step 2.2.1: we assume that

lim α→+∞ d (x α , ∂Ω) µ α = +∞. (4.5)
It follows from standard elliptic theory (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) that, after passing to a subsequence,

v α → v in C 2 loc (R n ) as α → +∞ where v ∈ C 2 (R n ) is such that ∆v = n(n -2)v 2 -1 and 0 ≤ v ≤ v(0) = 1 .
By the classification result of Caffarelli-Gidas-Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we then get that v = U 0 . This proves P 1 in case (4.5). This ends Step 2.2.1.

Step 2.2.2: we assume that there exists ρ ≥ 0 such that

lim α→+∞ d (x α , ∂Ω) µ α = ρ. (4.6)
We let x 0 := lim α→+∞ x α . We then have x 0 ∈ ∂Ω and we choose ϕ and δ x0 > 0, U x0 as in Lemma 2. Let δ ∈ (0, δ x0 ). Denoting by ũα ∈ C 2 (U x0 ) the local extension of u α on U x0 with respect to ϕ, we then have that

∆ g ũα + α ũα = ũ2 -1 α in U x0 . (4.7)
Since dϕ 0 is an orthogonal transformation, we have that

d(ϕ(x), ∂Ω) = (1 + o(1))|x 1 | (4.8) for all x ∈ B δ0 (0)∩R n -, where lim x→0 o(1) = 0 uniformly locally. We let (x α,1 , x α ) ∈ {x 1 ≤ 0} × R n-1 be such that x α := ϕ(x α,1 , x α ) for all α ∈ N. It follows from (4.6) and (4.8) that lim α→+∞ |x α,1 | µ α = ρ. (4.9) 
We define ṽα (x) := µ n-2 2 α ũα (ϕ((0, x α ) + µ α x)) for all x ∈ B δ/µα (0).

It follows from (4.7) that

∆ gα ṽα + α µ 2 α ṽα = n(n -2)ṽ 2 -1 α in B δ/µα (0), (4.10) 
where gα (x) = (ϕ g)((0, x α ) + µ α x) = ((ϕ -1 • π) ξ)((0, x α ) + µ α x). Since 0 < ṽα ≤ ṽα (ρ α , 0) = 1 and (4.9) holds, it follows from standard elliptic theory (see Theorem 9.11 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) that there exists

V ∈ C 1 (R n ) such that lim α→+∞ ṽα = V in C 1 loc (R n ), (4.11) 
where 0 ≤ V ≤ V (ρ, 0) = 1. Passing to the limit α → +∞ in (4.10) and using that dϕ 0 is an orthogonal transformation, we get that ∆V

= n(n -2)V 2 -1 weakly in R n . Since V ∈ C 1 (R n ), one gets that V ∈ C 2 (R n ) and it follows from Caffarelli- Gidas-Spruck [5] that V (x) = 1 1 + |x -(ρ, 0)| 2 n-2 2
for all x ∈ R n . The Neumann boundary condition ∂ ν u α = 0 rewrites ∂ 1 ṽα = 0 on ∂R n -. Passing to the limit, one gets that ∂ 1 V = 0 on ∂R n -, and therefore ρ = 0 and V ≡ U 0 . In particular, we have that

lim α→+∞ x α,1 µ α = 0.
Taking xα := ϕ(0, x α ), we can then perform the above analysis of Step Remark: For P 1 , we can be a little more precise and prove the following claim:

x α ∈ ∂Ω for α ∈ N large. (4.12)
We prove the claim by contradiction and assume that x α ∈ Ω for a subsequence. Define ρ α := xα,1 µα . Then ρ α < 0 for α large. Since (ρ α , 0) is a maximum point of ṽα , we have that ∂ 1 ṽα (ρ α , 0) = 0. Since ∂ 1 ṽα (0) = 0 (Neumann boundary condition), it then follows from Rolle's Theorem that there exists τ α ∈ (0, 1) such that ∂ 11 ṽα (τ α ρ α , 0) = 0. Letting α → +∞, we get that ∂ 11 U 0 (0) = 0: a contradiction. This proves the claim.

Step 2.3: Assume that P N holds for some N ≥ 1. Let (x i,α ) i=1,...,N be N sequences of points in Ω and µ 1,α ≥ µ 2,α ≥ • • • ≥ µ N,α be N sequences of positive real numbers such that assertions (i)-(ii)-(iii) of the claim hold. We claim that if assertion (iv) of Proposition 2 does not hold for this sequence of points, then P N +1 holds.

Proof of Step 2.3: We assume that (iv) does not hold for these sequences. In other words assume that there exists

0 > 0 such that max Ω R n-2 2 α u α - N i=1 U i,α ≥ 0 (4.13)
for all α ∈ N where

R α (x) 2 := min 1≤i≤N |x i,α -x| 2 + µ 2 i,α and 
U i,α (x) := µ 1-n 2 i,α U 0 x -x i,α µ i,α .
We let y α ∈ Ω be such that

max Ω R n-2 2 α u α - N i=1 U i,α = R α (y α ) n-2 2 u α (y α ) - N i=1 U i,α (y α ) (4.14)
and we set

u α (y α ) = ν 1-n 2 α . (4.15) 
Step 2.3.1: We claim that

R α (y α ) n-2 2 U i,α (y α ) → 0 as α → +∞ for all 1 ≤ i ≤ N . (4.16)
Indeed, assume on the contrary that there exists 1

≤ i ≤ N such that R α (y α ) n-2 2 U i,α (y α ) ≥ η 0 (4.17)
for some η 0 > 0. This means that

R α (y α ) µ i,α ≥ η 2 n-2 0 1 + |y α -x i,α | 2 µ 2 i,α . (4.18) Since R α (y α ) 2 ≤ |y α -x i,α | 2 + µ 2 i,α
, we get in particular that, up to a subsequence,

|y α -x i,α | µ i,α → R as α → +∞ (4.19)
for some R > 0. Coming back to (4.18), we can also write that

|x j,α -y α | 2 µ 2 i,α + µ 2 j,α µ 2 i,α ≥ η 4 n-2 0 1 + R 2 2 + o(1) (4.20) 
for all 1 ≤ j ≤ N . These two equations permit to prove thanks to (ii) of Proposition 2 (which holds by assumption) that

|xj,α-yα| µi,α ≥ η 2 n-2 0 1 + R 2 + o(1) for all i < j ≤ N . Thus lim α→+∞ y α -x i,α µ i,α ∈ S i
and we use (iii) of Proposition 2 to get that

µ n-2 2 i,α |u α (y α ) -U i,α (y α )| → 0 as α → +∞. Since R α (y α ) = O (µ i,α ), we thus get that R α (y α ) n-2 2 |u α (y α ) -U i,α (y α )| → 0 as α → +∞. Let 1 ≤ j ≤ N , j = i. We write now that R α (y α ) U j,α (y α ) 2 n-2 = O   µ i,α µ j,α 1 + |y α -x j,α | 2 µ 2 j,α -1   = o(1)
thanks to (4. [START_REF] Li | Yamabe type equations on three-dimensional Riemannian manifolds[END_REF]), (4.20) and assertion (ii) of Proposition 2. Thus we arrive to 

R α (y α ) n-2 2 u α (y α ) - N i=1 U i,α (y α ) → 0 as α → +∞
|x i,α -y α | 2 µ i,α ν α + µ i,α ν α → +∞ as α → +∞ (4.23)
for all 1 ≤ i ≤ N . We set now

w α (x) := ν n-2 2 α u α (y α + ν α x) (4.24)
in Ω α := {x ∈ R n s.t. y α + ν α x ∈ Ω}. We then have that

∆w α + α ν 2 α w α = n(n -2)w 2 -1 α (4.25)
in Ω α and ∂ ν w α = 0 on ∂Ω α . We define

S := lim α→+∞ x i,α -y α ν α , 1 ≤ i ≤ N s.t. |x i,α -y α | = O (ν α ) and µ i,α = o (ν α ) .
Let us fix K ⊂⊂ R n \ S a compact set. We note that, thanks to (4.16) and (4.14), 

R α (y α + ν α x) R α (y α ) n-2 2 w α (x) ≤ 1 + o(1) (4.26) for all x ∈ K ∩ Ω α , where lim α→+∞ sup K∩Ωα o(1) = 0. Let z α ∈ B R (0) ∩ Ω α \ x∈S B R -1 (x)
→ 0 as α → +∞. Assume now that R α (y α + ν α z α ) R α (y α ) → 0 as α → +∞ . (4.28) 
Up to a subsequence, we let 1 ≤ i ≤ N be such that

R α (y α + ν α z α ) 2 = |x i,α -y α -ν α z α | 2 + µ 2 i,α .
We then write thanks to (4.28) that

|x i,α -y α -ν α z α | 2 + µ 2 i,α = o |x i,α -y α | 2 + o µ 2 i,α
which implies that |x i,α -y α | = O (ν α ) and that µ i,α = o (ν α ). This leads to

x i,α -y α ν α -z α 2 → 0 as α → +∞ ,
which is absurd since, thanks to the definition of S and to the fact that d (z α , S) ≥ It follows from Step 2.3.3 that (w α ) α is bounded in L ∞ on all compact subsets of R n \ S. Then, by standard elliptic theory (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), it follows from (4.25) that, after passing to a subsequence,

w α → w 0 in C 1 loc (R n \ S) where w 0 satisfies ∆ ξ w 0 = n(n -2)w 2 -1 0 in R n \S and w 0 (0) = 1.
Noting that, since (u α ) is uniformly bounded in H 2 1 (Ω), we have that w 0 ∈ H 2 1,loc (R n ), we easily get that w 0 is in fact a smooth solution of the above equation and that, by Caffarelli-Gidas-Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], w 0 (x) = λ n-2

2 U 0 (λx + x 0 ) for some λ > 0 and some x 0 ∈ R n . If we set

x N +1,α := y α - ν α λ x 0 and µ N +1,α = λ -1 ν α ,
it is easily checked that, up to reorder the concentration points such that the sequence of weights is non-increasing, assertions (i)-(ii)-(iii) of Proposition 2 hold for the N + 1 sequences (x i,α , µ i,α ) i=1,...,N +1 . Here one must use in particular (4.23) to get (ii). This ends Step 2.3.4.

Step 2.3.5: Assume now that

lim α→+∞ d (y α , ∂Ω) ν α = ρ ≥ 0.
One proceeds similarly, using the extension ũα of u α as in Lemma 2 as was done for

Step 2.2.2. More precisely, let y 0 := lim α→+∞ y α ∈ ∂Ω. We choose ϕ and δ y0 > 0, U y0 as in Lemma 2. Let δ ∈ (0, δ y0 ). Denoting by ũα ∈ C 2 (U y0 ) the local extension of u α on U y0 , we then have that

∆ g ũα + α ũα = ũ2 -1 α in U y0 . (4.29) 
As in Step 2.2.2, we let y α := ϕ(y α,1 , y α ) and we have

lim α→+∞ y α,1 ν α = -ρ ≤ 0.
We define ṽα (x) := ν n-2 2 α ũα (ϕ((0, y α ) + ν α x)) for all x ∈ B δ/να (0).

It follows from (4.29) that

∆ gα wα + α ν 2 α wα = n(n -2) w2 -1 α in B δ/να (0), (4.30) 
where gα (x) = (ϕ g)((0, y α ) + ν α x) = ((ϕ -1 • π) ξ)((0, y α ) + ν α x). We define

Ĩ := {i ∈ {1, ..., N } s.t. |x i,α -y α | = O (ν α ) and µ i,α = o (ν α )} and S = lim α→+∞ ϕ -1 (x i,α ) -(0, y α ) ν α / i ∈ Ĩ .
We let K ⊂ R n \ S ∪ π -1 ( S) a compact set. Here, (4.27) rewrites 0 < wα (x) ≤

C(K) for all x ∈ K ∩ R n -.
The symmetry of wα yields 0 < wα (x) ≤ C(K) for all x ∈ K and all α > 0.

We are then in position to use elliptic theory to get the convergence of wα in Thanks to Step 2.1, we know that the process has to stop. When it stops, (i)-(iv) of the claim holds for these points and weights. This proves Proposition 2.

C 1 loc (R n \ S ∪ π -1 ( S) ),

A first upper-estimate

We consider in the following the concentration points (x i,α , µ i,α ) 1≤i≤N given by Proposition 2. We recall that they are ordered in such a way that

µ 1,α ≥ • • • ≥ µ N,α
and we shall denote in the following µ α = µ 1,α . Let us fix some notations and make some remarks before going on. We let

S := lim α→+∞ x i,α , 1 ≤ i ≤ N (5.1)
where the limits do exist, up to a subsequence. For δ > 0 small enough, we let

η α (δ) = sup Ω∩{d(x,S)≥2δ} u α . (5.2)
Thanks to Proposition 2 (iv) and to standard elliptic theory (see Theorem 9.11 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we get that η α (δ) → 0 as α → +∞ for all δ > 0 .

(5.3) Note that, as a consequence of (iii) of Proposition 2, there exists C > 0 such that We prove in this section the following : Proposition 3. There exists C 1 > 0 and some sequence

Cµ n-2 2 α ≤ Ω u 2 -1 α dx while Ω u 2 -1 α dx = α |Ω|
β α → 0 as α → +∞ such that |u α (x) -ūα | ≤ C 1 µ n-2 2 α R α (x) 2-n + β α ūα (5.7
) for all x ∈ Ω and all α > 0.

Proof of Proposition 3: We divide the proof in two main steps. We start by proving the following :

Step 3.1: We claim that for any 0 < γ < 1 2 , there exists R γ > 0, δ γ > 0 and

C γ > 0 such that u α (x) ≤ C γ µ n-2 2 (1-2γ) α r α (x) (2-n)(1-γ) + η α (δ γ ) r α (x) (2-n)γ
for all α > 0 and all x ∈ Ω \ N i=1 B Rγ µi,α (x i,α ).

Proof of Step 3.1. We divide the proof in two parts, depending whether we work in the interior of Ω or near its boundary. Let 0 < γ < 1 2 . We define Φ γ (x, y) := |x -y| (2-n)(1-γ) for all x, y ∈ R n -, x = y.

Step 3.1.1: We fix x 0 ∈ Ω and we let δ 0 > 0 such that B δ0 (x 0 ) ⊂⊂ Ω. We claim that there exists R γ > 0 such that

u α (x) ≤ C γ µ n-2 2 (1-2γ) α r α (x) (2-n)(1-γ) + η α (δ γ ) r α (x) (2-n)γ (5.8)
for all α > 0 and all x ∈ B δ0 (x 0 ) \ N i=1 B Rγ µi,α (x i,α ). We prove the claim. We let

ϕ γ,α (x) = µ n-2 2 (1-2γ) α N i=1 Φ γ (x i,α , x) + η α (δ) N i=1 Φ 1-γ (x i,α , x) (5.9) 
where Φ γ and Φ 1-γ are as above and δ > 0 will be chosen later on. We let

x α ∈ B δ0 (x 0 ) \ N i=1 B Rµi,α (x i,α ) be such that sup B δ 0 (x0)\ N i=1 B Rµ i,α (xi,α) u α ϕ γ,α = u α (x α ) ϕ γ,α (x α ) . (5.10) 
In particular, x α ∈ Ω.

We claim that, up to choose δ > 0 small enough and R > 0 large enough, we have that

x α ∈ ∂ N i=1 B Rµi,α (x i,α ) or r α (x α ) ≥ δ (5.11)
for α > 0 small. We prove (5.11) by contradiction. We assume on the contrary that

x α ∈ ∂ N i=1
B Rµi,α (x i,α ) and r α (x α ) < δ (5.12) for all α > 0. Since x α ∈ Ω, we write then thanks to (5.12) and the second order characterization of the supremum (5.10) that

∆u α (x α ) u α (x α ) ≥ ∆ϕ γ,α (x α ) ϕ γ,α (x α ) .
Thanks to (2.1), we have that

∆u α (x α ) u α (x α ) ≤ n(n -2)u α (x α ) 2 -2 which leads to ∆ϕ γ,α (x α ) ϕ γ,α (x α ) ≤ n(n -2)u α (x α ) 2 -2 .
(5.13)

Direct computations yield the existence of D γ > 0 such that

(A) D -1 γ ≤ |x -y| (n-2)(1-γ) Φ γ (x, y) ≤ D γ for all x, y ∈ R n , x = y. (B) ∆yΦγ (x,y) Φγ (x,y) ≥ 1 Dγ |x -y| -2 -D γ for all x, y ∈ Ω, x = y.
(5.14)

Let us write now thanks (5.14) that

∆ϕ γ,α (x α ) ≥ D -1 γ µ n-2 2 (1-2γ) α N i=1 |x i,α -x α | -2 Φ γ (x i,α , x α ) +D -1 1-γ η α (δ) N i=1 |x i,α -x α | -2 Φ 1-γ (x i,α , x α ) -D γ µ n-2 2 (1-2γ) α N i=1 Φ γ (x i,α , x α ) -D 1-γ η α (δ) N i=1 Φ 1-γ (x i,α , x α ) ≥ D -2 γ r α (x α ) -2 -N D 2 γ µ n-2 2 (1-2γ) α r α (x α ) -(n-2)(1-γ) + D -2 1-γ r α (x α ) -2 -N D 2 1-γ η α (δ) r α (x α ) -(n-2)γ
We choose δ > 0 such that

D -2 γ δ -2 ≥ 2N D 2 γ and D -2 1-γ δ -2 ≥ 2N D 2
1-γ so that, using once again (5.14), the above becomes

∆ϕ γ,α (x α ) ≥ 1 2 D -2 γ r α (x α ) -2 µ n-2 2 (1-2γ) α r α (x α ) -(n-2)(1-γ) + 1 2 D -2 1-γ r α (x α ) -2 η α (δ) r α (x α ) -(n-2)γ ≥ 1 2N D -3 γ r α (x α ) -2 µ n-2 2 (1-2γ) α N i=1 Φ γ (x i,α , x α ) + 1 2N D -3 1-γ r α (x α ) -2 η α (δ) N i=1 Φ 1-γ (x i,α , x α ) ≥ 1 2N (max {D γ , D 1-γ }) -3 r α (x α ) -2 ϕ γ,α (x α ) .
Coming back to (5.13), we thus get that

r α (x α ) 2 u α (x α ) 2 -2 ≥ 1 2n(n -2)N (max {D γ , D 1-γ }) -3 .
Using point (iv) of Proposition 2, it is easily check that one can choose R > 0 large enough such that this is absurd. And with these choices of δ and R, (5.11) is proved.

Assume that r α (x α ) ≥ δ. Then we have that u α (x α ) ≤ η α (δ) so that, thanks to (5.14), we get in this case that u α (x α ) = O (ϕ γ,α (x α )).

Assume that x α ∈ ∂B Rµi,α (x i,α ) for some 1 ≤ i ≤ N . Then, up to increase a little bit R so that R ≥ 4R 0 , R 0 as in (5.5), we get thanks to (iii) of Proposition 2 that

u α (x α ) = O µ 1-n 2 i,α
while, using (5.14),

ϕ γ,α (x α ) ≥ D -1 γ µ n-2 2 (1-2γ) α (Rµ i,α ) (2-n)(1-γ) so that, once again, u α (x α ) = O (ϕ γ,α (x α )) since µ i,α ≤ µ α .
Thus we have proved so far that there exists C > 0 such that

u α (x) ≤ Cϕ γ,α (x) in B δ0 (x 0 ) \ N i=1 B Rµi,α (x i,α ) .
It remains to use point (A) of (5.14) above to prove (5.8) and therefore Step 3.1.1.

Step 3.1.2: We fix x 0 ∈ ∂Ω. Then there exists δ 0 > 0 such that

u α (x) ≤ C γ µ n-2 2 (1-2γ) α r α (x) (2-n)(1-γ) + η α (δ γ ) r α (x) (2-n)γ (5.15)
for all α > 0 and all x ∈ (B δ0 (x 0 ) ∩ Ω) \ N i=1 B Rγ µi,α (x i,α ). We prove the claim. Indeed, via the extension of Lemma 2, the proof goes roughly as in Step 3.1. We only enlight here the main differences. As usual, since x 0 ∈ ∂Ω, we consider δ x0 , U x0 and a chart ϕ as in Lemma 2. We let ũα be the C 2 -extension of u α on U x0 : it satisfies that

∆ g ũα + α ũα = n(n -2)ũ 2 -1 α in U x0 . (5.16) 
We let J := {i ∈ {1, ..., N }/ lim α→+∞ x i,α = x 0 } and we let δ 0 > 0 such that B δ0 (x 0 ) ⊂ U x0 and |x i,α -x 0 | ≥ 2δ 0 for all i ∈ {1, ..., N } \ J.

For all i ∈ J, we define

xi,α := π -1 ϕ (x i,α ) = ϕ • π -1 • ϕ -1 (x i,α
), where π(x 1 , x ) = (-x 1 , x ) is the usual symmetry. We define

ϕ γ,α (x) := µ n-2 2 (1-2γ) α i∈J (Φ γ (x i,α , x) + Φ γ (x i,α , x)) +η α (δ) i∈J (Φ 1-γ (x i,α , x) + Φ 1-γ (x i,α , x)) +µ n-2 2 (1-2γ) α i∈J c Φ γ (x i,α , x) + η α (δ) i∈J c Φ 1-γ (x i,α , x)
where Φ γ and Φ 1-γ are as above and δ ∈ (0, δ 0 ) will be chosen later on. For the sake of clearness, we define

W α,R := B δ0 (x 0 ) ∩ Ω \ N i=1 B Rµi,α (x i,α ) ∪ i∈J B Rµi,α (x i,α ) . We let x α ∈ W α,R be such that sup x∈W α,R ũα ϕ γ,α = ũα (x α ) ϕ γ,α (x α ) .
We claim that, up to choose δ > 0 small enough and R > 0 large enough,

x α ∈ ∂ N i=1 B Rµi,α (x i,α ) ∪ i∈J B Rµi,α (x i,α ) or r α (x α ) ≥ δ (5.17)
for α > 0 small. We prove it by contradiction. We assume on the contrary that

x α ∈ ∂ N i=1 B Rµi,α (x i,α ) ∪ i∈J B Rµi,α (x i,α ) and r α (x α ) < δ (5.18)
for all α > 0. First, it follows from the choice of δ 0 and of η α (δ) that x α ∈ B δ0 (x α ). Therefore, if x α ∈ ∂Ω, we write then thanks to (5.18) that

∆ g ũα (x α ) ũα (x α ) ≥ ∆ g ϕ γ,α (x α ) ϕ γ,α (x α ) .
Thanks to (5.16), we have that

∆ g ũα (x α ) ũα (x α ) ≤ ũα (x α ) 2 -2 which leads to ∆ g ϕ γ,α (x α ) ϕ γ,α (x α ) ≤ ũα (x α ) 2 -2 .
Since the coefficients of ∆ g are in L ∞ with a continuous principal part (the metric g is Lipschitz continuous), direct computations yield the existence of

D γ > 0 such that (A') D -1 γ ≤ |x -y| (n-2)(1-γ) Φ γ (x, y) ≤ D γ for all x, y ∈ R n , x = y. (B') (∆g)yΦγ (x,y) Φγ (x,y) ≥ 1 Dγ |x -y| -2 -D γ for all x, y ∈ Ω, x = y.
And then the proof goes exactly as in Step 3.1.1, using the convergence of the rescalings of ũα proved in Proposition 2. In case x α ∈ ∂Ω, we approximate it by a sequence of points in Ω and also conclude. This proves that there exists

C > 0 such that ũα (x) ≤ Cµ n-2 2 (1-2γ) α i∈J (|x -x i,α | (2-n)(1-γ) + |x -xi,α | (2-n)(1-γ) ) +η α (δ) i∈J (|x -x i,α | (2-n)γ + |x -xi,α | (2-n)γ ) +µ n-2 2 (1-2γ) α i∈J c |x -x i,α | (2-n)(1-γ) + η α (δ) i∈J c |x -x i,α | (2-n)γ for all x ∈ W α,R . As easily checked, there exists C > 0 such that |x -xi,α | ≥ C|x -x i,α | for all x ∈ B δ0 (x 0 ) ∩ Ω.
Therefore, we get that there exists C > 0 such that (5.15) holds. This ends the proof of Step 3.1.2.

