Liping Wang 
email: lpwang@math.ecnu.edu.cn
  
Dong Ye 
email: dong.ye@univ-lorraine.fr
  
CONCENTRATING SOLUTIONS FOR AN ANISOTROPIC ELLIPTIC PROBLEM WITH LARGE EXPONENT

Keywords: 2010 Mathematics Subject Classification. Primary: 35B40, 35B45; Secondary: 35J40 Anisotropic elliptic problem, large exponent, multi-bubble concentration

We consider the following anisotropic boundary value problem

where Ω ⊂ R 2 is a bounded smooth domain, p is a large exponent and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of concentrating solutions. We show that at a given strict local maximum point of a(x), there exist arbitrarily many concentrating solutions.

1. Introduction and Statement of the results. This paper is concerned with analysis of solutions to the boundary value problem    ∇ (a(x)∇u) + a(x)u p = 0 in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R 2 , p is a large exponent and a(x) is a smooth positive function over Ω. Problem [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF] was motivated by the study of the following equation ∆u + u p = 0, u > 0 in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R 2 , p > 1. Problem [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF] has been studied by many people in the last two decades. Standard variational methods have shown the existence of least energy solution. In [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF][START_REF] Ren | Singular point condensation and least energy solutions[END_REF] the authors show that the least energy solution u p has bounded L ∞ -norm and u p ∞ is bounded away from zero uniformly in p, for p large. In [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF][START_REF] Mehdi | Asymptotic estimates and qualitative properties of an elliptic problem in dimension two[END_REF] the authors give a further description of the asymptotic behavior of u p , as p → ∞, by identifying a limit profile problem of Liouville-type:

∆u + e u = 0 in R 2 , R 2 e u < ∞, (3) 
and showing that u p ∞ → √ e as p → ∞. For singular limits in Liouville-type equation, readers may refer to [START_REF] Del Pino | Singular limits in Liouville-type equations[END_REF]. Conversely, many people are interested in constructing the concentrating solutions to problem [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF]. In [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] the authors find topological conditions on Ω which ensure the existence of concentrating solutions. More precisely, assume that Ω is not simply connected, then given any m ≥ 1 there exists p m > 0 such that for any p ≥ p m problem (2) has a solution u p which concentrates at m different points with simple bubbles in Ω, whose location is related to the critical points of the function ϕ m given by:

ϕ m (ξ 1 , • • • , ξ m ) = m j=1 H D (ξ j , ξ j ) + i =j G D (ξ i , ξ j ).
Here G D denotes the standard Green's function of -∆ with Dirichlet boundary condition and H D denotes the regular part of G D , i.e.

H D (x, y) = G D (x, y) + 1 2π log |x -y|. (4) 
Also the authors in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] compared problem (2) with some widely studied problems which have some analogies with it. For example, ∆u + u N +2 N -2 -ε = 0, u > 0 in Ω, u = 0 on ∂Ω, which has been studied by [START_REF] Bahri | On a variational problem with lack of compactness: The topological effect of the critical points at infinity[END_REF][START_REF] Flucher | Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots[END_REF][START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF][START_REF] Rey | The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent[END_REF][START_REF] Rey | A multiplicity result for a variational problem with lack of compactness[END_REF]. For more details readers may refer to [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] and references therein. On the other hand, the case of sign changing solutions to problem [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF] has been considered in [START_REF] Esposito | On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF].

Our motivation in problem (1) are twofolds. First, since problem ( 1) is a natural generalization of equation [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF], one may expect similar results in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] hold. In fact, this is true for general domain Ω whether it is simply connected or not. Secondly, problem (1) is a special case of problem (2) in higher-dimension N ≥ 3. Actually, when we work with the cross-section of an N -dimensional torus having axial symmetry, we can find that problem (2) is reduced to [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF]: let the torus be T = (x , x N ) : ( x -1) 2 + x 2 N ≤ r 2 0 with

x = (x 1 , . . . , x N -1 ),

x = x 2 1 + • • • + x 2 N -1 , r 0 < 1.
If we look for solutions in the form u(x , x N ) = u(r, x N ) with r = x for (2), a direct calculus shows that the problem is transformed to ∇(r N -2 ∇u) + r N -2 u p = 0 in Ω = (r, x N ) : (r -1) 2 + x 2 N < r 2 0 with u = 0 on ∂Ω. This is just the problem (1) with a(r, x N ) = r N -2 .

When we consider the generalized problem [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF], there are some natural questions: Q1. Can we move the topological conditions on Ω for non-constant function a(x)? Q2. Is there any solution with concentrating points not simple?

In [START_REF] Esposito | Concentrating solutions for the Hénon equation in R 2[END_REF], for Hénon equation ∆u + |x| 2α u p = 0 in B(0, 1), u = 0 on ∂B(0, 1), where α ∈ N, B(0, 1) is a unit ball in R 2 with radius 1 and center 0, the authors find many positive solutions and sign changing solutions for p large enough. Due to the function |x| 2α , it is not necessary that the domain is not simply connected. But the solutions they construct concentrate at simple symmetric points, hence there is no clue to Q2.