Since Ω is compact, Step 3.1 is a consequence of Steps 3.1.1 and 3.1.2.

Step 3.2: We claim that there exists C > 0 such that

u α (x) ≤ C µ n-2 2 α R α (x) 2-n + ūα
for all x ∈ Ω and all α > 0.

Proof of Step 3.2: We fix 0 < γ < 1 n+2 in the following. We let (x α ) be a sequence of points in Ω and we claim that

u α (x α ) ≤ ūα + O µ n-2 2 α R α (x) 2-n + o η α (δ γ ) . (5.19) 
Note that this clearly implies the estimate of Step 3.2 if we are then able to prove that η α (δ γ ) = O (ū α ). Let us prove this last fact before proving (5.19). A direct consequence of (5.19) and (5.4) is that

η α (δ γ ) = O µ n-2 2 α + O (ū α ) = O (ū α ) ,
thus proving the above assertion. We are left with the proof of (5.19).

Step 3.2.1: Assume first that R α (x α ) = O (µ α ). We use then (iv) of Proposition 2 to write that

R α (x α ) n-2 2 u α (x α ) = N i=1 R α (x α ) n-2 2 U i,α (x α ) + o(1) .
We can thus write that

µ 1-n 2 α R α (x α ) n-2 u α (x α ) = O N i=1 µ 1-n 2 α µ n 2 -1 i,α R α (x α ) n-2 µ 2 i,α + |x i,α -x α | 2 1-n 2 +o R α (x α ) µ α n-2 2 = O N i=1 µ 1-n 2 α µ n 2 -1 i,α + o(1) = O(1) since µ 2 i,α + |x i,α -x α | 2 ≤ R α (x α )
2 and µ i,α ≤ µ α for all 1 ≤ i ≤ N . Thus the estimate (5.19) clearly holds in this situation. This ends Step 3.2.1.

Step 3.2.2: Assume now that

R α (x α ) µ α → +∞ as α → +∞ . (5.20) 
We use the Green representation formula, see Appendix A, and equation (2.1) to write that

u α (x α ) -ūα = Ω G (x α , x) n(n -2)u α (x) 2 -1 -α u α (x) dx
where G is the Green's function for the Neumann problem. Since adding a constant to G does not change the representation above and using the pointwise estimates of Proposition 9, we get that

u α (x α ) ≤ ūα + Ω (G (x α , x) + m(Ω)) n(n -2)u α (x) 2 -1 -α u α (x) dx ≤ ūα + n(n -2) Ω (G (x α , x) + m(Ω))u α (x) 2 -1 dx ≤ ūα + C Ω |x α -x| 2-n u α (x) 2 -1 dx .
Using now Step 3.1, this leads to

u α (x α ) ≤ ūα + O η α (δ γ ) 2 -1 Ω |x α -x| 2-n r α (x) -(n+2)γ dx +O µ n+2 2 (1-2γ) α {rα(x)≥Rµα} |x α -x| 2-n r α (x) -(n+2)(1-γ) dx +O {rα(x)≤Rµα} |x α -x| 2-n u α (x) 2 -1 dx ,
for some R >> 1. The first term can easily be estimated since 2

-(n + 2)γ > 0.
We get that

η α (δ γ ) 2 -1 Ω |x α -x| 2-n r α (x) -(n+2)γ dx = O η α (δ γ ) 2 -1 = o η α (δ γ )
thanks to (5.3). We estimate the second term:

{rα(x)≥Rµα} |x α -x| 2-n r α (x) -(n+2)(1-γ) dx ≤ N i=1 {|xi,α-x|≥Rµα} |x α -x| 2-n |x -x i,α | -(n+2)(1-γ) dx = O N i=1 µ n-(n+2)(1-γ) α |x α -x i,α | 2-n = O µ n-(n+2)(1-γ) α R α (x α ) 2-n since n-(n+2) (1 -γ) < 0 and |x i,α -x α | ≥ 1 2 R α (x α )
for α large for all 1 ≤ i ≤ N thanks to (5.20). The last term is estimated thanks to (2.2), to (5.20) and to Hölder's inequalities by

{rα(x)≤µα} |x α -x| 2-n u α (x) 2 -1 dx = O r α (x α ) 2-n {rα(x)≤µα} u α (x) 2 -1 dx = O   r α (x α ) 2-n µ n-2 2 α {rα(x)≤µα} u α (x) 2 dx 2 -1 2   = O µ n-2 2 α r α (x α ) 2-n .
Combining all these estimates gives (5.19) in this second case. This ends Step 3.2.2.

As already said, this ends the proof of Step 3.2.

The proof of Proposition 3 is now straightforward, using once again the Green representation formula. We write that, for any sequence (x α ) of points in Ω,

u α (x α ) -ūα = n(n -2) Ω G (x α , x) u α (x) 2 -1 dx -α Ω G (x α , x) u α (x) dx .
Let us write thanks to Appendix A, Step 3.2 and Giraud's lemma that

Ω G (x α , x) u α (x) dx = O µ n-2 2 α Ω |x α -x| 2-n R α (x) 2-n dx +O ūα Ω |x α -x| 2-n dx = O µ n-2 2 α R α (x α ) 2-n + O (ū α )
(here one needs to spearate the case n < 4, n = 4 and n > 4) and that

Ω G (x α , x) u α (x) 2 -1 dx = o (ū α ) + O µ n-2 2 α R α (x α ) 2-n
.

Note that this last estimate has been proved in Step 3.2.2. Combining these equations, we get the existence of some C 1 > 0 and some sequence β α as α → +∞ such that (5.7) holds. This proves Proposition 3.

A sharp upper-estimate

Let us fix some notations. We let in the following

r i,α (x) := min i≤j≤N |x i,α -x| and R i,α (x) 2 := min i≤j≤N |x i,α -x| 2 + µ 2 i,α . (6.1) Note that R 1,α (x) = R α (x) and r 1,α (x) = r α (x).
Definition 5. For 1 ≤ i ≤ N , we say that (I i ) holds if there exists C i > 0 and a sequence β α as α → +∞ such that

u α (x) -ūα - i-1 j=1 V j,α (x) ≤ β α   ūα + i-1 j=1 U j,α (x)   + C i µ n-2 2 i,α R i,α (x) 2-n (6.2)
for all x ∈ Ω and all α > 0. Here, V j,α is as in Appendix B.

This section is devoted to the proof of the following :

Proposition 4. (I N ) holds.
Proof of Proposition 4: Thanks to Proposition 3, we know that (I 1 ) holds. The aim of the rest of this section is to prove by induction on κ that (I κ ) holds for all 1 ≤ κ ≤ N . In the following, we fix 1 ≤ κ ≤ N -1 and we assume that (I κ ) holds.

The aim is to prove that (I κ+1 ) holds. We proceed in several steps. Let us first set up some notations. In the following, we fix

0 < γ < 1 n + 2 . (6.3)
We let, for any 1 ≤ i ≤ κ,

Ψ i,α (x) := min µ n-2 2 (1-2γ) i,α Φ γ (x i,α , x) ; A 0 µ -n-2 2 (1-2γ) i,α Φ 1-γ (x i,α , x) (6.4) for x ∈ Ω \ {x i,α } where A 0 := 1 D γ D 1-γ (4R 0 ) -(n-2)(1-2γ) . (6.5) 
Here Φ γ , Φ 1-γ , D γ and D 1-γ are given by (5.14) and R 0 is as in (5.5). With this choice of A 0 , we have with (5.14) that

Ψ i,α (x) = A 0 µ -n-2 2 (1-2γ) i,α Φ 1-γ (x i,α , x) if |x i,α -x| ≤ 2R 0 µ i,α . Similarly, Ψ i,α (x) = µ n-2 2 (1-2γ) i,α Φ γ (x i,α , x) if x is far enough from x i,α .
Note also that we have that

A -1 1 ≤ Ψ i,α (x) U i,α (x) |xi,α-x| µi,α + µi,α |xi,α-x| (n-2)γ ≤ A 1 (6.6)
for all x ∈ Ω \ {x i,α } and all α > 0 for some A 1 > 0 independent of α. We also define

ψ α (x) := max ūα ; µ n-2 2 (1-2γ) α N i=1 Φ 1-γ (x i,α , x) (6.7) 
and

Θ α (x) := N i=κ+1 Φ γ (x i,α , x) . (6.8) We set, for 1 ≤ i ≤ κ, Ω i,α := x ∈ Ω s.t. Ψ i,α (x) ≥ Ψ j,α (x) for all 1 ≤ j ≤ κ . (6.9) 
We also fix A 2 > 0 that will be chosen later and we define ν κ,α by

ν n-2 2 (1-2γ) κ,α := max µ n-2 2 (1-2γ) κ+1,α ; max 1≤i≤κ sup Ωi,α Ψ i,α Θ α (6.10)
where Ωi,α :=

     x ∈ Ω i,α s.t. |x i,α -x| 2 u α (x) -ūα - κ j=1 V j,α (x) 2 -2 ≥ A 2      . (6.11)
In the above definition, the suprema are by definition -∞ if the set is empty. Remark that, in all these notations, we did not show the dependence in γ of the various objects since γ is fixed for all this section.

Step 4.1:

We claim that ν κ,α = O (µ κ,α ) when α → +∞. Proof of Step 4.1: This is clearly true if ν κ,α = µ κ+1,α since µ κ+1,α ≤ µ κ,α .
Step 4.1.1: Let us assume that there exists x α ∈ Ωi,α for some 1

≤ i ≤ κ such that Ψ i,α (x α ) = ν n-2 2 (1-2γ) κ,α Θ α (x α )
which implies thanks to (5.14) that

ν 1-2γ κ,α = O R κ+1,α (x α ) 2(1-γ) Ψ i,α (x α ) 2 n-2 .
(6.12)

Since (I κ ) holds and x α ∈ Ωi,α , we also have that

A 2 ≤ o(1) + o   |x i,α -x α | 2 κ-1 j=1 U j,α (x α ) 2 -2   + O µ 2 κ,α |x i,α -x α | 2 R κ,α (x α ) 4 .
Noting that

|x i,α -x α | 2 U i,α (x α ) 2 -2 = |x i,α -x α | µ i,α + µ i,α |x i,α -x α | -2
and using (6.6), we get since

x α ∈ Ω i,α that |x i,α -x α | 2 κ-1 j=1 U j,α (x α ) 2 -2 = O   κ-1 j=1 |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 4γ-2 |x j,α -x α | µ j,α + µ j,α |x j,α -x α | -4γ   = O(1) since γ < 1 2 .
Thus the previous equation leads to

R κ,α (x α ) 2 = O µ κ,α |x i,α -x α | . (6.13) If R κ,α (x α ) = R κ+1,α (x α )
, then (6.12) and (6.13) together with (6.6) lead to

ν 1-2γ κ,α = O µ 1-γ κ,α |x i,α -x α | 1-γ Ψ i,α (x α ) 2 n-2 = O µ 1-γ κ,α |x i,α -x α | 1-γ |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 2γ µ i,α µ 2 i,α + |x i,α -x α | 2 -1 = O µ 1-γ κ,α µ -γ i,α |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 3γ-1 = O µ 1-γ κ,α µ -γ i,α = O µ 1-2γ κ,α
since γ < 1 3 and i ≤ κ so that µ i,α ≥ µ κ,α . The estimate of Step 4.1 is thus proved in this case. This ends Step 4.1.1.

Step 4.1.2:

Assume now that R κ,α (x α ) < R κ+1,α (x α ) so that R κ,α (x α ) 2 = |x κ,α -x α | 2 + µ 2 κ,α . Then (6.13) becomes |x κ,α -x α | 2 + µ 2 κ,α = O µ κ,α |x i,α -x α | . (6.14) If i = κ, we then get that |x i,α -x α | = O (µ i,α ). Since R κ+1,α (x α ) ≥ R κ,α (x α ) ≥ µ i,α in this case, we can deduce from Proposition 2, (iii), that |x i,α -x α | 2 u α (x α ) -ūα - κ j=1 V j,α (x α ) 2 -2
→ 0 as α → +∞, thus contradicting the fact that x α ∈ Ωi,α . If i < κ, we write thanks to (6.6) and to the fact that Ψ

i,α (x α ) ≥ Ψ κ,α (x α ) (since x α ∈ Ω i,α ) that U 2 n-2 κ,α (x α ) |x κ,α -x α | µ κ,α + µ κ,α |x κ,α -x α | 2γ = O U i,α (x α ) 2 n-2 |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 2γ which gives thanks to (6.14) that |x κ,α -x α | µ κ,α + µ κ,α |x κ,α -x α | 2γ = O |x i,α -x α | U i,α (x α ) 2 n-2 |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 2γ = O |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 2γ-1 . Since γ < 1
2 , this leads clearly to

C -1 ≤ |x i,α -x α | µ i,α ≤ C and C -1 ≤ |x κ,α -x α | µ κ,α ≤ C
for some C > 0 independent of α. This implies that µ κ,α = o (µ i,α ) thanks to Proposition 2, (ii). One then easily deduces from (6.6) that

Ψ i,α (x α ) Ψ κ,α (x α ) = O µ κ,α µ i,α n-2 2 = o(1) ,
which contradicts the fact that x α ∈ Ω i,α . This ends Step 4.1.2, and therefore this proves Step 4.1.

Step 4.2: We claim that there exists A 3 > 0 such that

u α (x) ≤ A 3 κ i=1 Ψ i,α (x) + ν n-2 2 (1-2γ) κ,α r κ+1,α (x) (2-n)(1-γ) + max ūα ; µ n-2 2 (1-2γ) α r α (x) (2-n)γ (6.15) for all x ∈ Ω \ N i=κ+1 B R0µi,α (x i,α ). Proof of Step 4.2:
As in the proof of Step 3.1, the proof of Step 4.2 requires to distinguish whether we consider points in the interior or on the boundary of Ω. We only prove the estimate for interior points and we refer to Step 3.1.2 for the extension of the proof to the boundary. We fix x 0 ∈ Ω and δ 0 > 0 such that

B δ0 (x 0 ) ⊂⊂ Ω. We let x α ∈ B δ0 (x 0 ) \ N i=κ+1 B R0µi,α (x i,α ) be such that u α (x α ) κ i=1 Ψ i,α (x α ) + ν n-2 2 (1-2γ) κ,α Θ α (x α ) + ψ α (x α ) = sup B δ 0 (x0)\ N i=κ+1 B R 0 µ i,α (xi,α) u α κ i=1 Ψ i,α + ν n-2 2 (1-2γ) κ,α Θ α + ψ α . (6.16)
and we assume by contradiction that

u α (x α ) κ i=1 Ψ i,α (x α ) + ν n-2 2 (1-2γ) κ,α Θ α (x α ) + ψ α (x α ) → +∞ as α → +∞ . (6.17)
Thanks to the definition (6.7) of ψ α and to the fact that (I κ ) holds, it is clear that

r α (x α ) → 0 as α → +∞ . (6.18) We claim that |x i,α -x α | µ i,α → +∞ as α → +∞ for all κ + 1 ≤ i ≤ N . (6.19)
Assume on the contrary that there exists κ

+ 1 ≤ i ≤ N such that |x i,α -x α | = O (µ i,α ). Since |x i,α -x α | ≥ R 0 µ i,α
and by the definition (5.5) of R 0 , we then get thanks to Proposition 2, (iii), that

u α (x α ) = O µ 1-n 2 i,α
. But, thanks to (6.10) and to (5.14), we also have that

ν n-2 2 (1-2γ) κ,α Θ α (x α ) ≥ D -1 γ µ n-2 2 (1-2γ) κ+1,α |x i,α -x| (2-n)(1-γ) ≥ D -1 γ µ n-2 2 (1-2γ) i,α |x i,α -x| (2-n)(1-γ) so that u α (x α ) ν n-2 2 (1-2γ) κ,α Θ α (x α ) = O |x i,α -x| µ i,α (n-2)(1-γ) = O(1) ,
thus contradicting (6.17). So we have proved that (6.19) holds. With the same argument performed with Ψ i,α , we also know that, for any 1 ≤ i ≤ κ,

either |x i,α -x α | ≤ R 0 µ i,α or |x i,α -x α | µ i,α → +∞ as α → +∞ . (6.20) 
In particular, we can write thanks to (6.16), to (6.19) and to (6.20) (which ensures that the Ψ i,α 's are smooth in a small neighbourhood of x α , see the remark following (6.5)) that

∆u α (x α ) u α (x α ) ≥ ∆ κ i=1 Ψ i,α + ν n-2 2 (1-2γ) κ,α Θ α + ψ α κ i=1 Ψ i,α + ν n-2 2 (1-2γ) κ,α Θ α + ψ α (x α )
for α large. We write thanks to (2.1) that

∆u α (x α ) u α (x α ) ≤ n(n -2)u α (x α ) 2 -2 so that the above becomes ∆ κ i=1 Ψ i,α + ν n-2 2 (1-2γ) κ,α Θ α + ψ α (x α ) ≤ n(n -2)u α (x α ) 2 -2 κ i=1 Ψ i,α + ν n-2 2 (1-2γ) κ,α Θ α + ψ α (x α ) .
Writing thanks to (A), (B) that

∆Ψ i,α (x α ) ≥ 1 D γ + D 1-γ |x i,α -x α | -2 -D γ -D 1-γ Ψ i,α (x α ) for all 1 ≤ i ≤ κ, that ∆Θ α (x α ) ≥ 1 N D -3 γ r κ+1,α (x α ) -2 -N D γ Θ α (x α )
and that

∆ψ α (x α ) ≥ 1 N D -3 1-γ r α (x α ) -2 -N D 1-γ ψ α (x α ) , we get that 0 ≥ κ i=1 |x i,α -x α | -2 -C γ -C γ u α (x α ) 2 -2 Ψ i,α (x α ) + r κ+1,α (x α ) -2 -C γ -C γ u α (x α ) 2 -2 ν n-2 2 (1-2γ) κ,α Θ α (x α ) + r α (x α ) -2 -C γ -C γ u α (x α ) 2 -2 ψ α (x α ) (6.21)
where C γ > 0 is large enough and independent of α and δ. We let in the following 1 ≤ i ≤ κ be such that x α ∈ Ω i,α . We can then deduce from (6.21) that

0 ≥ |x i,α -x α | -2 -κC γ -κC γ u α (x α ) 2 -2 Ψ i,α (x α ) + r κ+1,α (x α ) -2 -C γ -C γ u α (x α ) 2 -2 ν n-2 2 (1-2γ) κ,α Θ α (x α ) + r α (x α ) -2 -C γ -C γ u α (x α ) 2 -2 ψ α (x α ) (6.22)
Thanks to (6.7) and to (6.17), we know that ūα = o u α (x α ) . (6.23)

We also know thanks to (6.17) that

U j,α (x α ) = o u α (x α ) (6.24) for all 1 ≤ j ≤ κ since U j,α (x α ) = O Ψ i,α (x α
) for all 1 ≤ j ≤ κ. Note also that, thanks to (6.19), we have that

R κ+1,α (x α ) 2 U j,α (x α ) 2 -2 → 0 as α → +∞ for all κ + 1 ≤ j ≤ N . (6.25)
Thus we can deduce from Proposition 2, (iv), together with (6.24) and (6.25) that

R α (x α ) 2 u α (x α ) 2 -2 → 0 as α → +∞ . (6.26)
Thanks to (6.18) and to this last equation, we can transform (6.22) into

0 ≥ |x i,α -x α | -2 -κC γ -κC γ u α (x α ) 2 -2 Ψ i,α (x α ) + r κ+1,α (x α ) -2 -C γ -C γ u α (x α ) 2 -2 ν n-2 2 (1-2γ) κ,α Θ α (x α ) + 1 + o(1) r α (x α ) -2 ψ α (x α ) (6.27)
Since (I κ ) holds, we get thanks to (6.23) and (6.24) that

u α (x α ) 2 -2 = O µ 2 κ,α R κ,α (x α ) -4 . (6.28)
We claim that we then have that

u α (x α ) 2 -2 = O µ 2 κ,α R κ+1,α (x α ) -4 . (6.29) Indeed, if (6.29) does not hold, then R κ+1,α (x α ) = o(R κ,α (x α )) when α → +∞ and then R κ,α (x α ) = µ 2 κ,α + |x α -x κ,α | 2
, which contradicts (6.24) and (6.28). This proves (6.29). We claim that this implies that

R κ+1,α (x α ) 2 u α (x α ) 2 -2 → 0 as α → +∞ . (6.30)
Indeed, if not, (6.29) would imply that

R κ+1,α (x α ) = O (µ κ,α )
while (6.26) would imply that R α (x α ) = o (R κ+1,α (x α )), which would in turn imply that there exists 1 ≤ j ≤ κ such that

|x j,α -x i,α | 2 + µ 2 j,α = R α (x α ) 2 = o R κ+1,α (x α ) 2 = o µ 2 κ,α
which turns out to be absurd since µ j,α ≥ µ κ,α . Thus (6.30) holds. Note that (6.29) together with (6.23) also implies that

R κ+1,α (x α ) → 0 as α → +∞ (6.31)
thanks to (5.4). Thanks to (6.30) and (6.31), we can transform (6.27) into

0 ≥ |x i,α -x α | -2 -κC γ -κC γ u α (x α ) 2 -2 Ψ i,α (x α ) + 1 + o(1) r κ+1,α (x α ) -2 ν n-2 2 (1-2γ) κ,α Θ α (x α ) + 1 + o(1) r α (x α ) -2 ψ α (x α ) . (6.32) If x α ∈ Ωi,α , we can transform this into 0 ≥ 1 + o(1) -κC γ A 2 -κC γ |x i,α -x α | 2 |x i,α -x α | -2 Ψ i,α (x α ) + 1 + o(1) r κ+1,α (x α ) -2 ν n-2 2 (1-2γ) κ,α Θ α (x α ) + 1 + o(1) r α (x α ) -2 ψ α (x α )
thanks to (6.23) and (6.24). Up to taking A 2 > 0 small enough, this leads to

r α (x α ) -2 ψ α (x α ) = O µ n-2 2 (1-2γ) i,α .
Thanks to (6.18), (6.7) and (5.14), this is clearly absurd. Thus we have that x α ∈ Ωi,α . Coming back to (6.32), we have that

ν n-2 2 (1-2γ) κ,α Θ α (x α ) = O u α (x α ) 2 -2 + 1 r κ+1,α (x α ) 2 Ψ i,α (x α ) .
Using (6.30) and (6.31), this leads to

ν n-2 2 (1-2γ) κ,α Θ α (x α ) = o Ψ i,α (x α ) ,
which clearly contradicts the definition (6.10) of ν κ,α since x α ∈ Ωi,α . We have thus proved that (6.17) leads to a contradiction. Using (5.14), this proves (6.15) and permits to end the proof of Step 4.2.

Step 4.3: We claim that there exists A 4 > 0 such that

u α (x) ≤ A 4 κ i=1 U i,α (x) + ūα + ν n-2 2 κ,α R κ+1,α (x) 2-n (6.33)
for all x ∈ Ω and all α > 0.

Proof of Step 4.3: We let (x α ) be a sequence of points in Ω. We aim at proving that

u α (x α ) = O κ i=1 U i,α (x α ) + ūα + ν n-2 2 κ,α R κ+1,α (x α ) 2-n . (6.34)
Since (I κ ) holds, and distinguishing whether R κ,α (x α ) = o(R κ+1,α (x α )) or not, we already know that (6.34) holds if

µ n-2 2 κ,α R κ+1,α (x α ) 2-n = O U i,α (x α )
for some 1 ≤ i ≤ κ. Thus we can assume from now on that

R κ+1,α (x α ) 2 = o (µ i,α µ κ,α ) + o µ κ,α µ i,α |x i,α -x α | 2 (6.35)
for all 1 ≤ i ≤ κ. This implies in particular that, for α large, 

R α (x α ) = R κ+1,α (x α ) = o(1
u α (x α ) ≤ ūα + n(n -2) Ω (G (x α , x) + m(Ω))u α (x) 2 -1 dx
since u α satisfies equation (2.1). This leads to

u α (x α ) -ūα ≤ C 0 n(n -2) Ω |x α -x| 2-n u α (x) 2 -1 dx . (6.38)
Noting that r κ+1,α (x α ) R κ+1,α (x α ), we write thanks to (6.37) and to Step 4.1 that {x∈Ω, rκ+1,α(x)≤R0νκ,α}

|x α -x| 2-n u α (x) 2 -1 dx = O ν n-2 2 κ,α R κ+1,α (x α )
2-n (6.39) using Hölder's inequalities and (2.2), where R 0 is as in Step 4.2. Noting that

N i=κ+1 B R0µi,α (x i,α ) ⊂ {x ∈ Ω, r κ+1,α (x) ≤ R 0 ν κ,α } ,
we write now thanks to this last inclusion, to (6.39) and to (6.15) that

Ω |x α -x| 2-n u α (x) 2 -1 dx = O κ i=1 Ω |x α -x| 2-n Ψ i,α (x) 2 -1 dx +O ν n+2 2 (1-2γ) κ,α {x∈Ω, rκ+1,α(x)≥R0νκ,α} |x α -x| 2-n r κ+1,α (x) -(n+2)(1-γ) dx +O max ū2 -1 α ; µ n+2 2 (1-2γ) α Ω |x α -x| 2-n r α (x) -(n+2)γ dx +O ν n-2 2 κ,α R κ+1,α (x α ) 2-n .
Here all the integrals have a meaning since γ < 2 n+2 . We write that {x∈Ω, rκ+1,α(x)≥νκ,α}

|x α -x| 2-n r κ+1,α (x) -(n+2)(1-γ) dx ≤ N i=κ+1 {x∈Ω, |xi,α-x|≥νκ,α} |x α -x| 2-n |x i,α -x| -(n+2)(1-γ) dx = O N i=κ+1 ν n-(n+2)(1-γ) κ,α |x α -x i,α | 2-n = O ν n-(n+2)(1-γ) κ,α R κ+1,α (x α ) 2-n
since γ < 2 n+2 and thanks to (6.37). We can also write since γ < 2 n+2 that

Ω |x α -x| 2-n r α (x) -(n+2)γ dx = O(1)
and that ū2 -1

α + µ n+2 2 (1-2γ) α = o (ū α ) + o µ n-2 2 α = o (ū α )
thanks to (2.3) and (5.4). Collecting these estimates, we arrive to

Ω |x α -x| 2-n u α (x) 2 -1 dx = O κ i=1 Ω |x α -x| 2-n Ψ i,α (x) 2 -1 dx +o (ū α ) + O ν n-2 2 κ,α R κ+1,α (x α ) 2-n .
Since γ < 2 n+2 , we get that (see Step 13.2 in the proof of Proposition 13 in Appendix B for the details)

Ω |x α -x| 2-n Ψ i,α (x) 2 -1 dx = O U i,α (x α )
for all 1 ≤ i ≤ κ. Thus we have obtained that

Ω |x α -x| 2-n u α (x) 2 -1 dx = O k i=1 U i,α (x α ) + o (ū α ) + O ν n-2 2 κ,α R κ+1,α (x α ) 2-n
.

Coming back to (6.38) with this last estimate, we obtain that (6.34) holds. This ends the proof of Step 4.3.

Step 4.4: We claim that there exists A 5 > 0 such that for any sequence (x α ) of points in Ω, we have that

u α (x α ) -ūα - κ i=1 V i,α (x α ) (6.40) ≤ A 5 ν n-2 2 κ,α R κ+1,α (x α ) 2-n + o (ū α ) + o κ i=1 U i,α (x α ) .
Proof of Step 4.4: Let (x α ) be a sequence of points in Ω.

Step 4.4.1: Assume first that

R κ+1,α (x α ) = O (ν κ,α ) when α → +∞ and R κ+1,α (x α ) = R α (x α ) . (6.41)
We can apply Proposition 2, (iv), to write that

R κ+1,α (x α ) n 2 -1 u α (x α ) -ūα - N i=1 U i,α (x α ) = o(1) .
This leads to

u α (x α ) -ūα - κ i=1 U i,α (x α ) ≤ N i=κ+1 U i,α (x α ) + o R κ+1,α (x α ) 1-n 2 .
Noting that, for any κ

+ 1 ≤ i ≤ N , U i,α (x α ) = µ n-2 2 i,α |x i,α -x α | 2 + µ 2 i,α 1-n 2 ≤ µ n-2 2 i,α R κ+1,α (x α ) 2-n ≤ µ n-2 2 κ+1,α R κ+1,α (x α ) 2-n ≤ ν n-2 2 κ,α R κ+1,α (x α ) 2-n
thanks to (6.10), we then get that

u α (x α ) -ūα - κ i=1 U i,α (x α ) ≤ N ν n-2 2 κ,α R κ+1,α (x α ) 2-n + o R κ+1,α (x α ) 1-n 2 .
Thanks to (6.41), we also know that

R κ+1,α (x α ) 1-n 2 = O ν n-2 2 κ,α R κ+1,α (x α ) 2-n .
We then get that

u α (x α ) -ūα - κ i=1 V i,α (x α ) ≤ Cν n-2 2 κ,α R κ+1,α (x α ) 2-n + κ i=1 |U i,α (x α ) -V i,α (x α )| . (6.42) We are left with estimating |U i,α (x α )-V i,α (x α )| when α → +∞ for all i ∈ {1, ..., κ}.
We use the estimates of Proposition 13 and we let i ∈ {1, ..., κ}. We have that

U i,α (x α ) -V i,α (x α ) = O(U i,α (x α )) = O   µ i,α µ 2 i,α + |x α -x i,α | 2 n-2 2   = O   min    µ n-2 2 i,α R α (x α ) n-2 , µ -n-2 2 i,α      = O   min    µ n-2 2 i,α ν n-2 2 κ,α , R α (x α ) n-2 ν n-2 2 κ,α µ n-2 2 i,α    ν n-2 2 κ,α R α (x α ) n-2   Using (6.41) and R α (x α ) = R κ+1,α (x α ), we get that U i,α (x α ) -V i,α (x α ) = O min µ i,α ν κ,α n-2 2 , ν κ,α µ i,α n-2 2 ν n-2 2 κ,α R κ+1,α (x α ) n-2 U i,α (x α ) -V i,α (x α ) = O ν n-2 2 κ,α R κ+1,α (x α ) n-2 (6.43)
Plugging (6.43) into (6.42) yields (6.40) up to take A 5 large enough if (6.41) holds. This ends Step 4.4.1.

Step 4.4.2: Assume now that

R κ+1,α (x α ) = O (ν κ,α ) when α → +∞ and R α (x α ) < R κ+1,α (x α ) . (6.44) Then there exists 1 ≤ i ≤ κ such that |x i,α -x α | 2 + µ 2 i,α ≤ R κ+1,α (x α ) 2 = O µ 2 κ,α thanks to Step 4.1. This implies that µ i,α = O (µ κ,α ) and that |x i,α -x α | = O (µ κ,α
) when α → +∞. This also implies that R κ+1,α (x α ) ≥ µ i,α . Since we have that µ κ,α ≤ µ i,α , using Proposition 2, (ii) and (iii), we then obtain that

|u α (x α ) -U i,α (x α )| = o U i,α (x α )
and that

µ 1-n 2 i,α = O U i,α (x α ) . (6.45)
This leads in particular to

u α (x α ) -ūα - κ j=1 U j,α (x α ) = o U i,α (x α ) + O   1≤j≤κ, j =i U j,α (x α )   .
Now, for any 1 ≤ j ≤ κ, j = i, we have that

µ n-2 2 i,α U j,α (x α ) = (µ i,α µ j,α ) n-2 2 |x j,α -x α | 2 + µ 2 j,α 1-n 2 ≤ |x j,α -x α | 2 µ i,α µ j,α + µ j,α µ i,α 1-n 2 = o(1) (6.46)
thanks to Proposition 2, (ii), since µ i,α = O (µ κ,α ) and µ κ,α ≤ µ j,α . In particular, (6.45) and (6.46) yield

U j,α (x α ) = o(U i,α (x α )) (6.47)
when α → +∞ for all 1 ≤ j ≤ κ, j = i. Thus we arrive in this case to

u α (x α ) -ūα - κ j=1 U j,α (x α ) = o U i,α (x α ) . (6.48)
To obtain (6.40), we need to remark that, thanks to Proposition 13 and (6.47), we have that

U j,α (x α ) -V j,α (x α ) = O(U j,α (x α )) = o(U i,α (x α )) (6.49)
when α → +∞ for all 1 ≤ j ≤ κ, j = i. Concerning U i,α (x α ), we refer again to Proposition 13: if x i,α is such that case (i) or (ii) holds, then U i,α (x α ) -V i,α (x α ) = o(U i,α (x α )) when α → +∞. In case (iii) of Proposition 13, we get with (6.45) that

U i,α (x α ) -V i,α (x α ) = O   µ i,α µ 2 i,α + d(x i,α , ∂Ω) 2 n-2 2   + o(U i,α (x α )) + O(µ n-2 2 i,α ) = o(µ -n-2 2 i,α ) + o(U i,α (x α )) = o(U i,α (x α ))
when α → +∞. Therefore (6.49) holds for all j ∈ {1, ..., κ}: associating this equation with (6.48) yields (6.40) for any choice of A 5 > 0 if (6.44) holds. This ends Step 4.4.2.

Step 4.4.3: From now on, we assume that

R κ+1,α (x α ) ν κ,α → +∞ as α → +∞ . (6.50)
As a preliminary remark, let us note that

r κ+1,α (α) R κ+1,α (x α ) (6.51) 
for large α's (the argument goes by contradiction). We use Green's representation formula and (5.4) to write that

u α (x α ) -ūα - κ i=1 V i,α (x α ) ≤ n(n -2)C 0 Ω |x α -x| 2-n u α (x) 2 -1 - κ i=1 U i,α (x) 2 -1 dx + C 0 α Ω |x α -x| 2-n u α (x) dx + o (ū α ) . (6.52)
Let us write thanks to (6.33) that

Ω |x α -x| 2-n u α (x) dx ≤ A 4 κ i=1 µ n-2 2 i,α Ω |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α 1-n 2 dx +A 4 ūα Ω |x α -x| 2-n dx + A 4 ν n-2 2 κ,α N i=κ+1 Ω |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α 1-n 2 dx = O κ i=1 µ n-2 2 i,α |x i,α -x α | 2 + µ 2 i,α 1-n 2 + O (ū α ) +O ν n-2 2 κ,α N i=κ+1 |x i,α -x α | 2 + µ 2 i,α 1-n 2 = O κ i=1 U i,α (x α ) + O (ū α ) + O ν n-2 2 κ,α R κ+1,α (x α ) 2-n
.

Thus (6.52) becomes

u α (x α ) -ūα - κ i=1 V i,α (x α ) ≤ n(n -2)C 0 Ω |x α -x| 2-n u α (x) 2 -1 - κ i=1 U i,α (x) 2 -1 dx + o (ū α ) + o κ i=1 U i,α (x α ) + o ν n-2 2 κ,α R κ+1,α (x α ) 2-n . (6.53)
Thanks to Proposition 2, (ii) and (iii), there exists a sequence L α → +∞ as α → +∞ such that, for any 1

≤ i ≤ κ, u α -U i,α U i,α L ∞ (Ωi,α∩Ω) → 0 as α → +∞ and 1≤j≤κ, j =i U j,α U i,α L ∞ (Ωi,α∩Ω) → 0 as α → +∞
where

Ω i,α := B Lαµi,α (x i,α ) \ i+1≤j≤N B 1 Lα µi,α (x j,α )
and such that these sets are disjoint for α large enough. Then we can write that

Ω∩Ωi,α |x α -x| 2-n u α (x) 2 -1 - κ j=1 U j,α (x) 2 -1 dx = o Ω∩Ωi,α |x α -x| 2-n U i,α (x) 2 -1 dx = o U i,α (x α )
for all 1 ≤ i ≤ κ. We also remark that

Ω\Ωi,α |x α -x| 2-n U i,α (x) 2 -1 dx = o U i,α (x α )
for all 1 ≤ i ≤ κ. Thus, using (6.33), we transform (6.53) into 

u α (x α ) -ūα - κ i=1 V i,α (x α ) ≤ Cν n+2 2 κ,α Ω∩{rκ+1,α(x)≥νκ,α} |x α -x| 2-n R κ+1,α (x) -(n+2) dx + O Ω∩{rκ+1,α(x)<νκ,α} |x α -x| 2-n u α (x) 2 -1 dx + o (ū α ) + o κ i=1 U i,α (x α ) + o ν n-2 2 κ,α R κ+1,α (x α ) 2-n . ( 6 
|x α -x| 2-n R κ+1,α (x) -(n+2) dx ≤ N i=κ+1 B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α -1-n 2 dx Fix i ≥ κ + 1. Assume first that lim α→+∞ |x i,α -x α | µ i,α = +∞.
Then, we get with changes of variables that

B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α -1-n 2 dx ≤ B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| -(n+2) dx = |x i,α -x α | 2-n ν -2 κ,α 1<|z|< R νκ,α |z| -2-n x i,α -x α |x i,α -x α | + ν κ,α |x i,α -x α | z 2-n dz = O(|x i,α -x α | 2-n ν -2 κ,α ) = O ν -2 κ,α |x i,α -x α | 2 + µ 2 i,α 1-n 2 when α → +∞. Assume now that |x i,α -x α | = O(µ i,α ) (6.55) 
when α → +∞. With the change of variables x := x i,α + µ i,α z, we get that

B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α -1-n 2 dx = O(µ -n i,α )
when α → +∞. It follows from (6.55) that R κ+1,α (x α ) = O(µ i,α ), and then, with (6.50), we get that ν κ,α = o(µ i,α ) and then

B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α -1-n 2 dx = O(µ 2-n i,α ν -2 κ,α ) = O ν -2 κ,α |x i,α -x α | 2 + µ 2 i,α 1-n 2 .
In all the cases, we have then proved that

B R (xi,α)∩{|x-xi,α|≥νκ,α} |x α -x| 2-n |x i,α -x| 2 + µ 2 i,α -1-n 2 dx (6.56) = O ν -2 κ,α |x i,α -x α | 2 + µ 2 i,α 1-n 2 
when α → +∞ for all i ≥ κ + 1. independently, using Hölder's inequality and (6.51), we have that

Ω∩{rκ+1,α(x)<νκ,α} |x α -x| 2-n u α (x) 2 -1 dx = O(ν n-2 2 
κ,α r κ+1,α (x α ) Step 4.5: We claim that ν κ,α = O (µ κ+1,α ) when α → +∞.

Proof of Step 4.5: We proceed by contradiction and thus assume that, up to a subsequence, there exists 1 ≤ i ≤ κ and x α ∈ Ωi,α such that (see the definition (6.10))

ν n-2 2 (1-2γ) κ,α Θ α (x α ) = Ψ i,α (x α ) .
(6.58)

Since x α ∈ Ωi,α , we also have that

|x i,α -x α | 2 u α (x α ) -ūα - κ j=1 V j,α (x α ) 2 -2 ≥ A 2 . (6.59)
At last, since x α ∈ Ω i,α , we have that

Ψ j,α (x α ) ≤ Ψ i,α (x α ) (6.60)
for all 1 ≤ j ≤ κ. In particular, we can write thanks to (6.6) that

|x i,α -x α | 2 U j,α (x α ) 2 -2 ≤ CA 2 -2 1 |x i,α -x α | 2 Ψ i,α (x α ) 2 -2 ≤ CA 2(2 -2) 1 |x i,α -x α | 2 U i,α (x α ) 2 -2 |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 4γ ≤ CA 2(2 -2) 1 |x i,α -x α | µ i,α + µ i,α |x i,α -x α | 4γ-2 ≤ CA 2(2 -2) 1
for all 1 ≤ j ≤ κ since γ < 1 2 . Applying (6.40) to the sequence (x α ) and coming back to (6.59), we thus obtain that

A 2 ≤ A 2 -2 5 |x i,α -x α | 2 ν 2 κ,α R κ+1,α (x α ) -4 + o(1)
.

This leads to R κ+1,α (x α ) 2 = O (ν κ,α |x i,α -x α |) . ( 6 
.61) Using (5.14), we can write thanks to (6.58) that

ν 1-2γ κ,α = O Ψ i,α (x α ) 2 n-2 R κ+1,α (x α ) 2(1-γ) (6.62)
which leads with (6.61) to

ν -γ κ,α = O Ψ i,α (x α ) 2 n-2 |x i,α -x α | 1-γ .
It is easily checked thanks to (6.6) that this leads to |x i,α -

x α | = O (ν κ,α ). Since ν κ,α = O (µ i,α
) thanks to Step 4.1 and since x i,α -x α = o(µ i,α ) when α → +∞, this leads in turn to

µ i,α = O |x i,α -x α | 1-γ ν γ κ,α = O (ν κ,α ) = O (µ κ,α
) . Thanks to (6.62), we have obtained so far that |x i,α -x α | = O (µ i,α ), that µ i,α = O (µ κ,α ) and at last that µ i,α = O (R κ+1,α (x α )) using again (6.62). Note that since µ i,α µ κ,α , we have that µ i,α = O(µ j,α ) for j ≤ κ when α → +∞. Using Proposition 2, (ii) and (iii), we then get that

|x i,α -x α | 2 u α (x α ) -ūα - κ j=1 V j,α (x α ) 2 -2
→ 0 as α → +∞ , thus contradicting (6.59) This ends the proof of Step 4.5.

Steps 4.4 and 4.5 give that, if (I κ ) holds for some 1 ≤ κ ≤ N -1, then (I κ+1 ) holds. Since we know that (I 1 ) holds thanks to Proposition 3, we have proved that (I N ) holds and thus we have proved Proposition 4.

7. Asymptotic estimates in C 1 (Ω)

In this section, we prove the following:

Proposition 5. There exists a sequence β α as α → +∞ such that

u α -ūα - N i=1 V i,α ≤ β α ūα + N i=1 U i,α (7.1) 
for all x ∈ Ω and all α > 0. In addition, there exists A 6 > 0 such that

|∇u α (x)| ≤ o(ū α ) + A 6 N i=1 µ n-2 2 i,α µ 2 i,α + |x i,α -x| 2 -n-1 2 (7.2)
for all x ∈ Ω and all α > 0.

Proof of Proposition 5:

We first prove the pointwise estimate on u α . Then we will prove the pointwise estimate in C 1 Ω .

Step 5.1: We claim that there exists a sequence β α → 0 as α → +∞ such that (7.1) holds. In particular, there exists C > 0 such that

u α (x) ≤ C   ūα + N i=1 µ 2 i,α µ 2 i,α + |x -x i,α | 2 n-2 2   (7.3)
for all x ∈ Ω and for all α ∈ N.

Proof of Step 5.1: The proof of (7.1) goes as in Step 4.4. We omit the details. The estimate (7.3) is a consequence of (7.1) and the inequality (11.33) of Proposition 13.

Step 5.2: We claim that (7.2) holds.

Proof of Step 5.2: Green's representation formula yields

u α (x) -ūα = Ω G(x, •) u 2 -1 α -α u α dy
for all x ∈ Ω and all α ∈ N. Differentiation with respect to x yields

|∇u α (x)| ≤ Ω ∇ x G(x, •) u 2 -1 α -α u α dy ≤ Ω |∇ x G(x, •)| u 2 -1 α + α u α dy Plugging (7.
3) and the estimate of ∇ x G of in (11.5) of Proposition 9 yield (7.2): we omit the details.

These two steps prove Proposition 5.

8. Convergence to singular harmonic functions 8.1. Convergence at general scale. We prove the following general convergence result Proposition 6. Let (u α ) α∈N ∈ C 2 (Ω) such that (1.3) and (1.4) hold. Let (x 1,α ), ..., (x N,α ) ∈ Ω and (µ 1,α ), ..., (µ N,α ) ∈ (0, +∞) such that (7.1) holds. Let (x α ) α∈N ∈ Ω and (µ α ) α∈N , (r α ) α∈N ∈ (0, +∞) be sequences such that (i) lim α→+∞ r α = 0 and µ α = o(r α ) when α → +∞, (ii) r α µ i,α when α → +∞ for all i ∈ {1, ..., N } such that x i,α -

x α = O(r α ) when α → +∞, (iii) r n-2 α ūα = O(µ n-2 2 α
) when α → +∞, (iv) µ i,α = O(µ α ) when α → +∞ for all i ∈ I where

I := {i ∈ {1, ..., N }/x i,α -x α = O(r α ) and µ i,α = o(r α ) when α → +∞}, (v) r 2 α µ i,α = O(µ α (µ 2 i,α + |x α -x i,α | 2 )
) when α → +∞ for all i ∈ I c . Then we distinguish two cases:

• Case 6.1: Assume that lim α→+∞ d(x α , ∂Ω) r α = +∞.
We define

v α (x) := r n-2 α µ n-2 2 α u α (x α + r α x) for all x ∈ Ω -x α r α . (8.1)
Then,

lim α→+∞ v α (x) = K + i∈I λ i |x -θ i | 2-n in C 2 loc (R n \ {θ i / i ∈ I}) (8.2) 
where

I := {i ∈ I/ µ i,α µ α } (8.3)
and θ i := lim α→+∞ x i,α -x α r α for all i ∈ I and λ i > 0 for all i ∈ I .