In this paper we answer these two questions affirmatively. Our main result is the following: Theorem 1.1. Let x 0 ∈ Ω be a strict local maximum point of a(x), i.e. there exists a neighborhood B(x 0 , δ), δ > 0 such that a(x) < a(x 0 ), ∀ x ∈ B(x 0 , δ)\{x 0 }.

Then for any m ∈ N * , problem (1) has a family of solutions u p such that as p → +∞,

Ω pu p+1 p dx → 8πema(x 0 ). Moreover, there exists (ξ p 1 , • • • , ξ p m ) ∈ Ω m satisfying ξ p j → x 0 and ξ p i -ξ p j ≥ p -m 2 +1 2 , ∀ i = j,
such that for any ρ > 0, u p → 0 uniformly in Ω\ ∪ m j=1 B(ξ p j , ρ) and

sup x∈B(ξ p j ,ρ) u p (x) → √ e, ∀ j = 1, . . . , m.
Remark 1. In Theorem 1.1, if we have the following expansion of a at x 0 :

a(x) ≥ a(x 0 ) -c|x -x 0 | α + o (|x -x 0 | α ) , c > 0, α > 1,
in a neighborhood of x 0 , then the distance between concentrating points satisfies

ξ p i -ξ p j ≥ p -m 2 +1 α , i = j.
This implies that the flatter the anisotropic coefficient is, the bigger is the distance between the bubbles.

Since we will cite the results in [START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF] in the following proof, it is necessary to introduce the work in [START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF] quickly. Namely, in [START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF], Wei, Ye and Zhou have studied the anisotropic Emden-Fowler equation

∇(a(x)∇u) + ε 2 a(x)e u = 0 in Ω, u = 0 on ∂Ω, (5) 
where a(x) is a smooth positive function in Ω. It is easy to see that problem (5) is a natural generalization of the following classical Emden-Fowler equation, or Gelfand's equation

∆u + ε 2 e u = 0 in Ω, u = 0 on ∂Ω, (6) 
which has been studied very widely, see [START_REF] Aubin | Nonlinear Analysis on Manifolds. Monge-Ampère equations[END_REF][START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF][START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Mignot | Variation d'un point retourment par rapport au domaine[END_REF][START_REF] Ye | Une remarque sur le comportement asymptotique des solutions de -∆u = λf (u)[END_REF] and the references therein. They proved that if a(x) has a local strict maximum point x 0 , then for any m ∈ N * problem (5) has a family of solutions u ε which makes an m-bubbles concentration at x 0 . Theorem 1.1 is proved via the so-called " localized energy method "-a combination of Liapunov-Schmidt reduction method and variational techniques. Namely, we first use Liapunov-Schmidt reduction method to reduce the problem to a finite dimensional one, with some reduced energy. Then, the solutions in Theorem 1.1 turn out to be generated by critical points of the reduced energy functional. Such an idea has been used in many other papers. See for instance [START_REF] Bates | Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability[END_REF][START_REF] Dancer | Multipeak solutions for a singular perturbed Neumann problem[END_REF][START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF][START_REF] Esposito | On the existence of blowing-up solutions for a mean field equation[END_REF][START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF][START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF] and the references therein. Here we will follow those of [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] and [START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF].

Throughout the paper, the symbol C always denotes a positive constant independent of p, which could be changed from one line to another and

| • | is for Euclidean norm in R 2 .
2. Ansatz for the solutions. The purpose of this section is to provide an ansatz for problem [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF] and give some basic estimates for the error term.

It is well known that the solutions to the following Liouville-type equation (see [START_REF] Chen | Classification of solutions of some nonlinear elliptic equations[END_REF])

∆u + e u = 0 in R 2 , R 2
e u dx < +∞ can be all written in the following form

U δ,ξ (x) = log 8δ 2 (δ 2 + |x -ξ| 2 ) 2 , δ > 0, ξ ∈ R 2 . ( 7 
) Let ∆ a u = 1 a(x) ∇ • (a(x)∇u) = ∆u + ∇ log a • ∇u
and G(x, y) be the Green's function satisfying

∆ a G(x, y) + 8πδ y = 0 in Ω, G(x, y) = 0 on ∂Ω. (8) 
We decompose G(x, y) as

G(x, y) = -4 log |x -y| + H(x, y), (9) 
where H(x, y) is the regular part of G(x, y). Then we have the following lemma proved in [START_REF] Wei | Bubbling slutions for an anisotropic Emden-Fowler equation[END_REF] and [START_REF] Khenissy | Expansion of the Green's function for divergence form operators[END_REF]:

Lemma 2.1. Let H y (x) = H(x, y), ∀ y ∈ Ω. Then y → H y ∈ C(Ω, C γ (Ω))
for any γ ∈ (0, 1). Let H D be the regular part of Green's function defined by ( 4), then we have

H(x, y) = 8πH D (x, y) + ∇ log a(y) • ∇ x (|x -y| 2 log |x -y|) + H 1 (x, y) (10) 
where x → H 1 (x, y) ∈ C 1,γ (Ω) for all γ ∈ (0, 1). Furthermore, the function (x, y) → H 1 (x, y) ∈ C 1 (Ω×Ω), in particular the corresponding Robin function x → H(x, x) ∈ C 1 (Ω). Moreover, since a(x) is smooth, Robin function H(x, x) ∈ C ∞ (Ω).