And

K = lim α→+∞ r n-2 α ūα µ n-2 2 α + i∈I c τ i lim α→+∞ r 2 α µ i,α µ α (µ 2 i,α + |x α -x i,α | 2 ) n-2 2 
(8.5)

with τ i ≥ 1 for all i ∈ I c • Case 6.2: Assume that lim α→+∞ d(x α , ∂Ω) r α = ρ ∈ [0, +∞).
Then there exists x 0 ∈ ∂Ω such that lim α→+∞ x α = x 0 . We take ϕ, U x0 and the extension ũα as in Lemma 2. We define

ṽα (x) := r n-2 α µ n-2 2 α ũα • ϕ(ϕ -1 (x α ) + r α x) for all x ∈ ϕ -1 (U x0 ) -ϕ -1 (x α ) r α . (8.6)
Then,

lim α→+∞ ṽα (x) = K + i∈I λ i (|x-θi | 2-n +|x-σ( θi )| 2-n ) in C 1 loc (R n \{ θi , σ( θi )/ i ∈ I}) (8.7)
where K ≥ 0, I , λ i are as above,

θi := lim α→+∞ ϕ -1 (x i,α ) -ϕ -1 (x α )
r α for all i ∈ I and σ : R n → R n is the orthogonal symmetry with respect to the hyperplane

{x 1 = ρ}, that is σ(x 1 , x ) = (2ρ -x 1 , x ) for all (x 1 , x ) ∈ R n . (8.8)
Proof of Proposition 6: As in the statement of the proposition, we distinguish two cases.

Case 6.1: we assume that lim α→+∞ d(x α , ∂Ω) r α = +∞. (8.9)

We let R > 0 so that, for α ∈ N large enough, it follows from (8.1) that v α (x) makes sense for all x ∈ B R (0). We fix x ∈ B R (0). It follows from (7.1) that

v α (x) = (1 + o(1)) r n-2 α ūα µ n-2 2 α + N i=1 r n-2 α V i,α (x α + r α x) µ n-2 2 α (8.10) 
when α → +∞. We estimate the right-hand-side with Proposition 13. We have to distinguish whether i ∈ I or not

Step 6.1.1: Let i ∈ I. We define

θ i,α := x i,α -x α r α
for all α ∈ N. In particular, lim α→+∞ θ i,α = θ i where θ i is defined in (8.4). Therefore

r n-2 α U i,α (x α + r α x) µ n-2 2 α = µ i,α r 2 α µ α (µ 2 i,α + |x α -x i,α + r α x| 2 ) n-2 2 =    µ i,α µ α ( µi,α rα 2 + |x -θ i,α | 2 )    n-2 2 = lim α→+∞ µ i,α µ α n-2 2 |x -θ i | 2-n + o(1) (8.11)
for all x ∈ B R (0) \ {θ i } when α → +∞. Note that these quantities are well-defined due to point (iv) of the hypothesis of Proposition 6.

Step 6.1.2:

Let i ∈ I c such that lim α→+∞ |x i,α -x α | r α = +∞.
Assume that i ∈ I: in this case, we have that µ i,α = O(µ α ) when α → +∞. Since in addition |x α -π -1 ϕ (x i,α )| ≥ d(x α , ∂Ω) and (8.9) holds, we have that

lim α→+∞ r n-2 α Ũi,α (x α + r α x) µ n-2 2 α = 0 if i ∈ I. (8.16) Assume that i ∈ I. Since |x α -x i,α | = O(|x α -π -1 ϕ (x i,α )|) when α → +∞, we have that r n-2 α Ũi,α (x α + r α x) µ n-2 2 α = O   µ i,α r 2 α µ α (µ 2 i,α + |x α -x i,α | 2 ) n-2 2   (8.17)
when α → +∞.

Plugging (8.11)-(8.17) into (8.10) and using Proposition 13, we get that

lim α→+∞ v α (x) = K + i∈I λ i |x -θ i | 2-n (8.18)
for all x ∈ R n \ {θ i / i ∈ I}, where K, I , θ i and λ i are as in (8.3), (8.4) and (8.5). Moreover, as easily checked, this convergence is uniform on every compact subset of R n \ {θ i / i ∈ I}.

Step 6.1.6: We claim that (8.2) holds. We prove the claim. It follows from equation (1.3) that

∆v α + r 2 α α v α = n(n -2) µ α r α 2 v 2 -1 α in B R (0) (8.19)
for all α ∈ N. Since µ α = o(r α ) when α → +∞, it follows from (8.18) and standard elliptic theory that (8.2) holds. This proves the claim.

This ends the proof of Proposition 6 in Case 6.2.

Case 6.2: We assume that lim α→+∞ d(x α , ∂Ω) r α = ρ with ρ ∈ [0, +∞). In particular, lim α→+∞ x α = x 0 ∈ ∂Ω. We consider the domain U x0 , the extension g of the Euclidean metric ξ, the chart ϕ and the extension ũα defined in Lemma 2. Let R > 0 and let α > 0 large enough such that

B R (0) ⊂ r -1 α (ϕ -1 (U x0 ) -ϕ -1 (x α )). Let us define (x 1,α , x α ) := ϕ -1 (x α ) with x 1,α ≤ 0 and x α ∈ R n-1
. Therefore, as is easily checked, we have that for any x ∈ B R (0),

ϕ(ϕ -1 (x α ) + r α x) ∈ Ω ⇔ x 1 ≤ |x 1,α | r α .
We consider the extension ũα of u α defined as in Lemma 2. In particular, the maps ϕ, π, π, π ϕ , πϕ refer to the point x 0 . Given i ∈ {1, ..., N }, it follows from the properties of the V i,α 's (see Proposition 13) that

V i,α (π -1 ϕ (x)) = (1 + o(1))V i,α (x) + O(µ n-2 2 i,α ) (8.20)
when α → +∞ uniformly for x ∈ U x0 (up to taking U x0 a sufficiently small neighborhood of x 0 in R n ). Therefore, it follows from (7.1) that

ũα (x) = (1 + o(1)) ūα + N i=1 V i,α (x) 
when α → +∞ uniformly for x ∈ U x0 ∩ Ω. Consequently, using (8.20) and (8.14), for x ∈ B R (0), we have that

ṽα (x) = (1 + o(1)) r n-2 α ūα µ n-2 2 α + N i=1 r n-2 α V i,α (ϕ((x 1,α , x α ) + r α x)) µ n-2 2 α (8.21)
when α → +∞ uniformly for x ∈ B R (0). Here again, we distinguish whether i ∈ I or not.

Step 6.2.1: we fix i ∈ I c . Then there exists τ i ≥ 1 such that

r n-2 α V i,α (ϕ((x 1,α , x α ) + r α x)) µ n-2 2 α = (1 + o(1))τ i µ i,α r 2 α µ α (µ 2 i,α + |x i,α -x α | 2 ) n-2 2 
(8.22) for all x ∈ B R (0) and all α ∈ N. The proof goes as in Case 6.1 above and we omit it.

Step 6.2.2: We fix i ∈ I. Mimicking what was done in Case 6.1.1, we define θi,α := ϕ -1 (x i,α ) -ϕ -1 (x α ) r α and θi := lim α→+∞ θi,α for all i ∈ I. Using that dϕ 0 is an orthogonal transformation and proceeding as in Step 6.1.1, we get that

r n-2 α U i,α (ϕ((x 1,α , x α ) + r α x)) µ n-2 2 α = lim α→+∞ µ i,α µ α n-2 2 |x -θi | 2-n + o(1) (8.23)
for all x ∈ B R (0) \ { θi } when α → +∞. Here again we omit the proof and we refer to Step 6.1.1.

Step 6.2.3: We fix i ∈ I. In particular, lim α→+∞ x i,α = x 0 . We assume that x i,α ∈ ∂Ω for all α ∈ N. We then have that

r n-2 α Ũi,α (ϕ((x 1,α , x α ) + r α x)) µ n-2 2 α = µ i,α r 2 α µ α (µ 2 i,α + |ϕ((x 1,α , x α ) + r α x) -π -1 ϕ (x i,α )| 2 ) n-2 2 (8.24)
for all α ∈ N and all x ∈ B R (0). Here, note that since we work in a neighborhood of x 0 , we use the maps ϕ, π defined above. We define ((x i,α ) 1 , x i,α ) := ϕ -1 (x i,α ) for all α ∈ N. We have that

|ϕ((x 1,α , x α ) + r α x) -π -1 ϕ (x i,α )| = |ϕ((x 1,α , x α ) + r α x) -ϕ • π -1 ((x 1,α , x α ) + r α θi,α )| = (1 + o(1))|(x 1,α , x α ) + r α x -π -1 (x 1,α , x α ) -r α π -1 ( θi,α )| = (1 + o(1))r α 2 x 1,α r α , 0 + x -π -1 ( θi,α ) (8.25)
independently, since dϕ 0 is an orthogonal transformation (this is due to the choice made in Lemma 2), we have that

d(x α , ∂Ω) = (1 + o(1))|x 1,α | (8.26)
when α → +∞. In particular,

lim α→+∞ |x 1,α | r α = ρ.
Since x 1,α < 0, plugging together (8.24), (8.25) and (8.26), we have that

r n-2 α Ũi,α (ϕ((x 1,α , x α ) + r α x)) µ n-2 2 α = lim α→+∞ µ i,α µ α n-2 2 |x-σ( θi )| 2-n +o(1) (8.27)
when α → +∞ uniformly on compact subsets of R n \ {σ( θi )}.

Step 6.2.4: Given i ∈ I , we define 

λ i := lim α→+∞ µ i,α µ α n-2 2 • 1 if x i,α ∈ ∂Ω for all α ∈ N 1 2 if x i,
lim α→+∞ ṽα (x) = K + i∈I λ i (|x -θi | 2-n + |x -σ( θi )| 2-n ) (8.28)
uniformly for all x in compact subsets of R n \ { θi , σ( θi )/ i ∈ I}, where K is defined in (8.5). We define the metric g α := (ϕ g)(ϕ -1 (x α ) + r α x) for x ∈ r -1 α (ϕ -1 (U x0 )ϕ -1 (x α )). With a change of variables, equation (1.3) rewrites

∆ gα ṽα + α r 2 α ṽα = µ α r α 2 ṽ2 -1 α
weakly in B R (0). It then follows from standard elliptic theory that (8.28) holds in C 1 loc . This proves (8.7), and this concludes the proof of Proposition 6 in Case 6.2. Proposition 6 is a direct consequence of Cases 6.1 and 6.2. 8.2. Convergence at appropriate scale. We fix i ∈ {1, ..., N }. We define

J i := {j = i/ µ i,α = O(µ j,α ) when α → +∞}.
We define also 

s i,α :=            min µ 1 2 i,α ū 1 n-2 α , min j∈Ji µi,α µj,α (µ 2 j,α + |x j,α -x i,α | 2 ) 1 2 if x i,α ∈ ∂Ω min µ 1 2 i,α ū 1 n-2 α , min j∈Ji µi,α µj,α (µ 2 j,α + |x j,α -x i,α | 2 ) 1 2 , d(x i,α , ∂Ω) if x i,α ∈ ∂Ω (8.
For x ∈ s -1 i,α (Ω -x i,α ), we define v i,α (x) := s n-2 i,α µ n-2 2 i,α u α (x i,α + s i,α x).
We define

I i := {j ∈ {1, ..., N }/ x j,α -x i,α = O(s i,α
) and µ j,α = o(s i,α ) when α → +∞} and θ j := lim α→+∞ x j,α -x i,α s i,α for all j ∈ I i .

Then there exists

v i ∈ C 2 (R n \ {θ j / j ∈ I i }) such that lim α→+∞ v i,α = v i in C 2 loc (R n \ {θ j / j ∈ I i }). (8.30)
In addition, there exists K ≥ 0 and λ j > 0 for all j ∈ I i := {j ∈ I i / µ i,α µ j,α } such that

v i (x) = K + j∈I i λ j |x -θ j | 2-n for all x ∈ R n \ {θ j / j ∈ I i }. (8.31)
Moreover, there exists δ > 0, there exists λ i > 0 and In particular lim α→+∞ x i,α = x 0 ∈ ∂Ω. We let ϕ be a chart around x 0 as in Lemma 2. For x ∈ s -1 i,α (Ω -x i,α ), we define

ψ i ∈ C 2 (B 2δ (0)) harmonic such that v i (x) := λ i |x| n-2 + ψ i (x) for all x ∈ B 2δ (0) \ {0} with ψ i (0) > 0. ( 8 
ṽi,α (x) := s n-2 i,α µ n-2 2 i,α ũα • ϕ(ϕ -1 (x i,α ) + s i,α x).
We define

I i := {j ∈ {1, ..., N }/ x j,α -x i,α = O(s i,α ) and µ j,α = o(s i,α ) when α → +∞} and θj := lim α→+∞ ϕ -1 (x j,α ) -ϕ -1 (x i,α ) s i,α for all j ∈ I i . (8.33) We define σ(x 1 , x ) := (2ρ -x 1 , x ) for all (x 1 , x ) ∈ R n . Then there exists ṽi ∈ C 2 (R n \ { θj , σ( θj )/ j ∈ I i }) such that lim α→+∞ ṽi,α = ṽi in C 1 loc (R n \ { θj , σ( θj )/ j ∈ I i }). (8.34)
In addition, there exists K ≥ 0 and λ j > 0 for all j ∈ I i := {j ∈ I i / µ i,α µ j,α } such that

ṽi (x) = K+ j∈I i λ j |x -θj | 2-n + |x -σ( θj )| 2-n for all x ∈ R n \{θ j , σ( θj )/ j ∈ I i }. (8.35)
Moreover, there exists δ > 0, there exists λ i > 0 and ψi ∈ C 2 (B 2δ (0)) harmonic such that ṽi (x) := λ i |x| n-2 + ψi (x) for all x ∈ B 2δ (0) \ {0} with ψi (0) > 0.

(8.36)

Proof of Propositions 7 and 8: We apply Proposition 6.

Step 7.1: we claim that points (i) to (v) of Proposition 6 hold with µ α := µ i,α and r α := s i,α for all α ∈ N.

We prove the claim.

Step 7.1.1 We claim that (i) holds.

We prove this claim via two claims. We first claim that lim α→+∞ s i,α = 0. (8.37)

We prove the claim. Indeed, it follows from the estimate (8.15) and the definition (8.29) of s i,α that

s n-2 i,α ≤ µ n-2 2 i,α ūα ≤ C α = o(1) when α → +∞.
This proves (8.37). This proves the claim.

We claim that µ i,α = o(s i,α ) when α → +∞. (8.38) We prove the claim by contradiction. Assume that s i,α = O(µ i,α ) when α → +∞. Since lim α→+∞ µ -1 i,α d(x i,α , ∂Ω) = +∞ if x i,α ∈ ∂Ω (see Proposition 2), it then follows from the definition of s i,α that there exists j ∈ J i such that

µ 2 j,α + |x j,α -x i,α | 2 = O(µ i,α µ j,α ) when α → +∞. (8.39)
In particular, µ j,α = O(µ i,α ) when α → +∞. Since j ∈ J i , we then get that µ j,α µ i,α when α → +∞. It then follows from (8.39) that x j,α -x i,α = O(µ i,α ) when α → +∞. A contradiction with point (ii) of Proposition 2. This proves that (8.38) holds. This proves the claim. These two claims prove that (i) holds. This ends Step 7.1.1.

Step 7.1.2: Let k ∈ {1, ..., N }. We assume that x k,α -x i,α = O(s i,α ) when α → +∞. We claim that

s i,α µ k,α when α → +∞. (8.40)
We prove the claim by contradiction and we assume that

s i,α µ k,α when α → +∞. (8.41)
Since µ i,α = o(s i,α ) when α → +∞, we then get that µ i,α = o(µ k,α ) when α → +∞, and therefore k ∈ J i . It then follows from the definiiton of s i,α that

s 2 i,α ≤ µ i,α µ k,α (µ 2 k,α + |x i,α -x k,α | 2 ) = o(µ 2 k,α ) + o(s 2 i,α )
when α → +∞, and then s i,α = o(µ k,α ) when α → +∞: a contradiction with (8.41). Then (8.40) holds and the claim is proved. This ends Step 7.1.2.

Step 7.1.3: Point (iii) is a straightforward consequence of the definition (8.29) of s i,α .

Step 7.1.4: We let j ∈ {1, ..., N } be such that x j,α -x i,α = O(s i,α ) and µ j,α = o(s i,α ) when α → +∞. We claim that

µ j,α = O(µ i,α ) when α → +∞. (8.42)
We prove the claim by contradiction and we assume that µ i,α = o(µ j,α ) when α → +∞. (8.43) Therefore, j ∈ J i and we have with (8.38) that

s 2 i,α ≤ µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 ) = o(µ 2 j,α ) + o(s 2 i,α ) = o(s 2 i,α )
when α → +∞. A contradiction. Then (8.43) does not hold and (8.42) holds. This proves the claim and ends Step 7.1.4.

Step 7.1.5: Let j ∈ {1, ..., N } be such that lim α→+∞ |xi,α-xj,α| si,α = +∞. We claim that

s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) = O(1) when α → +∞. (8.44)
We prove the claim. Assume first that µ j,α = o(µ i,α ) when α → +∞: we then get that

s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) = O µ j,α µ i,α • s 2 i,α |x i,α -x j,α |) = o(1)
when α → +∞. This proves (8.44), and the claim is proved in this case. Assume that µ i,α = O(µ j,α ) when α → +∞. Then j ∈ J i and (8.44) follows from the definition of s i,α .

In the two cases, we have proved (8.44). This proves the claim and ends Step 7.1.5.

Step 7.1.6: Let j ∈ {1, ..., N } be such that x i,α -x j,α = O(s i,α ) and s i,α = o(µ j,α ) when α → +∞. We claim that

s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) = O(1) when α → +∞. (8.45)
We prove the claim. We first assume that µ j,α = o(µ i,α ) when α → +∞. We then get that

s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) = O µ j,α µ i,α • s 2 i,α µ 2 j,α = o(1)
when α → +∞. Then (8.45) holds in this case. The case µ i,α = O(µ j,α ) when α → +∞ is dealt as in Step 7.1.5. This proves (8.45) and then the claim. This ends Step 7.1.6.

Step 7.1.7: point (v) is a consequence of Steps 7.1.5 and 7.1.6.

Therefore, points (i) to (v) of the hypothesis of Proposition 6 are satisfied with µ α := µ i,α and r α := s i,α . This ends Step 1.

Then we can apply Proposition 6 with r α := s i,α and µ α := µ i,α .

Step 

K = lim α→+∞ s n-2 i,α ūα µ n-2 2 i,α + j ∈Ii τ j lim α→+∞ s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) n-2 2 
.

(8.47)

Step 7.2.1: We claim that K > 0 or ∃j ∈ I i such that θ j = 0. (8.48)

We prove the claim. If K > 0, then (8.48) holds. We assume that K = 0. It then follows from (8.47) that 

s i,α = o   µ 1 2 i,α ū 1 n-2 α   and s 2 i,α = o µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 )
s 2 i,α = µ i,α µ j,α (µ 2 j,α + |x j,α -x i,α | 2 ) (8.50)
for all α ∈ N. Since j ∈ J i , we have that

µ i,α = O(µ j,α ) when α → +∞ and j = i. (8.51) 
Moreover, since j ∈ I i , we have that In particular, j ∈ I i and θ j = 0. This proves (8.48) when K = 0. This proves the claim and ends Step 7.2.1.

We set δ := 1 2 min{|θ j |/ j ∈ I i and θ j = 0}.

We define

ψ i (x) := K + j∈I i λ j |x -θ j | 2-n
for all x ∈ B 2δ (0) where I i " := {j ∈ I i / θ j = 0}. Clearly ψ i is smooth and harmonic on B δ (0). We define λ i = j∈I i \Ii" λ j , so that one has that

v i (x) = λ i |x| n-2 + ψ i (x) for all x ∈ B 2δ (0) \ {0}.
Note that λ i ≥ λ i > 0.

Step 7.2.2: We claim that ψ i (0) > 0. We prove the claim. Indeed, if K > 0, the claim is clear. If K = 0, it follows from (8.48) that there exists j ∈ I i ", and then ψ i (0) ≥ λ j |θ j | 2-n > 0. This proves the claim.

Proposition 7 is a consequence of Steps 7.1 and 7.2.

Step 7.3: we assume that

lim α→+∞ d(x i,α , ∂Ω) s i,α = ρ ≥ 0. (8.54)
In this case, the proof of Proposition 8 goes basically as the proof of Proposition 7.

We stress here on the differences.

It follows from Proposition 6 that there exists ṽi as in Proposition 8 such that (8.34) and (8.35) holds. We define

δ := 1 2 min{| θj |/ j ∈ I i and θj = 0}.
We define ψi (x) := K+

j∈I i λ j (|x-θj | 2-n +|x-σ( θj )| 2-n )+ λ i |x -σ( θi )| 2-n if σ( θi ) = 0 0 if σ( θi ) = 0
for all x ∈ B 2δ (0) where I i " := {j ∈ I i "/ θ j = 0} and λ i > 0 is as in Step 7. 

I i ∩ J i such that s 2 i,α = µi,α µj,α (µ 2 j,α + |x j,α -x i,α | 2 )
Step 7.3.1: we assume that

s i,α := d(x i,α , ∂Ω)
for all α ∈ N. In particular, it follows from (8.54) that that ρ = 1 > 0 and then σ( θi ) = σ(0) = (2ρ, 0) = 0 and then ψi (0)

≥ λ i |σ( θi )| 2-n = λ i (2ρ) 2-n > 0.
Step 7.3.2: we assume that there exists j ∈ I i ∩ J i such that

s 2 i,α = µ i,α µ j,α (µ 2 j,α + |x j,α -x i,α | 2 )
for all α ∈ N. Mimicking what was done in Step 7.2.2, we get again that ψi (0) > 0.

In all the cases, we have proved that ψi (0) > 0. This proves (8.55), and then ends

Step 7.3.

Proposition 8 is a consequence of Steps 7.1 and 7.3.

Estimates of the interior blow-up rates

This section is devoted to the analysis of the concentration at the points x i,α away from the boundary. Then n ≥ 4 (equation (9.1) does not hold in dimension n = 3). Concerning the blow-up rate, there exists c i > 0 such that

lim α→+∞ α s n-2 i,α µ n-4 i,α = c i if n ≥ 5, (9.2) lim α→+∞ α s 2 i,α ln 1 µ i,α = c i if n = 4. (9.3) and s i,α = o(d(x i,α , ∂Ω)) (9.4)
when α → +∞. Moreover, when n ≥ 7, we have the following additional information:

s i,α = o   µ 1 2 i,α ū 1 n-2 α   when α → +∞, (9.5) 
and there exists j ∈ {1, ..., N } such that µ i,α = o(µ j,α ) when α → +∞ and

s i,α = µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 ) 1 2
for all α ∈ N.

Proof of Theorem 3:

For x ∈ s -1 i,α (Ω -x i,α ), we define v i,α (x) := s n-2 i,α µ n-2 2 i,α u α (x i,α + s i,α x).
Step 3.1: We claim that there exists δ > 0 such that v i,α is well defined on B δ (0) and such that there exists

v i ∈ C 2 (B δ (0) \ {0}) such that lim α→+∞ v i,α = v i in C 2 loc (B 2δ (0) \ {0}) (9.6)
where there exists λ i > 0 and ψ i ∈ C 2 (B 2δ (0)) such that ∆ψ i = 0 and = ρ ≥ 0: it follows from (9.8) that ρ ≥ 1 and that lim α→+∞ x i,α = x 0 ∈ ∂Ω. Using that the chart ϕ around x 0 is such that dϕ 0 is an orthogonal transformation and that ũα coincides with u α on Ω, we get (9.6) and (9.7) thanks to Proposition 8. This proves the claim and therefore ends Step 3.1.

v i (x) = λ i |x| n-2 + ψ i (x) for all x ∈ B 2δ (0) \ {0} with ψ i (0) > 0. ( 9 
Taking δ > 0 smaller if needed, for any j ∈ {1, ..., N }, we have that

x j,α -x i,α = o(s i,α ) when α → +∞ ⇒ |x j,α -x i,α | ≥ 2δs i,α for all α ∈ N. (9.9)
Step 3.2: Let U be a smooth bounded domain of R n , let x 0 ∈ R n be a point and let u ∈ C 2 (U ). We claim that

U (x -x 0 ) k ∂ k u∆u dx + n -2 2 U u∆u dx (9.10) = ∂U (x -x 0 , ν) |∇u| 2 2 -∂ ν u (x -x 0 ) k ∂ k u + n -2 2 u dσ
We prove the claim. Indeed, this is the celebrated Pohozaev identity [START_REF] Pohozaev | Eigenfunctions of the equations ∆u + λf (u) = 0[END_REF]. We sketch a proof here for convenience for the reader. We have that

U (x -x 0 ) k ∂ k u∆u dx + n -2 2 U u∆u dx = U -∂ j ∂ j u (x -x 0 ) k ∂ k u + n -2 2 u dx = U ∂ j u∂ j (x -x 0 ) k ∂ k u + n -2 2 u dx - ∂U ∂ ν u (x -x 0 ) k ∂ k u + n -2 2 u dσ = n 2 U |∇u| 2 dx + 1 2 U (x -x 0 ) k ∂ k |∇u| 2 dx - ∂U ∂ ν u (x -x 0 ) k ∂ k u + n -2 2 u dσ = U ∂ k (x -x 0 ) k |∇u| 2 2 dx - ∂U ∂ ν u (x -x 0 ) k ∂ k u + n -2 2 u dσ = ∂U (x -x 0 , ν) |∇u| 2 2 -∂ ν u (x -x 0 ) k ∂ k u + n -2 2 u dσ.
This proves (9.10), and therefore the claim. This ends Step 3.2.

As a consequence, differentiating (9.10) with respect to x 0 , we get that

U ∂ k u∆u dx = ∂U ν k |∇u| 2 2 -∂ ν u∂ k u dσ (9.11)
Taking u := u α , using equation (1.3) and integrating by parts, we get that

α U u 2 α dx = ∂U (x -x 0 , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 (9.12) -∂ ν u α (x -x 0 ) k ∂ k u α + n -2 2 u α dσ
when α → +∞. We first assume that n ≥ 5. Estimating roughly the integral, we get with the change of variable x = x j,α + µ j,α z and with (9.18) that

B δs i,α (xi,α) µ j,α µ 2 j,α + |x -x j,α | 2 n-2 dx ≤ R n µ j,α µ 2 j,α + |x -x j,α | 2 n-2 dx = µ 2 j,α R n dz (1 + |z| 2 ) n-2 = O(µ 2 j,α ) = O(µ 2 i,α )
when α → +∞ since n ≥ 5. This proves (9.19) when n ≥ 5. When n = 4, we must be a little more precise. Assume first that x i,α -x j,α = O(s i,α ) when α → +∞.

Then we have that

B δs i,α (xi,α) µ j,α µ 2 j,α + |x -x j,α | 2 2 dx ≤ B Rs i,α (xj,α) µ j,α µ 2 j,α + |x -x j,α | 2 n-2 dx = µ 2 j,α B δs i,α µ -1 i,α (0) 
dz

(1 + |z| 2 ) 2 = O µ 2 j,α ln s i,α µ j,α = O µ 2 i,α ln s i,α µ i,α
when α → +∞. Assume now that s -1 i,α |x i,α -x j,α | → +∞ when α → +∞. Then for any x ∈ B δsi,α (x i,α ), we have that |x -x j,α | ≥ s i,α and then

B δs i,α (xi,α) µ j,α µ 2 j,α + |x -x j,α | 2 2 dx ≤ C s 4 i,α µ 2 j,α s 4 i,α = O(µ 2 j,α ) = O µ 2 i,α ln s i,α µ i,α
when α → +∞. These estimates prove (9.19) in case n = 4. This ends Step 3.3.2.

Step 3.3.3: We let j ∈ {1, ..., N } such that µ i,α = o(µ j,α ) and x i,α -x j,α = o(s i,α ) (9.20)

when α → +∞. We claim that when n ≥ 4, we have that

B δs i,α (xi,α) µ j,α µ 2 j,α + |x -x j,α | 2 n-2 dx = O(µ 2 i,α ) (9.21)
when α → +∞. We prove the claim. It follows from (9.20) and the definition (9.9) of δ that |x i,α -x j,α | ≥ 2δs i,α for all α ∈ N. In particular,

x ∈ B δsi,α (x i,α ) ⇒ |x -x j,α | ≥ |x i,α -x j,α | 2 
and therefore

B δs i,α (xi,α) µ j,α µ 2 j,α + |x -x j,α | 2 n-2 dx = O   s n i,α µ j,α µ 2 j,α + |x i,α -x j,α | 2 n-2   (9.
22) when α → +∞. Moreover, it follows from (9.20) that j ∈ J i , and then

s 2 i,α ≤ µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 ) (9.23)
We prove the claim. With the change of variable x = x i,α + s i,α z and using the definition of v i,α , we get that

A i,α = µ i,α s i,α n-2 ∂B δ (0) (z, ν) |∇v i,α | 2 2 -c n µ i,α s i,α 2 v 2 i,α 2 + α s 2 i,α u 2 α 2 -∂ ν v i,α x k ∂ k v i,α + n -2 2 v i,α dσ for all α ∈ N. Since v i,α → v i in C 2 loc (B 2δ (0) \ {0}
) when α → +∞, passing to the limit, we get that

A i,α = µ i,α s i,α n-2 ∂B δ (0) (z, ν) |∇v i | 2 2 (9.28) -∂ ν v i x k ∂ k v i + n -2 2 v i dσ + o(1)
when α → +∞. We let ∈ (0, δ) and we apply the Pohozaev identity (9.10) to v i on B δ (0) \ B (0) with x 0 = 0. Since ∆v i = 0, we get that the map

→ ∂B (0) (z, ν) |∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i dσ is constant on (0, δ].
With the explicit expression (9.7) of v i , we have the asymptotic expansion (z, ν)

|∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i = (n -2) 2 λ i ψ i (0) 2 |x| 1-n + O(|x| 2-n )
when |x| → 0. Consequently, we get that lim

→0 ∂B (0) (z, ν) |∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i dσ = (n -2) 2 λ i ψ i (0)ω n-1 2 ,
and then

∂B δ (0) (z, ν) |∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i dσ = (n -2) 2 λ i ψ i (0)ω n-1 2 .
Plugging this equality in (9.28) yields (9.27). This ends Step 3.4.

Step 3.5: We claim that there exists c i > 0 such that

lim α→+∞ α s n-2 i,α µ n-4 i,α = c i if n ≥ 5 and lim α→+∞ α s 2 i,α ln 1 µ i,α = c i if n = 4. (9.29)
Indeed, plugging (9.14) and (9.27) into (9.13) yields

(c + o(1)) α µ 2 i,α = (n -2) 2 ω n-1 λ i ψ i (0) 2 + o(1) • µ i,α s i,α n-2
when α → +∞ when n ≥ 5. Since c, λ i , ψ i (0) > 0, we get that

lim α→+∞ α s n-2 i,α µ n-4 i,α = (n -2) 2 ω n-1 λ i ψ i (0) 2c > 0.
This proves the claim when n ≥ 5. The proof is similar when n = 4.

Step 3.6: we claim that i,α ūα when α → +∞. With (2.4), we then get that

s i,α = o   µ 1 2 i,α ū 1 n-2 α   when n ≥ 7. ( 9 
1 = O µ n-6 2 i,α n-6 4 
α , a contradiction since n ≥ 7. Then (9.30) holds and the claim is proved. This ends Step 3.6.

Step 3.7: Assume that n ≥ 3. We claim that

lim α→+∞ d(x i,α , ∂Ω) s i,α = +∞. (9.31)
We prove the claim. We argue by contradiction and we assume that

lim α→+∞ d(x i,α , ∂Ω) s i,α = ρ ≥ 0.
It follows from the definition (8.29) of s i,α that ρ ≥ 1 > 0. We adopt the notations of Proposition 8. We let j 0 ∈ I i such that θj0,1 = min

j∈I i { θj,1 }. (9.32)
Here, θj,1 denotes the first coordinate of θj .

Step 3.7.1: We claim that there exists 0 > 0 such that

d(x j0,α , ∂Ω) ≥ 0 s i,α (9.33) 
for all α ∈ N. We prove the claim by contradiction and we assume that d(x j0,α , ∂Ω) = o(s i,α ) when α → +∞. In particular, via the chart ϕ, we get that

lim α→+∞ (ϕ -1 (x j0,α )) 1 s i,α = 0 and lim α→+∞ (ϕ -1 (x i,α )) 1 s i,α = -ρ < 0.
Coming back to the definition (8.33) of θj0 , we get that θj0,1 = lim

α→+∞ (ϕ -1 (x j0,α ) -ϕ -1 (x i,α )) 1 s i,α = ρ > 0.
A contradiction since θj0,1 ≤ θi,1 = 0. This proves (9.33) and ends Step 3.7.1.

Step 3.7.2: We let δ 0 > 0 such that

δ 0 < 0 2 and θj = θj0 ⇒ | θj -θj0 | ≥ 2δ 0 .
Taking the Pohozaev identity (9.12) with U := B δ0si,α (x j0,α ) ⊂⊂ Ω and differentiating with respect to x 0 , we get that

∂B δ 0 s i,α (xj 0 ,α ) ν k |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 -∂ ν u α ∂ k u α ) dσ = 0 (9.34)
for all α ∈ N and all k ∈ {1, ..., n}. With the change of variable x = x i,α + s i,α z and using the function v i,α , we get that

∂B δ 0 ( θj 0 ,α ) ν k |∇v i,α | 2 2 -c n µ i,α s i,α 2 v 2 i,α 2 + α s 2 i,α v 2 i,α 2 -∂ ν v i,α ∂ k v i,α ) dσ = 0 (9.
35) for all α → 0. Letting α → 0, we get with (9.6) that

∂B δ 0 ( θj 0 ) ν k |∇v i | 2 2 -∂ ν v i ∂ k v i ) dσ = 0 (9.36)
for all k ∈ N. It follows from (8.35) that

v i (x) = K + j∈I i λ j (|x -θ j | 2-n + |x -σ(θ j )| 2-n = λ i,j0 |x -θ j0 | n-2 + ψ i,j0 (x)
where λ i,j0 > 0 and

ψ i,j0 (x) := K + λ j0 |x -σ(θ j0 )| 2-n + j∈Ii" λ j (|x -θ j | 2-n + |x -σ(θ j )| 2-n
where I i " := {j ∈ I i / θ j = θ j0 } Arguing as in Step 3.4, we get that (9.36) holds on balls with arbitrary small positive radius and then we get that

∂ k ψ i,j0 (θ j0 ) = 0. Taking k = 1, we get that λ j0 (θ j0 -σ(θ j0 )) 1 |θ j0 -σ(θ j0 )| n + j∈Ii" λ j (θ j0 -θ j ) 1 |θ j0 -θ j | n + (θ j0 -σ(θ j )) 1 |θ j0 -σ(θ j )| n = 0. (9.37)
Recall that if θ j = (θ j,1 , θ j ), then σ(θ j ) = (2ρ -θ j,1 , θ j ). In particular, since x j,α ∈ Ω, we have that θ j ∈ {x 1 ≤ ρ} and then for all j ∈ I i ", we have that

θ j0,1 ≤ θ j,1 ≤ (σ(θ j )) 1 . (9.38) 
In addition, we have that

(θ j0 -σ(θ j0 )) 1 = 2(θ j0,1 -ρ) = -2(|θ j0,1 | + ρ) < 0. ( 9.39) 
Plugging (9.38) and (9.39) into (9.37) yields a contradiction. This proves that (9.31) holds. This ends Step 3.7.

Step 3.8: We assume that n ≥ 3. We claim that

x j,α -x i,α = o(s i,α ) when α → +∞ for all j ∈ I i . (9.40)

We prove the claim. Since (9.31) holds, we define v i,α and v i as in Proposition 7.

In particular, we have that

v i (x) = K + j∈I i λ j |x -θ j | 2-n
for all x ∈ R n \ {θ j / j ∈ I i }. We fix k ∈ {1, ..., n} and we let j 0 ∈ I i such that

θ j0,k = min{θ j,k / j ∈ I i }.
We let I i " := {j ∈ I i / θ j = θ j0 }. Therefore, there exists λ i,j0 > 0 such that

v i (x) = λ i,j0 |x -θ j0 | n-2 + ψ i,j0 (x)
where

ψ i,j0 (x) := K + j∈Ii" λ j |x -θ j | 2-n .
Taking δ < min{|θ j |/ θ j = θ j0 }, we use the identity (9.34) as in Step 3.7. Performing the change of variable x = x i,α + s i,α z, we get again that

∂ k ψ i,j0 (θ j0 ) = 0.
With the explicit expression of ψ i,j0 , this yields j∈Ii"

λ j (θ j -θ j0 ) k |θ j -θ j0 | n = 0.
Since (θ j -θ j0 ) k ≥ 0 for all j ∈ I i " by definition, we get that θ j,k = θ j0,k for all j ∈ I i ", and therefore for all j ∈ I i . In particular, θ j,k = θ i,k for all k ∈ N, and therefore θ j = θ i = 0 for all j ∈ I i . Coming back to the definition (8.33) of θ j , we get that (9.40) holds. This ends the proof of the claim and of Step 3.8.

Step 3.9: Assume that n ≥ 7. We claim that there exists j 0 ∈ J i such that

s i,α = µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 ) 1 2
and µ i,α = o(µ j,α ) (9.41) when α → +∞. We prove the claim. Indeed, it follows from the definition (8.29) of s i,α and (9.30) of Step 3.6 and (9.31) of Step 3.7 that there exists j ∈ J i such that

s i,α = µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 ) 1 2 (9.42) 
for all α ∈ N (up to a subsequence, of course). Since j ∈ J i , we have that µ i,α = O(µ j,α ) when α → +∞. Assume that µ i,α µ j,α when α → +∞: then it follows from (9.42) that x j,α -x i,α = O(s i,α ) when α → +∞, and then j ∈ I i . It then follows from (9.40) of Step 3.8 that we have that x i,α -x j,α = o(s i,α ). Coming back to (9.42), we get that s i,α µ i,α when α → +∞: a contradiction with (8.38). Therefore (9.41) holds, and the claim is proved. This ends Step 3.9.

Step 3.10: We assume that n = 3. It follows from (9.27) and (9.13) that

B δs i,α (xi,α) u 2 α dx µ i,α s i,α (9.43) 
when α → +∞. It follows from (7.1) that

B δs i,α (xi,α) u 2 α dx = (1 + o(1)) B δs i,α (xi,α)   ūα + N j=1 V j,α (x)   2 dx s 3 i,α ū2 α + N j=1 µ j,α B δs i,α (xi,α) (µ 2 j,α + |x -x j,α | 2 ) -1 dx
In all the situations, we have proved a contradiction. Therefore the hypothesis (9.1) of Theorem 3 does not hold in dimension n = 3. This ends Step 3.10.

Step 3.10: Theorem 3 is a direct consequence of Steps 3.5, 3.6, 3.7, 3.8 and 3.10. This ends the proof of Theorem 3.

In the sequel, we need to translate slightly the boundary concentration points: we fix θ ∈ R n-1 and for all i ∈ {1, ..., N } such that x i,α ∈ ∂Ω, we define xi,α := ϕ(ϕ -1 (x i,α ) + µ i,α θ) ∈ ∂Ω for all α ∈ N. The parameter θ is chosen such that there exists 0 > 0 such that

|x i,α -xj,α | ≥ 0 µ i,α (9.49 
) for all i, j ∈ {1, ..., N } distincts such that xi,α , xj,α ∈ ∂Ω and all α ∈ N. We define si,α as s i,α with replacing x i,α by xi,α : as easily checked, for any i ∈ {1, ..., N } such that x i,α ∈ ∂Ω, we have that si,α s i,α when α → +∞. From now on, we replace x i,α by xi,α . As easily checked, the convergence Propositions 7 and 8 and the estimates (7.2) and (7.3) continue to hold with this new choice of points (with τ i > 0 only in the propositions). Note that the convergence (4.1) of the ũi,α in Proposition 2 is changed as follows:

lim α→+∞ ũi,α -U 0 (• + θ) C 1 (K∩ Ωi,α) = 0.
(9.50)

Estimates of the boundary blow-up rates

In this section, we deal with the case when the concentration point is on the boundary.

Theorem 4. Assume that n ≥ 3. Let i ∈ {1, ..., N }. We assume that

x i,α ∈ ∂Ω (10.1)
for all α ∈ N. We assume that for all j ∈ {1, ..., N } \ {i}, we have that

x j,α ∈ ∂Ω ⇒ x j,α -x i,α = o(s i,α ) when α → +∞ (10.2)
when α → +∞. Then there exists c i > 0 such that

lim α→+∞ µ n-3 i,α s n-2 i,α = -c i H(x 0 ) if n ≥ 4, lim α→+∞ 1 si,α ln 1 µ i,α = -c i H(x 0 ) if n = 3, (10.3) 
Where x 0 := lim α→+∞ x i,α and H(x 0 ) denotes the mean curvature of ∂Ω at x 0 . In particular, H(x 0 ) ≤ 0.

Proof of Theorem 4: As for Theorem 3, the proof relies on a Pohozaev identity.

Here, we have to consider the boundary of Ω. For any α ∈ N, we define

U α := B δsi,α (ϕ -1 (x i,α )) (10.4) 
Step 4.1: we apply the Pohozaev identity (9.12) on ϕ

(U α ) ∩ Ω = ϕ(U α ∩ R n -) with x 0 = x i,α . This yields α ϕ(Uα∩R n -) u 2 α dx = ∂ϕ(Uα∩R n -) F α dσ (10.5) = ϕ((∂Uα)∩R n -) F α dσ + ϕ(Uα∩∂R n -) F α dσ
where for convenience, we have defined

F α := (•-x i,α , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 -∂ ν u α (• -x i,α ) k ∂ k u α + n -2 2 u α
for all α ∈ N.

Step 4.2: We deal with the LHS of (10.5). We claim that

ϕ(Uα∩R n -) u 2 α dx = o(µ i,α ) if n ≥ 4 O(µ i,α ) if n = 3 (10.6)
when α → +∞. Indeed, the proof goes exactly as in the proof of (9.14) of Step 3.3 of the proof of Theorem 3.

Step 4.3: We deal with the first term of the RHS of (10.5). When n ≥ 3, we claim that there exists c i > 0 such that

ϕ((∂Uα)∩R n -) F α dx = µ i,α s i,α n-2 (c i + o(1)) (10.7) 
when α → +∞.

We prove the claim. The proof proceeds basically as in the proof of (9.27) of Step 3.4 of the proof of Theorem 3. Since x i,α ∈ ∂Ω, we have that lim α→+∞ x i,α = x 0 ∈ ∂Ω. We take a domain U x0 , a chart ϕ and the extension g of the metric and ũα of u α as in Lemma 2. Therefore, there exists x α ∈ R n-1 such that x i,α = ϕ(0, x i,α ) for all α ∈ N with lim α→+∞ x α = 0. We define ṽi,α as in Proposition 8, that is ṽi,α (x

) := s n-2 i,α µ n-2 2 i,α ũα ((0, x i,α ) + s i,α x) (10.8) 
for all α ∈ N and for all x ∈ s -1 i,α (ϕ -1 (U x0 ) -(0, x i,α )). Recall that it follows from Proposition 8 that there exists ṽi

∈ C 2 (B 2δ (0) \ {0}) such that lim α→+∞ ṽi,α = ṽi in C 1 loc (R n \ {0} (10.9) 
In addition, there exists ψi ∈ C 2 (B δ (0)) harmonic such that ṽi (x) := λ i |x| n-2 + ψi (x) for all x ∈ B δ (0) \ {0} with ψi (0) > 0.

(10.10)

We define the metric gα (x) := (ϕ g)((0, x i,α ) + s i,α x) for all x. With the change of variable x = ϕ((0, x i,α ) + s i,α z), we get that

ϕ((∂B δs i,α (ϕ -1 (xi,α)))∩R n -) F α dx = µ i,α s i,α n-2 ∂B δ (0)∩R n - (z, ν) gα |∇ṽ i,α | 2 gα 2 -c n µ i,α s i,α 2 ṽ2 i,α 2 + α s 2 i,α ṽ2 i,α 2 
-∂ ν ṽi,α x k ∂ k ṽi,α + n -2 2 ṽi,α dσ α
Passing to the limit α → +∞ and using (10.9), we get that

ϕ((∂B δs i,α (ϕ -1 (xi,α)))∩R n -) F α dx = µ i,α s i,α n-2 ∂B δ (0)∩R n - (z, ν) |∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i dσ + o(1) = µ i,α s i,α n-2 1 2 ∂B δ (0) (z, ν) |∇v i | 2 2 -∂ ν v i x k ∂ k v i + n -2 2 v i dσ + o(1)
when α → +∞. Similarly to what was done in the proof of (9.27) of Step 3.4 in the proof of Theorem 3, and using (10.10), we get that

ϕ((∂B δs i,α (ϕ -1 (xi,α)))∩R n -) F α dx = µ i,α s i,α n-2 (n -2) 2 c i ψ i (0)ω n-1 4 + o(1)
This proves (10.7) and ends Step 4.3.

We define

L := {j ∈ {1, ..., N }/ x j,α -x i,α = O(µ i,α ) when α → +∞}.
Given R > 0 and α ∈ N, we define

D R,α := ϕ B Rµi,α (ϕ -1 (x i,α )) \ k∈L B R -1 µi,α (ϕ -1 (x k,α )) ∩ R n -. (10.11) 
Step 4.4: Assume that n ≥ 4. We claim that lim

R→+∞ lim α→+∞ µ -1 i,α ϕ(Uα∩∂R n -)\D R,α (x -x i,α , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 dσ = 0
(10.12) We prove the claim. Indeed, it follows from (7.2) that

|∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 ≤ C ū2 α + C N j=1 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 (10.13) 
for all x ∈ Ω and all α ∈ N.

Step 4.4.1: We claim that

|(x -x i,α , ν(x))| ≤ C|x -x i,α | 2 (10.14) 
for all α ∈ N and all x ∈ ∂Ω ∩ ∂U x0 . We prove the claim. Indeed, for x ∈ R n -small enough, we get via the chart ϕ that

(• -x i,α , ν) • ϕ((0, x i,α ) + x) (10.15) = ϕ((0, x i,α ) + x) -ϕ(0, x i,α ), ν • ϕ((0, x i,α ) + x) = dϕ (0,x i,α ) (x) + 1 2 d 2 ϕ (0,x i,α ) (x, x) + O(|x| 3 ), ν • ϕ((0, x i,α ) + x) = - 1 2 d 2 ϕ (0,x i,α ) (x, x), ν • ϕ(0, x i,α ) + O(|x| 3 ).
Inequality (10.14) is a straightforward consequence of (10.15). This proves (10.14) and ends Step 4.4.1.

As a consequence of (10.13) and (10.14), we have that

ϕ(Uα∩∂R n -\D R,α ) (x -x i,α , ν) |∇u α | 2 2 - u 2 α 2 + α u 2 α 2 dσ (10.16) ≤ C ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 ū2 α dσ +C N j=1 ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1
dσ for all α ∈ N and all R > 0. We are going to estimate these terms separately.

Step 4.4.2: We claim that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 ū2 α dσ = o(µ i,α ) when α → +∞ (10.17)
We prove the claim. Indeed, using the definition (8.29) of s i,α , we get that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 ū2 α dσ ≤ Cs n+1 i,α ū2 α = O(µ n+1 2 i,α ū n-5 n-2 α ) when α → +∞. Moreover, since µ n-2 2 i,α = o(ū α ), we get that the above expression is o(µ i,α ū n-3 n-2 α ) = o(µ i,α
) when α → +∞ since n ≥ 3. This proves (10.17) and ends Step 4.4.2.

Step 4.4.3: We claim that lim

R→+∞ lim α→+∞ µ -1 i,α ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 i,α µ 2 i,α + |x -x i,α | 2 n-1 dσ = 0 if n ≥ 4.
(10.18) We prove the claim. Recall that for convenience, we let R n-1 := ∂R n -. Noting that

ϕ(U α ∩ ∂R n -\ D R,α ) ⊂ R n-1 \ B Rµi,α (x i,α ) \ ∪ k∈L B R -1 µi,α (x k,α ) , we get with the change of variables x = x i,α + µ i,α z that ϕ(Uα∩∂R n -)\D R,α |x -x i,α | 2 µ n-2 i,α µ 2 i,α + |x -x i,α | 2 n-1 dσ ≤ Cµ i,α R n-1 \(B R (0)\∪ k∈L B R -1 (θ k,α )) |z| 2 dz (1 + |z| 2 ) n-1 where θ k,α := µ -1 i,α (x k,α -x i,α ) for all α ∈ N and all k ∈ L. Letting θ k := lim α→+∞ θ k,α , we get that lim sup α→+∞ µ -1 i,α ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 i,α µ 2 i,α + |x -x i,α | 2 n-1 dσ ≤ C R n-1 \(B R (0)\∪ k∈L B R -1 (θ k )) |z| 2 dz (1 + |z| 2 ) n-1
for all R > 0. Then, letting R → +∞ and using that n ≥ 4, we get (10.18). This ends Step 4.4.3.

Step 4.4.4: Let j ∈ {1, ..., N } such that

x j,α -x i,α = o(s i,α ) when α → +∞. Then ϕ(Uα∩∂R n -)\D R,α |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = o(µ i,α ) if n ≥ 4 O(µ i,α ) if n = 3 (10.19)
when α → +∞. We prove the claim. Taking δ > 0 smaller if necessary, we have that

|x j,α -x i,α | ≥ 2δs i,α (10.20) 
for all α ∈ N. In particular, for all

x ∈ D R,α ⊂ ϕ(U α ∩ R n -), we have that |x -x j,α | ≥ δs i,α .
Therefore, we have that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = O s n+1 i,α µ n-2 j,α µ 2 j,α + |x j,α -x i,α | 2 n-1 (10.21 
) for all α ∈ N. We distinguish two cases: Case 4.4.4.1: assume that µ j,α = o(µ i,α ) when α → +∞. Then it follows from (10.20) and (10.21) that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = O s n+1 i,α µ n-2 j,α s 2n-2 i,α = o µ i,α s i,α n-3 µ i,α = o(µ i,α )
when α → +∞. This proves (10.19) in Case 4.4.4.1.

Case 4.4.4.2: assume that µ i,α = O(µ j,α ) when α → +∞. Then, we have that j ∈ J i and it follows from the definition (8.29) of s i,α that

s 2 i,α ≤ µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 )
for all α ∈ N. Plugging this inequality in (10.21), we get that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = O µ n-1 i,α s n-3 i,α µ j,α (10.22) 
= O µ i,α µ j,α • µ i,α s i,α n-3 µ i,α = o(µ i,α ) if n ≥ 4 O(µ i,α ) if n = 3 (10.23)
when α → +∞. This proves (10.19) in Case 4.4.4.2.

We have proved (10.19) in all cases. This ends Step 4.4.4.

Step 4.4.5: Let j ∈ {1, ..., N } such that

x j,α ∈ Ω and x j,α -x i,α = o(s i,α ) when α → +∞. (

Then we claim that µ j,α = o(µ i,α ) when α → +∞.

We prove the claim by contradiction and we assume that µ i,α = O(µ j,α ) when α → +∞. Then j ∈ J i and it follows from the definition (8.29) of s i,α that

s 2 i,α ≤ µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 )
for all α → +∞. It then follows from (10.24) that s 2 i,α = O(µ i,α µ j,α ) = O(µ 2 j,α ) when α → +∞. It then follows from (10.24) that x i,α -x j,α = o(µ j,α ) when α → +∞. Since x i,α ∈ ∂Ω, we then get that d(x j,α , ∂Ω) = o(µ j,α ) when α → +∞, and then x j,α ∈ ∂Ω (see (i) of Proposition 2): a contradiction with our assumption (10.24). This proves the claim.

Step 4.4.6: Let j ∈ {1, ..., N } such that x j,α ∈ ∂Ω and x j,α -x i,α = o(s i,α ) when α → +∞. (10.25) We claim that

lim α→+∞ µ -1 i,α ϕ(Uα∩∂R n -)\D R,α |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = 0 when n ≥ 3. (10.26)
We prove the claim. Since lim α→+∞ x j,α = x 0 , we write x j,α = ϕ(x j,α,1 , x j,α ) for all α ∈ N. Here again, since dϕ 0 is an orthogonal transformation (see Lemma 2, we get that

d(x j,α , ∂Ω) = (1 + o(1))|x j,α,1 |
when α → +∞. For simplicity, we let d j,α := d(x j,α , ∂Ω) for all α ∈ N. With the change of variables x = ϕ(z), we get that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ ≤ C ∂R n - µ n-2 j,α µ 2 j,α + |(0, z) -(x j,α,1 , x j,α )| 2 n-1 dz ≤ C ∂R n - µ n-2 j,α d 2 j,α + |z| 2 n-1 dz ≤ C µ n-2 j,α d n-1 j,α
for all α ∈ N. Since x j,α ∈ ∂Ω, we apply (9.2) and (9.4) and we get that

ϕ(Uα∩∂R n -\D R,α ) |x -x i,α | 2 µ n-2 j,α µ 2 j,α + |x -x j,α | 2 n-1 dσ = O µ n-2 j,α d n-1 j,α = o µ n-2 j,α s n-1 j,α = o   µ n-2 j,α µ (n-1)(n-4) n-2 j,α   = o(µ n n-2 j,α ) = o(µ j,α ) = o(µ i,α )
when α → +∞, where we have used Step 4.4.5. This proves (10.17) and ends Step 4.4.6.

Step 4.4.7: Plugging (10.17), (10.18), (10.19) and (10.26) into (10.16), we get (10.12). This ends Step 4.4.

Step 4.5: We claim that there exists c > 0 such that lim

R→+∞ lim α→+∞ µ -1 i,α ϕ(Uα∩∂R n -)∩D R,α (x -x i,α , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 dσ = H(x 0 ) 2n ∂R n - |x| 2 |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ - (∂ ij ϕ(0), ν(x 0 )) 2 θ i θ j ∂R n - |∇U 0 | 2 ξ 2 -n(n -2) U 2 0 2 dξ when n ≥ 4, (10. 27 
)
where θ is as in (9.50). We prove the claim. We assume that n ≥ 4. As a preliminary remark, using the definition (10.11) of D R,α and (9.4), note that

ϕ(U α ∩ ∂R n -) ∩ D R,α = D R,α ∩ ∂Ω for all α ∈ N. We define ũi,α (x) := µ n-2 2 i,α u α • ϕ((0, x i,α ) + µ i,α x) for all x ∈ µ -1 i,α (ϕ -1 (U x0 ) -ϕ -1 (x i,α )) ∩ R n -. It follows from Theorem 4.1 modified by (9.50) that lim α→+∞ ũi,α = U 0 (• + θ) in C 1 loc R n -\ {θ k / k ∈ L} . (10.28) 
where U 0 (x) := (1 + |x| 2 ) 1-n 2 for all x ∈ R n and θ ∈ R n-1 . With the change of variable x = ϕ((0, x i,α ) + µ i,α z), we get that

D R,α ∩∂Ω (x -x i,α , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 dσ = µ i,α B R (0)∩∂R n -\∪ k∈L B R -1 (θ k,α )) G α (z) |∇ũ i,α | 2 gα 2 -c n ũ2 i,α 2 + α µ 2 i,α ũ2 i,α 2 dσ α
where g α (x) := (ϕ ξ)((0, x i,α ) + µ i,α x) is the pull-back of ξ by the chart ϕ and σ α is the surface area associated to the metric g α and

G α (z) := (ϕ((0, x i,α ) + µ i,α z) -ϕ(0, x i,α ), ν • ϕ((0, x i,α ) + µ i,α z)) µ 2 i,α
.

With (10.15), (10.28), using that ϕ ξ(0) = ξ and that n ≥ 4, we get that lim

R→+∞ lim α→+∞ µ -1 i,α D R,α ∩Ω (x -x i,α , ν) |∇u α | 2 2 -n(n -2) u 2 α 2 + α u 2 α 2 dσ (10.29) = lim R→+∞ D R -(∂ kl ϕ(0), ν(x 0 )) 2 x k x l |∇U 0 | 2 ξ (x + θ) 2 -c n U 2 0 (x + θ) 2 dξ = ∂R n - -(∂ kl ϕ(0), ν(x 0 )) 2 (x -θ) k (x -θ) l |∇U 0 | 2 ξ (x) 2 -c n U 2 0 (x) 2 dξ = ∂R n - -(∂ kl ϕ(0), ν(x 0 )) 2 x k x l |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ - (∂ kl ϕ(0), ν(x 0 )) 2 θ k θ l ∂R n - |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ (10.30)
where in these computations, we have defined

D R := B R (0) ∩ ∂R n -\ ∪ k∈L B R -1 (θ k )
). We let A(ϕ, θ, x 0 ) be the right-hand-side of this expression. Since U 0 is radially symmetrical, we get that

A(ϕ, θ, x 0 ) = -k (∂ kk ϕ(0), ν(x 0 )) 2n ∂R n - |x| 2 |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ - (∂ kl ϕ(0), ν(x 0 )) 2 θ k θ l ∂R n - |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ
Since dϕ 0 is an orthogonal transformation, the first and second fundamental formes of ∂Ω at x 0 in the chart ϕ are respectiveley I kl = δ kl and II kl = -(∂ kl ϕ(0), ν(x 0 )). Therefore the mean curvature of ∂Ω at x 0 is H(x 0 ) = k II kk and then

∂R n - -∂ kl ϕ(0) 2 x k x l |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ = H(x 0 ) 2n ∂R n - |x| 2 |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ.
Combining (10.29) and (10.31) yields (10.27). This ends Step 4.6.

Step 4.6: we claim that We prove the claim and assume that n ≥ 4. Using the explicit expression of U 0 , we get that

   ∂R n - |x| 2 
∂R n - |x| 2 |∇U 0 | 2 ξ 2 -c n U 2 0 2 dξ = ω n-2 (n -2) 2 2 ∞ 0 (r 2 -1)r n (1 + r 2 ) n dr = ω n-2 (n -2) 2 2 1 0 (r 2 -1)r n (1 + r 2 ) n dr + ∞ 1 (r 2 -1)r n (1 + r 2 ) n dr = ω n-2 (n -2) 2 2 1 0 (r 2 -1)r n (1 + r 2 ) n dr + 1 0 (1 -r 2 )r n-4 (1 + r 2 ) n dr = ω n-2 (n -2) 2 2 1 0 (1 -r 2 )(r n-4 -r n ) (1 + r 2 ) n dr > 0.
Similarly, we prove that the second integral in (10.31) vanishes. The claim is proved. This ends Step 4.6.

Step 4.7: Assume that n ≥ 4. Plugging together (10.12), (10.27) and (10.31), we get that there exists In particular, H(x 0 ) ≤ 0. This ends the proof of Theorem 4 when n ≥ 4. We are now left with the case n = 3.

d i > 0 such that lim α→+∞ µ -1 i,α ϕ(Uα∩∂R n -) (x -x i,α , ν) |∇u α | 2 2 -c n u 2 α 2 + α u 2 α 2 dσ = d i H(x 0 ) ( 10 
Step 4.8: We assume that n = 3. We define ũi,α as above. We let (z α ) α ∈ R n be such that lim

α→+∞ |z α | = +∞.
Then, we have that

|z α | ≤ δ s i,α µ i,α ⇒ |z α | n-2 ũi,α (z α ) = O(1) when α → +∞ (10.34)
and

|z α | = o s i,α µ i,α ⇒ lim α→+∞ |z α | n-2 ũi,α (z α ) = 1 when α → +∞. (10.35) 
We prove the claim. As in Case 6.2 of the proof of Theorem 6, we have that

ũα (x) = (1 + o(1)) ūα + N i=1 V j,α (x) 
for all x ∈ B δ0 (x 0 ) and all α ∈ N for δ 0 > 0 small enough. Therefore, we have that

|z α | n-2 ũi,α (z α ) = (1 + o(1)) |z α | n-2 µ n-2 2 i,α ūα + N i=1 |z α | n-2 µ n-2 2 i,α V j,α (ϕ(ϕ -1 (x i,α ) + µ i,α z α ))
for all α ∈ N. It follows from Theorem 3 that there is no blowup point in the interior when n = 3: therefore, (10.2) rewrites |x i,α -x j,α | ≥ 2δs i,α for all j = i and all α ∈ N. (10.36)

We fix j = i. Similar to what was done in Step 6.1.2 of the proof of Theorem 6, we have that

|z α | n-2 µ n-2 2 i,α V j,α (ϕ(ϕ -1 (x i,α ) + µ i,α z α )) ≤ C s 2 i,α µ j,α µ i,α (µ 2 j,α + |x i,α -x j,α | 2 ) n-2 2 
for all α ∈ N (we have used that |z α | ≤ δµ -1 i,α s i,α ). Therefore, if µ i,α = O(µ j,α ) when α → +∞, it follows from the definition of s i,α that the right-hand-side is bounded. If µ j,α = O(µ i,α ), using (10.36), we get that the right-hand-side is also bounded.

In the case j = i, it follows from Case (i) of Proposition 13 that

|z α | n-2 µ n-2 2 i,α V j,α (ϕ(ϕ -1 (x i,α ) + µ i,α z α )) = (1 + o(1)) |z α | 2 µ i,α (µ 2 i,α + |µ i,α z α | 2 ) n-2 2 = 1 + o(1)
when α → +∞ since lim α→+∞ |z α | = +∞.

Finally, noting in addition that 1) by definition of s i,α , we get that (10.34) holds. With a little more careful analysis, we get (10.35). This ends Step 4.8.

|z α | n-2 µ n-2 2 i,α ūα = O(s n-2 i,α µ -n-2 2 i,α ūα ) = O(
Step 4.9: We still assume that n = 3 and we let (z α ) α ∈ R n be such that lim α→+∞ |z α | = +∞. Then, we claim that

|z α | = o s i,α µ i,α ⇒ lim α→+∞ |z α | n-1 |∇ũ i,α (z α )| gα = n -2, ( 10.37) 
where g α (x) := (ϕ g)(ϕ(ϕ -1 (x i,α ) + µ i,α x)).

We prove the claim by contradiction and assume that there exists (z α ) α as above and 0 > 0 such that

||z α | n-1 |∇ũ i,α (z α )| gα -(n -2)| ≥ 0 (10.38) 
for all α ∈ N. We define r α := |z α | and w α (x) := r n-2 α ũi,α (r α x) for x = 0: this is well defined and it follows from Step 4.8 that lim α→+∞ w α

(x) = |x| 2-n in C 0 loc (R n \ {0}). Moreover, ∆ g α w α + α (µ i,α |z α |) 2 w α = c n |z α | -2 w 2 -1
α where g α (x) = r 2 α g α (r α x), and therefore, it follows from standard elliptic theory that w α converges in C 1 loc (R n \ {0}). Computing ∇w α (r -1 α z α ) and passing to the limit when α → +∞ contradicts (10.38). This ends Step 4.9.

The rough estimate (7.3) and computations similar to the case n ≥ 4 yield

ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω (x -x i,α , ν) c n u 2 α 2 - α u 2 α 2 dx = O(µ i,α )
when α → +∞. Similarly, we have that

ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω |x -x i,α | 2 |∇u α | 2 dx = O µ i,α ln s i,α µ i,α
when α → +∞. Therefore, we have that

ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω (x -x i,α , ν)F α (x) dx (10.39) = - (∂ kl ϕ(0), ν(x 0 )) 4 ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω x k x l |∇u α | 2 dx + o µ i,α ln s i,α µ i,α
when α → +∞ and n = 3.

Step 4.10: Assume that n = 3. We claim that

lim α→+∞ ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω x k x l |∇u α | 2 dx µ i,α ln si,α µi,α = 2π 3 δ kl (10.40)
We prove the claim. We let (δ α ) α ∈ (0, +∞) be such that lim α→+∞ δ α = 0 and lim α→+∞ µ -1 i,α δ α s i,α = +∞. The sequence (δ α ) will be chosen later. With a change of variables and noting that the element of volume satisfies dv gα = (1 + o(1))dσ, we have that

ϕ(B δα s i,α (ϕ -1 (xi,α))∩∂Ω x k x l |∇u α | 2 dx = µ i,α B δαs i,α µ i,α (0)∩∂R n - x k x l |∇ũ i,α | 2 gα dv gα = µ i,α B δα s i,α µ i,α (0)∩∂R n -\B R (0) (1 + o(1))x k x l |∇ũ i,α | 2 gα dσ + O(µ i,α ) = µ i,α B δα s i,α µ i,α (0)∩∂R n -\B R (0) (1 + o(1)) x k x l |x| 2(n-1) (|x| n-1 |∇ũ i,α | gα ) 2 dv gα + O(µ i,α )
when α → +∞ for R > 0 arbitrary large. With (10.37), we then get that there exists R such that lim R→+∞ R = 0 and

ϕ(B δα s i,α (ϕ -1 (xi,α))∩∂Ω x k x l |∇u α | 2 dx = µ i,α (n -2) 2 B δα s i,α µ i,α (0)∩∂R n -\B R (0) x k x l |x| 2(n-1) dv σ + (o(1) + R ) µ i,α ln δ α s i,α µ i,α = (n -2) 2 ω n-2 δ kl n µ i,α ln δ α s i,α µ i,α + o µ i,α ln δ α s i,α µ i,α (10.41) 
We now estimate the complementing term. It follows from (10.37) and the local convergence of ũi,α that there exists C > 0 such that |∇ũ i,α | gα (x) ≤ C|x| 1-n for all x ∈ B µ -1 i,α δsi,α (0). Therefore, we have that ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω\B δα s i,α (ϕ -1 (xi,α)) Step 4.11: Assume that n = 3. We claim that there exists c i > 0 such that lim α→+∞

x k x l |∇u α | 2 dx ≤ Cµ i,α B µ -1 i,α δs i,α (0) 
\B µ -1 i,α δαs i,α (0) 
|z| 2 (1 + |z| 2 )
1 s i,α ln 1 µi,α = -c i H(x 0 ).
We prove the claim. Putting (10.40) into (10.39) and arguing as in Step 4.5 yields

ϕ(B δs i,α (ϕ -1 (xi,α))∩∂Ω (x -x i,α , ν)F α (x) dx = - π k (∂ kk ϕ(0), ν(x 0 )) 6 µ i,α ln s i,α µ i,α + o µ i,α ln s i,α µ i,α = πH(x 0 ) 6 µ i,α ln s i,α µ i,α + o µ i,α ln s i,α µ i,α
When α → +∞. Plugging this asymptotic behavior into (10.5) and using (10.6) and (10.7) yields the existence of c i > 0 such that

c i (H(x 0 ) + o(1))s i,α ln s i,α µ i,α + 1 = 0
when α → +∞. This yields the desired result and this ends Step 4.11. Theorem 4 is proved for n = 3.

Proof of Theorems 1 and 2

Let (u α ) α∈N ∈ C 2 (Ω) be as in the statement of Theorem 1. We let Ŝ := lim α→+∞ x i,α / i ∈ {1, ..., N } .

Step 1: We claim that Ŝ = S where S is as in Definition 1. We prove the claim. Let x 0 ∈ Ŝ and let i ∈ {1, ..., N } such that lim α→+∞ x i,α = x 0 . In particular, we have that lim α→+∞ u α (x i,α ) = +∞: then x 0 is a singular point, and then x 0 ∈ S. This proves that Ŝ ⊂ S.

Let x 0 ∈ Ŝc : then there exists δ > 0 such that |x 0 -x i,α | ≥ 2δ for all i ∈ {1, ..., N }.

In particular, it follows from (7.3) that there exists C > 0 such that u α (x) ≤ C for all x ∈ B δ (x 0 ) ∩ Ω, and then x 0 is not a singular point, that is x ∈ S. This proves that Ŝc ⊂ S c .

These two assertions prove that Ŝ = S, and the claim is proved. This ends Step 1.

Step 2: Let x 0 ∈ S. Assume that n ≥ 7. We claim that there exists (x i,α ) α∈N ∈ ∂Ω such that lim

α→+∞ x i,α = x 0 .
We prove the claim by contradiction and assume that for all i ∈ {1, ..., N } such that lim α→+∞ x i,α = x 0 , then x i,α ∈ Ω. We let i ∈ {1, ..., N } such that µ i,α := max{µ j,α / j ∈ {1, ..., N } such that lim α→+∞ x j,α = x 0 }.

It then follows from Theorem 3 that

α s n-2 i,α µ n-4 i,α (11.1) 
when α → +∞ and there exists j ∈ {1, ..., N } such that µ i,α = o(µ j,α ) when α → +∞ and

s 2 i,α = µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 )
for all α ∈ N.

Assume that lim α→+∞ x j,α = x 0 . Then it follows from the definition of µ i,α that µ i,α ≥ µ j,α : a contradiction with µ i,α = o(µ j,α ) when α → +∞.

Assume that lim α→+∞ x j,α = x 0 . Then x i,α -x j,α → 0 and we have that

s 2 i,α µ i,α µ j,α
when α → +∞. Plugging this estimate in (11.1), we get with (8.15) that

α µ n-6 2 i,α µ n-2 2 j,α = o(µ n-2 2 j,α ) = o( α ) when α → +∞. A contradiction since n ≥ 7.
This proves the claim, and this ends Step 2.

Step 3: Let x 0 ∈ S. Assume that n = 3 or n ≥ 7. We claim that x 0 ∈ ∂Ω and that H(x 0 ) ≤ 0.

We prove the claim. We let i ∈ {1, ..., N } be such that s i,α = min{s j,α / x j,α ∈ ∂Ω and lim α→+∞ x j,α = x 0 }. This minimum is well-defined: this follows from Theorem 3 for n = 3 and from Step 2 when n ≥ 7. In particular, x i,α ∈ ∂Ω and x 0 ∈ ∂Ω. We claim that for all j ∈ {1, ..., N } \ {i}

x j,α ∈ ∂Ω ⇒ x j,α -x i,α = o(s i,α ) when α → +∞ (11.2)
We prove the claim by contradiction and we assume that there exists j ∈ {1, ..., N }\ {i} such that lim α→+∞ x j,α = x 0 , x i,α -x j,α = o(s i,α ) and x j,α ∈ ∂Ω for all α ∈ N.

We claim that µ i,α = o(µ j,α ) when α → +∞. We argue by contradiction and assume that µ j,α = O(µ i,α ) when α → +∞: then i ∈ J j and it follows from the definition (8.29) of s j,α that

s 2 j,α ≤ µ j,α µ i,α µ 2 i,α + |x i,α -x j,α | 2 for all α ∈ N. Since |x i,α -x j,α | = o(s i,α
) and µ i,α = o(s i,α ) when α → +∞, we get that s j,α = o(s i,α ) when α → +∞: a contradiction since s i,α ≤ s j,α for all α ∈ N. This proves that µ i,α = o(µ j,α ) when α → +∞.

In particular, we have that j ∈ J i , and then

s 2 i,α ≤ µ i,α µ j,α (µ 2 j,α + |x i,α -x j,α | 2 )
for all α ∈ N. Since x i,α -x j,α = o(s i,α ) and µ i,α = o(µ j,α ) when α → +∞, we then get that s i,α = o(µ j,α ) and then x i,α -x j,α = o(µ j,α ) when α → +∞. A contradiction with (9.49). This proves that (11.2) holds.

Therefore, we can apply Theorem 4 to i, and we get that H(x 0 ) ≤ 0 when n = 3 or n ≥ 7. This proves the claim, and therefore this ends Step 3.

Theorem 1 is a consequence of Step 3.

Theorem 2 is a consequence of Theorem 1 and Proposition 1.

Estimate (11.4) was proved by Rey-Wei [START_REF] Rey | Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity[END_REF] with a different method. We also refer to Faddeev [START_REF] Faddeev | Asymptotic behavior of the Green function for the Neumann problem near a boundary point[END_REF] for very nice estimates in the two-dimensional case.

Notations: in the sequel, C(a, b, ...) denotes a constant that depends only on Ω, a, b... We will often keep the same notation for different constants in a formula, and even in the same line.

We will intensively use the following existence and regularity for solutions to the Neumann problem (this is in Agmon-Douglis-Nirenberg [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]): Theorem 6. Let Ω be a smooth bounded domain of R n and let f ∈ L p (Ω), p > 1 be such that Ω f dx = 0. Then there exists u ∈ H p 2 (Ω) which is a weak solution to ∆u = f in Ω ∂ ν u = 0 in ∂Ω The function u is unique up to the addition of a constant. Moreover, there exists

C(p) > 0 such that u -ū H p 2 (Ω) ≤ C(p) f p . If f ∈ C 0,α (Ω), α ∈ (0, 1), then u ∈ C 2,α (Ω) is a strong solution and there exists C(α) > 0 such that u -ū C 2,α (Ω) ≤ C(α) f C 0,α (Ω) .
A.1. Construction of the Green's function and proof of the upper bound. This section is devoted to the proof of Theorem 5.

A.1.1. Construction of G x .

We define k n := 1 (n-2)ωn-1 . We fix x ∈ Ω and we take u x ∈ C 2 (Ω) that will be chosen later, and we define

H x := k n | • -x| 2-n + u x .
In particular, H x ∈ L p (Ω) for all p ∈ (1, n n-2 ). We let u ∈ C 2 (Ω) be a function. Standard computations (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] or [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux (Construction and asymptotics for the Green's function with Neumann boundary condition[END_REF]) yield

Ω H x ∆u dy = u(x) + Ω u∆u x dy + ∂Ω (-∂ ν uH x + u∂ ν H x ) dσ. (11.6) We let η ∈ C ∞ (R) be such that η(t) = 0 if t ≤ 1/3 and η(t) = 1 if t ≥ 2/3. We define v x (y) := η |x -y| d(x, ∂Ω) k n |x -y| 2-n for all y ∈ Ω. Clearly, v x ∈ C ∞ (Ω) and v x (y) = k n |x -y| 2-n
for all y ∈ Ω close to ∂Ω. It follows from Theorem 6 that there exists u x ∈ C 2,α (Ω) for all α ∈ (0, 1) unique such that   

∆u x = ∆v x -∆v x in Ω ∂ ν u x = 0 in ∂Ω u x = 0 We now define u x := u x -v x ∈ C 2,α (Ω) and c x := ∆v x ∈ R so that ∆u x = -c x in Ω ∂ ν u x = -∂ ν (k n | • -x| 2-n ) in ∂Ω Therefore, ∂ ν H x = 0 on ∂Ω and (11.6) rewrites Ω H x ∆u dy = u(x) -c x Ω u dy - ∂Ω ∂ ν uH x dσ for all u ∈ C 2 (Ω). Taking u ≡ 1 yields c x = 1
|Ω| , and then, we have that

Ω H x ∆u dy = u(x) -ū - ∂Ω ∂ ν uH x dσ
for all u ∈ C 2 (Ω). Finally, we define G x := H x -H x and we have that:

Ω G x ∆u dy = u(x) -ū - ∂Ω ∂ ν uG x dσ
for all u ∈ C 2 (Ω). Therefore G is a Green's function for (11.3). In addition,

G x ∈ C 2,α (Ω \ {x}) ∩ L p (Ω) for all α ∈ (0, 1) and p ∈ 1, n n -2 .
Taking u ∈ C ∞ c (Ω \ {x}) above, and the definition of G x , we get that ∆G Proof. For p as above, we define q := p p-1 > n 2 . We fix ψ ∈ C ∞ (Ω). It follows from Theorem 6 that there exists u ∈

x = -1 |Ω| in Ω \ {x} ∂ ν G x = 0 in ∂Ω. ( 11 
C 2 (Ω) such that    ∆u = ψ -ψ in Ω ∂ ν u = 0 in ∂Ω ū = 0 It follows from the properties of H that Ω (H -H)ψ dy = Ω H(ψ -ψ) dy = u(x).
It follows from Sobolev's embedding that H q 2 (Ω) is continuously embedded in L ∞ (Ω): therefore, using the control of the H q 2 -norm of Theorem 6 yields

Ω (H -H)ψ dy ≤ u ∞ ≤ C(q) u H q 2 ≤ C (q) ψ -ψ q ≤ C (q) ψ q
for all ψ ∈ C ∞ c (Ω). It then follows from duality that H -H ∈ L p (Ω) and that (11.8) holds.

A.1.3. Uniqueness. We prove the following uniqueness result: Proof. We define g := G 1 -G 2 . We have that Ω g∆u dy = 0 for all u ∈ C 2 (Ω) such that ∂ ν u = 0 on ∂Ω. We fix ψ ∈ C ∞ c (Ω). It follows from Theorem 6 that there exists u ∈ C 2 (Ω) such that ∆u = ψ -ψ in Ω, ∂ ν u = 0 on ∂Ω and ū = 0 . Therefore, we get that

Ω (g -ḡ)ψ dy = Ω g(ψ -ψ) dy = Ω g∆u dy = 0.
for all ψ ∈ C ∞ c (Ω). Moreover, it follows from Lemma 3 that g ∈ L p (Ω) for some p > 1, and then we get that g -ḡ = 0 a.e, and then G 1 = G 2 + ḡ.

As an immediate corollary, we get that the function G constructed above is the unique Green's function for (11.3).

A.1.4. Pointwise control. We let G be the Green's function for (11.3). The objective here is to prove that there exists C(Ω) > 0 such that

|G x (y)| ≤ C(Ω)|x -y| 2-n (11.9)
for all x, y ∈ Ω, x = y.

Proof. The proof of (11.9) goes through six steps.

Step 1: We fix K ⊂ Ω a compact set. We claim that there exists

C(K) > 0 such that |G x (y)| ≤ C(K)|x -y| 2-n
for all x ∈ K and all y ∈ Ω, y = x. We prove the claim. We use the notations u x , u x , v x above. As easily checked, H x and (11.8) holds, the claim follows.

v x ∈ C 2 (Ω) and v x C 2 ≤ Cd(x, ∂Ω) -n ≤ Cd(K, ∂Ω) -n ≤ C(K). Therefore, it follows from Theorem 6 that u x ∞ ≤ C(K), and then |H x (y)| ≤ C(K)|x -y| 2-n for all y ∈ Ω, y = x. Since G x = H x -
Step 2: We fix δ > 0. We claim that there exists C(δ) > 0 such that

G x C 2 (Ω\ Bx(δ)) ≤ C(δ) (11.10)
for all x, y ∈ Ω such that |x -y| ≥ δ.

We prove the claim. It follows from (11.7) and standard elliptic theory (see for instance [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]) that for any p > 1, there exists C(δ, p) > 0 such that G

x C 2 (Ω\ Bx(δ)) ≤ C(δ) + C(δ) G x L p (Ω) .
Step 2 is then a consequence of (11.8).

We are now interested in the neighborhood of ∂Ω. We fix x 0 ∈ ∂Ω and we choose a chart ϕ as in Lemma 1. For simplicity, we assume that ϕ : B δ (0) → R n and that ϕ(0) = x 0 and we define V := ϕ(B δ (0)). We fix x ∈ V ∩ Ω and we let Gx be the extension Gx :

= G x • πϕ = G x • ϕ • π • ϕ -1 : we have that Gx : V \ {x, x } → R with x := π -1 ϕ (x) = ϕ • π -1 • ϕ -1 (x) ∈ Ω c .
Moreover, since G x is C 2,α outside x and π is Lipschitz continuous, we have that Gx ∈ H q 1,loc (V \ {x, x }) for all q > 1; in addition, it follows from (11.8) that Gx ∈ L p (V ) for all p ∈ 1, n n-2 and that there exists C(p) > 0 independent of x such that Gx p ≤ C(p).

Step 3: We claim that .11) We prove the claim. We let ψ ∈ C ∞ c (V ) be a smooth function. Separating V ∩ Ω and V ∩ Ω c and using a change of variable, we get that

∆ g Gx = δ x + δ x - 1 |Ω| in D (V ). ( 11 
V Gx ∆ g ψ dv g = V ∩Ω G x ∆ ψ + ψ • π -1 ϕ dy. Noting that ∂ ν ψ + ψ • π -1 ϕ = 0 on ∂Ω (we have used that ν(ϕ(0, x )) = dϕ (0,x ) ( e 1 ))
and using the definition of the Green's function G x , we get that

V Gx ∆ g ψ dv g = ψ(x) + ψ • π -1 ϕ (x) - 1 |Ω| V ∩Ω ψ + ψ • π -1 ϕ dy = ψ(x) + ψ(x ) - 1 |Ω| V ψ dv g .
This proves (11.11) and ends the claim.

Step 4: We fix z ∈ V . We claim that there exists Γ z : V \ {z} → R such that the following properties hold:

           ∆ g Γ z = δ z in D (V ), |Γ z (y)| ≤ C|z -y| 2-n for all y ∈ V \ {z}, Γ z ∈ C 1 (V \ {z})            (11.12)
We prove the claim. We define r(y

) := gij (z)(y -z) i (y -z) j for all y ∈ V . As easily checked, r 2-n ∈ C ∞ (V \ {z}): we define f := ∆ g r 2-n on V \ {z}. It follows from the properties of g that f ∈ L ∞ loc (V \ {z}). Moreover, straightforward computations yield the existence of C > 0 such that |f (y)| ≤ C|z -y| 1-n for all y ∈ V \ {z}. (11.13)
Computing ∆ g r 2-n in the distribution sense yields

∆ g r 2-n = f + K z δ z in D (V ),
where

K z := (n-2) ∂B1(0) (ν(y), y) g(z) r(y) 2-n dv g(z) > 0. Moreover, lim z→x0 K z = K x0 > 0.
We define h such that ∆ g h = f in V h = 0 on ∂V It follows from (11.13) and elliptic theory that h is well defined and that h ∈ H p 2,0 (V ) for all p ∈ 1, n n-1 and h ∈ C 1,θ loc (V \ {z}). Moreover, there exists C > 0 such that

h H p 2 ≤ C(p) for all p ∈ 1, n n -1 . (11.14) 
We claim that for any α ∈ (n -3, n -2), there exists C(α) > 0 such that

|h(y)| ≤ C(α)|y -z| -α
for all y ∈ V \ {z}.

We prove the claim. We let > 0 be a small parameter and we define h (y) := α h(z + y) and f (y) := 2+α f (z + y) for all y ∈ B 2 (0) \ B1/2 (0). We then have that

∆ g h = f in B 2 (0) \ B1/2 (0), (11.15) 
where g = g( •). Since α > n -3, we have with (11.13) that

|f (y)| ≤ C α-(n-3) |y| 1-n ≤ 2 n-1 C (11.16) for all y ∈ B 2 (0) \ B1/2 (0). We fix p := n α+2 ∈ 1, n n-1
and q := n α . A change of variable, Sobolev's embedding theorem and (11.14) yield

h L q (B2(0)\ B1/2 (0)) ≤ C h q ≤ C h H p 2 ≤ C (11.17) 
for all > 0 small. It then follows from (11.15), (11.16) and (11.17 Therefore, coming back to h, we get that |h(y)| ≤ C|y -z| -α for all |y -z| = .

Since can be chosen arbitrary small and h is bounded outside y, the claim is proved.

We now set Γ z := 1 Kz r 2-n -h . It follows from the above estimates that Γ satisfies (11.12). This ends Step 4.

We define µ x := Gx -Γ x -Γ x . It follows from Steps 2 and 3 above that

∆ g µ x = - 1 |Ω| in D (V ). (11.18) 
Moreover, we have that µ x ∈ H q 1 (V \ {x, x }) for all q > 1 and that

µ x p ≤ C(p) for all p ∈ 1, n n -2 . ( 11 

.19)

Step 5: We claim that for all V ⊂ V , there exists C(V ) > 0 such that

µ x L ∞ (V ) ≤ C(V ), (11.20) 
where C(V ) is independent of x.

We prove the claim. Since x ∈ Ω ∩ V , we have that g = ξ in a neighborhood of x, and then g is hypoelliptic around x: therefore, it follows from (11.18) that µ x is C ∞ around x. Similarly, around x ∈ V ∩ Ω c , g = (ϕ • π • ϕ -1 ) ξ is also hypoelliptic, and therefore, µ x is C ∞ around x . It then follows that µ x ∈ H q 1 (V ) for q > 1 and (11.18) rewrites V (∇µ x , ∇ψ) g dv g = -1 |Ω| V ψ dv g for all ψ ∈ C ∞ c (V ).

Therefore, it follows from Theorem 8.17 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] that µ x ∈ L ∞ loc (V ) and that there exists C(V, V , p) > 0 such that

µ x L ∞ (V ) ≤ C(V, V , p) 1 + µ x L p (V )
for all p > 1. Taking p ∈ 1, n n-2 and using (11.19), we get (11.20) and the claim is proved.

Step 6: We are now in position to conclude. It follows from the definition of µ x from (11.20) and from (11.12) that there exists C(V ) > 0 such that | Gx (y)| ≤ C + C|x -y| 2-n + |x -y| 2-n for all x, y ∈ V such that x = y. As easily checked, one has that |x -y| ≥ c|x -y| for all x, y ∈ V ∩ Ω, and therefore

|G x (y)| ≤ C|x -y| 2-n (11.21) 
for all x, y ∈ V ∩ Ω such that x = y. Recall that V is a small neighborhood of x 0 ∈ ∂Ω. Combining (11.21) with Step 1, we get that there exists δ(Ω) > 0 such that (11.21) holds for all x, y ∈ Ω distinct such that |x -y| ≤ δ(Ω). For points x, y such that |x -y| ≥ δ(Ω), this is Step 2. This ends the proof of the pointwise estimate (11.9).

A.1.4. Extension to the boundary and regularity with respect to the two variables.

We are now in position to extend the Green's function to the boundary.

Proposition 10. The Green's function extends continuously to Ω × Ω \ {(x, x)/ x ∈ Ω} → R.

Proof. As above, we denote G the Green's function for (11.3). We fix x ∈ ∂Ω and y ∈ Ω \ {x} and we define G x (y) := lim i→+∞ G(x i , y) for all y ∈ Ω \ {x}, where (x i ) i ∈ Ω is any sequence such that lim i→+∞ x i = x.

We claim that this definition makes sense. It follows from (11.10) that for all δ > 0, we have that

G xi C 2 (Ω\ Bδ (x)) ≤ C(δ)
for all i. Let (i ) be a subsequence of i: it then follows from Ascoli's theorem that there exists G ∈ C 1 (Ω \ {x}) and a subsequence i" of i such that

lim i→+∞ G xi = G in C 1 loc (Ω \ {x}).
Moreover, It follows from (11.9) that |G (y)| ≤ C|x-y| 2-n for all y = x. We choose u ∈ C 2 (Ω) such that ∂ ν u = 0 on ∂Ω. We then have that Ω G xi ∆u dy = u(x i ) -ū for all i. Letting i → +∞ yields Ω G ∆u dy = u(x) -ū, and then it follows from Lemma 4 that G does not depend of the choice of the sequence (x i ) converging to x. We then let G x := G and the definition above makes sense.

We claim that G ∈ C 0 (Ω × Ω \ {(x, x)/ x ∈ Ω}). We only sketch the proof since it is similar to the proof of the extension to the boundary. We fix x ∈ Ω and we let (x i ) i be such that lim i→+∞ x i = x. Arguing as above, we get that any subsequence of (G xi ) admits another subsequence that converges to some function G" in C 1 loc (Ω\{x}). We choose u ∈ C 2 (Ω) such that ∂ ν u vanishes on ∂Ω and we get that Ω G xi ∆u dy = u(x i ) -ū for all i. With the pointwise bound (11.9), we pass to the limit and get that Ω G"∆u dy = u(x) -ū: it then follows from Lemma 4 that G" = G x , and then (G xi ) converges uniformly to G x outside x. The continuity of G outside the diagonal follows immediately.

It is essential to assume that G satisfies point (ii) of the definition: indeed, for any c : Ω → R, the function (x, y) → G(x, y) + c(x) satisfies (i) and (iii), but it is not continous outside the diagonal if c is not continuous. If one does not impose the normalization (ii), we have already remarked that we just get G : (x, y) → G(x, y)+c(x) where G is the Green's function as defined in the definition and c is any function. We then get that G (x, y) -G (y, x) = c(x) -c(y) for all x = y, which is not vanishing when c is nonconstant.

These different lemmae and estimates prove Theorem 5.

A.2. Asymptotic analysis

This section is devoted to the proof of general asymptotic estimates for the Green's function. As a byproduct, we will get the control (11.5) of the derivatives of Proposition 9. The following proposition is the main result of this section:

Proposition 12. Let G be the Green's function for (11.3). Let (x α ) α ∈ Ω and let (r α ) α ∈ (0, +∞) be such that lim α→+∞ r α = 0. Then lim α→+∞ x α = x 0 ∈ ∂Ω. We choose a chart ϕ at x 0 as in Lemma 1 and we let (x α,1 , x α ) = ϕ -1 (x α ). Then for all x, y ∈ R n ∩ {x 1 ≤ 0}, x = y, we have that lim α→+∞ r n-2 α G(ϕ((0, x α )+r α x), ϕ((0, x α )+r α y) = k n |x -y| 2-n + |π -1 (x) -y| 2-n , where π -1 (x 1 , x ) = (-x 1 , x ). Moreover, for fixed x ∈ R n -, this convergence holds uniformly in C 2 loc (R n -\ {x}).

Proof of Proposition 12:

Step 1: We first assume that This ends Step 1.

Step 2:

lim α→+∞ d(x α , ∂Ω) r α = ρ ≥ 0.
We take ϕ as in the statement of the Proposition and we define Gα (x, y) := r n-2 α G(ϕ((0, x α ) + r α x), ϕ((0, x α ) + r α y) for all x, y ∈ R n -, x = y with α ∈ N large enough. We fix x ∈ R n -and we symmetrize G as usual:

Ĝα (x, y) := Gα (x, π(y))

for all y ∈ R n close enough to 0 and where, as above, π : R n → R n -. For simplicity, we assume that x ∈ R n -(only the notation has to be change in case x ∈ R n + ). As in the first case, we get that there exists C > 0 such that Moreover, letting L = dϕ 0 be the differential of ϕ at 0, arguing again as in the first case, we have that ∆ L ξ Ĝx = δ x + δ π -1 (x) in D (R n -). Therefore, with a change of variable, we get that ∆ ξ ( Ĝx • L -1 ) = δ L(x) + δ L•π -1 (x) in D (R n -), and then

∆ ξ Ĝx • L -1 -k n |L(x) -•| 2-n + |L • π -1 (x) -•| 2-n = 0 in D (R n -),
Arguing as above, we get that Ĝx Since G + M ≥ 1, it follows from (11.31) that lim α→+∞ |x α -y α | = 0. Therefore, as above, we get that the limit of the left-hand-side in (11.31) is positive: a contradiction. This proves that (11.30) holds. In particular, this proves the first part of the corollary.

Concerning the estimate of the gradient, we argue by contradiction and we use again Proposition 12. We just sketch the proof. Assume by contradiction that there exists (x α ) α , (y α ) α ∈ Ω such that Appendix B: Projection of the test functions Proposition 13. Let (x α ) be a sequence of points in Ω and let (µ α ) be a sequence of positive real numbers such that µ α → 0 as α → +∞. We set

U α (x) = µ n-2 2 α |x -x α | 2 + µ 2 α 1-n 2 .
There exists V α ∈ C 1 ( Ω) which satisfies

∆V α = c n U 2 -1 α -c n |Ω| -1 Ω U 2 -1 α dx in Ω ∂ ν V α = 0
on ∂Ω (11.32) such that the following asymptotics hold for any sequence of points (y α ) in Ω : 

  29) Applying Proposition 6, we get the two following propositions: Proposition 7. Let i ∈ {1, ..., N } and assume that lim α→+∞ d(x i,α , ∂Ω) s i,α = +∞.

. 32 ) 8 .

 328 Proposition Let i ∈ {1, ..., N } and assume thatlim α→+∞ d(x i,α , ∂Ω) s i,α = ρ ∈ [0, +∞).

x

  j,α -x i,α = O(s i,α ) and µ j,α = o(s i,α ) (8.52) When α → +∞. It then follows from (8.50), (8.51) and (8.52) that µ i,α µ j,α and |x i,α -x j,α | s i,α when α → +∞.(8.53) 

Theorem 3 .

 3 Let i ∈ {1, ..., N }. We assume that lim α→+∞ d(x i,α , ∂Ω) µ i,α = +∞. (9.1)

|∇U0| 2 ξ 2 -

 2 
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 322 Plugging (10.6), (10.7) and (10.32) into (10.5), we get thatµ i,α s i,α nc i + o(1)) + (d i H(x 0 ) + o(1))µ i,α = 0 when α → +∞, and then there exists c i > 0

. 7 )A. 1 . 2 .Lemma 3 .

 7123 Uniform L p -bound. Fix x ∈ Ω and assume that there exist H ∈ L 1 (Ω) such that Ω H∆u dy = u(x) -ū for all u ∈ C 2 (Ω) such that ∂ ν u = 0 on ∂Ω. Then H ∈ L p (Ω) for all p ∈ 1, n n-2 and there exists C(p) > 0 independent of x such that H -H p ≤ C(Ω, p) (11.8)for all x ∈ Ω.

Lemma 4 .

 4 Fix x ∈ Ω and assume that there existG 1 , G 2 ∈ L 1 (Ω) such that Ω G i ∆u dy = u(x) -ūfor all i ∈ {1, 2} and for all u ∈ C 2 (Ω) such that ∂ ν u = 0 on ∂Ω. Then there exists c ∈ R such that G 1 -G 2 = c a.e on Ω.

  ) that there exists C > 0 such that |h (y)| ≤ C for all y ∈ R n such that |y| = 1.

A. 1

 1 .5. Symmetry.Proposition 11. Let G be the Green's function for(11.3). Then G(x, y) = G(y, x) for all x, y ∈ Ω × Ω, x = y.Proof. Let f ∈ C ∞ c (Ω) be a smooth compactly supported function. We defineF (x) := Ω G(y, x)(f -f )(y) dy for all x ∈ Ω.It follows from (11.9) and Proposition 10 above that F ∈ C 0 (Ω). We fix g ∈ C ∞ c (Ω) and we let ϕ, ψ ∈ C 2 (Ω) be such that   ∆ϕ = f -f in Ω ∂ ν g -ḡ in Ω ∂ ν ψ = 0 in ∂Ω ψ = 0It follows from Fubini's theorem (which is valid here since G ∈ L 1 (Ω × Ω) due to (11.9) and Proposition 10) thatΩ (F -F )g dx = Ω F (g -ḡ) dx = Ω F ∆ψ dx = Ω (f -f )(y) Ω G(y, x)∆ψ(x) dx dy = Ω (∆ϕ)ψ dy = Ω ϕ∆ψ dy = Ω ϕ(g -ḡ) dy = Ω gϕ dy,and therefore Ω (F -F -ϕ)g dx = 0 for all g ∈ C ∞ c (Ω). Since F, ϕ ∈ C 0 (Ω), we then get that F (x) = ϕ(x) + F for all x ∈ Ω. We now fix x ∈ Ω. Using the definition of the Green's function and the definition of F , we then get thatΩ G(y, x)(f -f )(y) dy = Ω G(x, y)(f -f )(y) dy+ 1 |Ω| Ω Ω G(y, x) dx (f -f )(y) dy,and then, settingH x (y) := G(y, x) -G(x, y) -1 |Ω| Ω G(y, z) dz for all y ∈ Ω \ {x}, we get that 0 = Ω H x (f -f ) dy = Ω (H x -Hx )f dy for all f ∈ C ∞ c (Ω). Therefore, H x ≡ Hx , which rewrites G(y, x) -G(x, y) = 1 |Ω| Ω (G(y, z) -G(x, z)) dz + h(x),for all x = y, where h(x):= 1 |Ω| Ω G(z, x) dz -1 |Ω 2 | Ω×Ω G(s, t) ds dt for all x ∈ Ω. Exchanging x, y yields h(x) + h(y) = 0 for all x = y, and then h ≡ 0 since h is continuous. Therefore, we get thatG(y, x) -G(x, y) = 1|Ω| Ω (G(y, z) -G(x, z)) dz = Ḡy -Ḡy(11.22) for all x = y. The normalization (i) in the definition of the Green's function then yields Proposition 11.

r n- 2 αG

 2 Then for all x, y ∈ R n , x = y, we have thatlim α→+∞ (x α + r α x, x α + r α y) = k n |x -y| 2-n . Moreover, for fixed x ∈ R n , this convergence holds uniformly in C 2 loc (R n \ {x}). Assume that lim α→+∞ d(x α , ∂Ω) r α = ρ ≥ 0.

  y) := r n-2 α G(x α + r α x, x α + r α y) for all α ∈ N and all x, y ∈ Ω α := r -1 α (Ω -x α ), x = y. We fixx ∈ R n . It follows from Theorem 5 that Gα ∈ C 2 (Ω α × Ω α \ {(x, x)/ x ∈ Ω α }) and that ∆( Gα ) x = -r n α |Ω| in Ω α \ {x} (11.24)for α ∈ N large enough. Moreover, it follows from (11.4) that there existsC > 0 such that |( Gα ) x (y)| ≤ C|y -x| 2-n (11.25)for all α ∈ N and all y ∈ Ω α \ {x}. It then follows from (11.23),(11.24),(11.25) and standard elliptic theory that, up to a subsequence, there exists Gx∈ C 2 (R n \ {x}) such that lim α→+∞ ( Gα ) x = Gx in C 2 loc (R n \ {x}). (11.26) with | Gx (y)| ≤ C|y -x| 2-n(11.27)for all y ∈ R n \ {x}. We consider f ∈ C ∞ c (R n ) and we define f α (y) := f (r -1 α (yx α -r α x)): it follows from(11.23) that f α ∈ C ∞ c (Ω) for α ∈ N large enough. Applying Green's representation formula yieldsf α (x α + r α x) -f α = Ω G(x α + r α x, z)∆f α (z) dz.With a change of variable, this equality rewritesf (x) = R nGα (x, y)∆f (y) dy + f α for α ∈ N large enough. With(11.25),(11.26) and the definition of f α , we get thatf (x) = R n Gx ∆f dy, and then ∆( Gx -k n | • -x| 2-n ) = 0 in D (R n ).The ellipticity of the Laplacian, (11.27) and Liouville's Theorem yield Gx (y) = k n |y -x| 2-n for all y = x.

|

  Ĝα (x, y)| ≤ C |y -x| 2-n + |y -π -1 (x)| 2-nfor all y = x, π(x) and there exists Ĝx∈ C 2 (R n \ {x, π -1 (x)}) such that lim α→+∞ ( Ĝα ) x = Ĝx in C 2 loc (R n \ {x, π -1 (x)}).

Corollary 1 .

 1 •L -1 = k n |L(x) -y| 2-n + |L • π -1 (x) -y| 2-n , and then Ĝx = k n | • -x| 2-n + | • -π -1 (x)| 2-nsince L is an orthogonal transformation. This ends Step 2.Proposition 12 is a direct consequence of Steps 1 and 2.We now prove Proposition 9: Let G be the Green's function for(11.3). Then thereC, M > 0 such that 1 C|x -y| n-2 -M ≤ G(x, y) ≤ C |x -y| n-2 and |∇ y G(x, y)| ≤ C |x -y| n-1 for all x, y ∈ Ω, x = y.Proof of the corollary: We claim that there exists m ∈ R such that G(x, y) ≥ -m for all x, y ∈ Ω, x = y.(11.28)We argue by contradiction and we assume that there exists (x α ) α , (y α ) α ∈ Ω such that lim α→+∞ G(x α , y α ) = -∞. (11.29) Assume that lim α→+∞ |y α -x α | = 0. We then define r α := |y α -x α | and we apply Proposition 12: If lim α→+∞ d(xα,∂Ω) rα= +∞, we have that|y α -x α | n-2 G(x α , y α ) = r n-2 α G x α , x α + r α y α -x α |y α -x α | = k n + o(1)when α → +∞. This contradicts(11.29).If d(x α , ∂Ω) = O(r α ) when α → +∞, we get also a contradiction.This proves that lim α→+∞ |x α -y α | = 0. Therefore, with (11.4), we get that G(x α , y α ) = O(1) when α → +∞: this contradicts (11.29). Therefore, there exists m such that (11.28) holds.We define M := m + 1. With(11.4), there exists also C > 0 such that |G(x, y)| ≤ C|x -y| 2-n for all x = y. We claim that there exists c > 0 such thatG(x, y) + M ≥ c|x -y| 2-n(11.30) for all x = y. Here again, we argue by contradiction and we assume that there exists (x α ) α , (y α ) α ∈ Ω such that lim α→+∞ |x α -y α | n-2 (G(x α , y α ) + M ) = 0. (11.31)

  lim α→+∞ |y α -x α | n-1 |∇ y G(x α , y α )| = +∞. It follows from (11.10) that lim α→+∞ |y α -x α | = 0. We set r α := |y α -x α |. Assume that r α = o(d(x α , ∂Ω)) when α → +∞. It then follows from Proposition 12 that lim α→+∞ |yα -x α | n-1 |∇ y G(x α , y α )| = 1 ω n-1 ,which contradicts the hypothesis. The proof goes the same way when d(x α , ∂Ω) = O(r α ) when α → +∞. This ends the proof of the gradient estimate.

  (i) If x α ∈ ∂Ω, then V α (y α ) = 1 + o(1) U α (y α ) + O µ If d (x α , ∂Ω) → 0, then U α (y α ) = (1 + o(1))U α (y α ) + O µ n-22α .

  .54) Following the proof of Step 4.3, it remains to notice that

	Ω∩{rκ+1,α(x)≥νκ,α}

  Plugging together Steps 4.4.1 to 4.4.3, we get that (6.40) holds up to taking A 5 large enough. This ends the proof of Step 4.4.

2-n 

) (6.57) when α → +∞. Plugging (6.56) and (6.57) into (6.54), we get that (6.40) holds up to take A 5 large enough if (6.50) holds. This ends Step 4.4.3.

  It then follows from Proposition 6 that there exists v i as in Proposition 7 such that (8.30) and (8.31) hold. Moreover, there exists (τ j ) j such that

	7.2: we assume that			
	lim α→+∞	d(x i,α , ∂Ω) s i,α	= +∞.	(8.46)

Let α 0 ∈ N be large enough such that |x i,α -x α | ≥ 2Rr α for all α ≥ α 0 . Then

when α → +∞ and uniformly for all x ∈ B R (0). Therefore, we have that

(8.12)

for all x ∈ B R (0) and all α ∈ N.

Step 6.1.3: Let i ∈ I c such that

Since i ∈ I and points (ii) and (iv) of the hypothesis of Proposition 6 hold, we then have that r α = o(µ i,α ) when α → +∞: in particular, |x α -x i,α | = o(µ i,α ) when α → +∞. We then get that

(8. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for all x ∈ B R (0) and all α ∈ N.

Step 6.1.4: Let i ∈ {1, ..., N }. We claim that

when α → +∞. Indeed, it follows from Point (iii) of Proposition 2 that

when α → +∞. Therefore, (8.14) follows from point (iii) of the hypothesis of Proposition 6.

Step 6.1.5: We let i ∈ {1, ..., N } such that the hypothesis of point (iii) of Proposition 13 hold. Since π -1 ϕ (x i,α ) ∈ Ω, we have that |x α -π -1 ϕ (x i,α )| ≥ d(x α , ∂Ω). Moreover, since (8.9) holds, we have that

where here and in the sequel, we define c n := n(n -2). Taking i ∈ {1, ..., N } such that (9.1) holds, and δ > 0 as in Step 3.1, we let U := B δsi,α (x i,α ) ⊂⊂ Ω and x 0 := x i,α in (9.12). This yields

We now estimate the LHS and the RHS separately.

Step 3.3: We claim that there exists c > 0 such that

when α → +∞.

We prove the claim. We assume here that n ≥ 4. It follows from (7.1) and the estimate (11.33) that

for all α ∈ N.

We now deal with the upper estimate. With the upper bound (7.3), we get that

We deal with the different terms separately.

Step 3.3.1: We claim that

when α → +∞. We prove the claim. Indeed, with the definition (8.29) of s i,α , we have that

when α → +∞ since n ≥ 4. This proves (9.17) and ends Step 3.3.1.

Step 3.3.2: We let j ∈ {1, ..., N } such that

when α → +∞. We claim that

for all α ∈ N. It then follows from (9.22), (9.23) and (8.38) that

when α → +∞ since n ≥ 4. This proves (9.21) and ends Step 3.3.3.

Step 3.3.4: We let j ∈ {1, ..., N } such that

when α → +∞. We claim that

when α → +∞. We prove the claim. As in Step 3.3, it follows from (9.24) that j ∈ J i . In particular, using the definition (8.29) of s i,α and the second assertion of (9.24), we get that

when α → +∞, and then s 2 i,α = O(µ i,α µ j,α ) when α → +∞. Consequently, we get that

when α → +∞ since n ≥ 4. This proves (9.25) and ends Step 3.3.4.

Plugging together (9.17), (9.19), (9.21) and (9.25) into (9.16) and combining this with (9.15), we get (9.14). This proves the claim and ends Step 3.3.

We define

for all α ∈ N.

Step 3.4: Assume that n ≥ 3. We claim that

when α → +∞. Here, ω n-1 denotes the volume of the unit (n -1)-sphere of R n .

when α → +∞. We distinguish three cases to get a contradiction.

Step 3.10.1: we assume that

ū-1 α by the definition (8.29), we get that ū2 α = o(µ i,α ) when α → +∞. This is a contradiction with (8.15). Then (9.44) does not hold.

Step 3.10.2: we assume that there exists j ∈ {1, ..., N } such that s i,α = O(|x i,αx j,α |) and

), it follows from (9.45) and (9.43) that

when α → +∞. In particular, since

) when α → +∞, and then j ∈ J i . Therefore, we have that

for all α ∈ N, and it then follows from (9.46) that 1 = O( α s 2 i,α ) = o(1). A contradiction. Therefore, (9.45) does not hold.

Step 3.10.3: we assume that there exists j ∈ {1, ..., N } such that |x i,α -x j,α | = o(s i,α ) and

when α → +∞. A change of variable then yields

when α → +∞. Therefore,

when α → +∞. It then follows from (9.43) that

when α → +∞. In particular, we have that µ i,α = o(µ j,α ), and then j ∈ J i . Therefore, we have that

and then s i,α = O( √ µ i,α µ j,α ) = o(µ j,α ) when α → +∞. Then (9.48) becomes

µ i,α µ j,α when α → +∞, a contradiction since s 2 i,α = O(µ i,α µ j,α ) when α → +∞. Therefore, (9.47) does not hold.

Appendix A: Construction and estimates on the Green's function

This appendix is devoted to a construction and to pointwise properties of the Green's functions of the Laplacian with Neumann boundary condition on a smooth bounded domain of R n . These proof are essentially self-contained and require only standard elliptic theory.

Let Ω be a smooth bounded domain of R n (see Definition 2 in Section 3). We consider the following problem:

where u ∈ C 2 (Ω) and f ∈ C 0 (Ω). Note that the solution u is defined up to the addition of a constant and that it is necessary that Ω f dx = 0 (this is a simple integration by parts). Our objective here is to study the existence and the properties of the Green kernel associated to (11.3).

Definition 6. We say that a function

Condition (ii) here is required for convenience in order to get uniqueness, symmetry and regularity for the Green's function. Note that if G is a Green's function and if c : Ω → R is any function, the function (x, y) → G(x, y) + c(x) satisfies (i) and (iii). The first result concerns the existence of the Green's function:

Let Ω be a smooth bounded domain of R n . Then there exists a unique Green's function G for (11.3). Moreover, G is symmetric and extends continuously to Ω × Ω \ {(x, x)/ x ∈ Ω} and for any x ∈ Ω, we have that G x ∈ C 2,α (Ω \ {x}) and satisfies

In addition, for all x ∈ Ω and for all ϕ ∈ C 2 (Ω) we have that

A standard and useful estimate for Green's function is the following uniform pointwise upper bound:

Proposition 9. Let G be the Green's function for (11.3). Then there exist C(Ω) > 0 and m(Ω) > 0 depending only on Ω such that

Concerning the derivatives, we get that

where ϕ is a chart at x 0 := lim α→+∞ x α as in Lemma 2.

In addition, we have that

) in cases (i) and (ii)

) in case (iii).

In any case, there exists C > 0 such that

Proof of Proposition 13: We let V α ∈ C 2 (Ω) be as in (11.32). Indeed, V α is defined up to the addition of a constant: therefore, V α will be determined later on. Let (y α ) α ∈ Ω: Green's representation formula yields

α dy for all α ∈ N where G is the Green's function for (11.3) with vanishing average. With the explicit expression of U α , we get that

for all α ∈ N. The estimate of V α (y α ) goes through five steps.

Step 13.1. We first assume that lim α→+∞ |y α -x α | = 0. It then follows from (11.34), the pointwise estimates (11.4) on the Green's function and the explicit expression of U α that

α ) when α → +∞ and that there exists K > 0 independent of (y α ) α such that

α for all α ∈ N.

Step 13.2. We claim that lim

We prove the claim. We let R 0 > 0 such that Ω ⊂ B R0 (x α ) for all α ∈ N. It follows from the explicit expression of U α and of (11.4) that

dx (11.36) for all α ∈ N. We define

We split the RHS of (11.36) in two terms. On the one hand, we have that

for all α ∈ N. On the other hand, as easily checked, there exists 0 > 0 such that

for all α ∈ N. Consequently, we have that

Plugging (11.37) and (11.38) into (11.36) yields (11.35). This ends Step 13.2.

It follows from (11.34) and (11.35) that We claim that

The proof of (11.41) goes through several steps. First note that due to (11.40), we have that Ω ∩ B Rµα (x α ) = B Rµα (x α ) for α ∈ N large enough. Therefore, with a change of variable, (11.39) rewrites

for all R >> 1 and α → +∞. We distinguish two cases:

Case 13.3.1: We assume that

Then we claim that (11.41) holds. We prove the claim. We define θ α := µ -1 α (y αx α ) for all α ∈ N, and we let θ ∞ := lim α→+∞ θ α . Let K be a compact subset of R n \ {θ ∞ }: it follows from Proposition 12 that

n when α → +∞ uniformly for all x ∈ K. Moreover, the LHS is uniformly bounded from above by the RHS on bounded domains of R n when α → +∞. It then follows from Lebesgue's theorem that (11.42) rewrites

when α → +∞. As easily checked, this estimate yields (11.41) We claim that (11.41) holds. We prove the claim. We define r α := |y α -x α | = o(1) when α → +∞. Given x ∈ B R (0), we define

for all α ∈ N. We claim that in this case, we have that

uniformly when α → +∞. We prove the claim. Indeed, letting θ α := r -1 α (y α -x α ) and using that G is symmetric, we have that

for all α ∈ N uniformly for x in any fixed compact of R n . Then (11.44) follows from Proposition 12.

Case 13.3.2.2: We assume here that

In this case, Ũα is well defined. We claim that in this case, we have that

uniformly for x in any fixed compact of R n when α → +∞. We prove the claim. We denote ϕ a chart as in Lemma 2 and we define (x 1,α , x α ) := ϕ -1 (x α ) and (y 1,α , y α ) := ϕ -1 (y α ) for all α ∈ N. Defining 

since dϕ 0 is an orthogonal transformation. independently, using again that dϕ 0 is orthogonal, we have that

when α → +∞. Plugging this estimate into (11.46) yields (11.45). This proves the claim.

Since

for all R > 0, it follows from (11.42), Cases 13.3.2.1 and 13.3.2.2 that

These estimates and a careful evaluation of the quotient U α (y α ) -1 Ũα (y α ) yields (11.41) in Case 13.3.2. This ends Case 13.3.2.

Step 13.4. We assume that lim α→+∞ |y α -x α | = 0 and x α ∈ ∂Ω.

(11.47)

We claim that

when α → +∞. We choose a chart ϕ as in Lemma 2. In this case, (11.39) rewrites

for all R >> 1 and α → +∞, where

Here again, we have to distinguish two cases. and this convergence holds uniformly with respect to x. Plugging this limit into (11.49) yields

when α → +∞. With a change of variable and using that U 0 is radially symmetrical, we get that G(y α , ϕ((0, x α ) + µ α x)) = 2k n uniformly for all x ∈ B R (0). Plugging this limit into (11.49) yields

when α → +∞. We then get that (11.48) holds in Case 13.4.2.

Step 13.5. We are now in position to prove Proposition 13. We let K > 0 be as in Step 1 and we let V α be the unique solution to (11.32) such that

α for all α ∈ N. Clearly points (i), (ii) and (iii) of Proposition 13 hold. Moreover, we immediately get with the estimates above that lim α→+∞ Vα(yα) Uα(yα) is a positive real number. This proves Proposition 13.