Given now ξ j ∈ Ω, with [START_REF] Chen | Classification of solutions of some nonlinear elliptic equations[END_REF] we define

U δj ,ξj (x) = log 8δ 2 j (δ 2 j + |x -ξ j | 2 ) 2 , j = 1, . . . , m,
where δ j = µ j e -p 4 and µ j is to be determined later. The configuration space for (ξ 1 , • • • , ξ m ) is chosen as follows

Λ := ξ = (ξ 1 , • • • , ξ m ) ∈ B(x 0 , δ) × . . . × B(x 0 , δ) min i =j |ξ i -ξ j | ≥ p -M ( 11 
)
where M is given by

M = m 2 + 1 2 . ( 12 
)
Note that by the choice of ξ j , we have if

(ξ 1 , • • • , ξ m ) ∈ Λ, log |ξ i -ξ j | ≤ C log p, ∀ i = j. (13) 
However, U δj ,ξj is a good first approximation, but not enough for our approximation. We need to refine this first approximation.

Let us call v ∞ (y) = U 1,0 (y) and radial functions w 0 , w 1 solving

∆w i + 8 (1 + |y| 2 ) 2 w i = 1 (1 + |y| 2 ) 2 f i (y) in R 2 , i = 0, 1,
where

f 0 = 4v 2 ∞ , f 1 = 8 w 0 v ∞ - 1 3 v 3 ∞ - 1 2 w 2 0 - 1 8 v 4 ∞ + 1 2 w 0 v 2 ∞ . (14) 
According to [START_REF] Chae | The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory[END_REF], for a radial function f (y) = f (|y|) there exists a radial solution

w(r) = 1 -r 2 1 + r 2 r 0 φ f (s) -φ f (1) (s -1) 2 ds + φ f (1) r 1 -r for the equation ∆w + 8 (1 + |y| 2 ) 2 w = f (y), where φ f (s) = s 2 + 1 s 2 -1 2 (s -1) 2 s s 0 t 1 -t 2 1 + t 2 f (t)dt for s = 1 and φ f (1) = lim s→1 φ f (s).
We state the following lemma whose proof is given in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] on page 37-38.

Lemma 2.2. Let r = |y|, then

w 0 (r) = C 0 log r + O 1 r , ∂ r w 0 (r) = C 0 r + O 1 r 2 as r → +∞, (15) 
where C 0 = 12 -12 log 2. More precisely, we have the exact expression of w 0 ,

w 0 (r) = 1 2 v 2 ∞ (y) + 6 log(r 2 + 1) + 2 log 8 -10 r 2 + 1 + r 2 -1 r 2 + 1 × 2 log 2 (r 2 + 1) - 1 2 log 2 8 + 4 +∞ r 2 ds s + 1 log s + 1 s -8 log r log(r 2 + 1) (16) 
and

w 1 (r) = C 1 log r + O 1 r , ∂ r w 1 (r) = C 1 r + O 1 r 2 as r → +∞, (17) 
for a suitable constant C 1 .

Define now for any x ∈ Ω,

U j (x) = 1 γµ 2 p-1 j U δj ,ξj (x) + 1 p w 0 x -ξ j δ j + 1 p 2 w 1 x -ξ j δ j (18) 
where

γ = p p p-1 e -p 2(p-1) . ( 19 
) Let H p j solve ∆ a H p j + ∇ log a(x) • ∇U j (x) = 0 in Ω, H p j = -U j on ∂Ω. (20) 
Then Lemma 2.3. For any β ∈ (0, 1), p large enough, H p j (x) = 1

γµ 2 p-1 j 1 - C 0 4p - C 1 4p 2 H(x, ξ j ) -log(8δ 2 j ) + C 0 p log δ j + C 1 p 2 log δ j + O(δ β j ) .
uniformly in Ω, where H is the regular part of Green's function defined by [START_REF] Del Pino | Two-bubble solutions in the super-critical Bahri-Coron's problem[END_REF].

Proof. The boundary condition satisfied by H p j (x) is

H p j (x) = 1 γµ 2 p-1 j -log(8δ 2 j ) + 4 log |x -ξ j | - C 0 p log |x -ξ j | + C 0 p log δ j - C 1 p 2 log |x -ξ j | + C 1 p 2 log δ j + O(δ j ) .
The regular part of Green's function H(x, y) satisfies

   -∆ a H(x, y) = 4∇ log a(x) • ∇ log 1 |x -y| in Ω, H(x, y) = 4 log |x -y| on ∂Ω. (21) 
For the difference, let Z p (x) :=

H p j - 1 γµ 2 p-1 j 1 - C 0 4p - C 1 4p 2 H(x, ξ j ) -log(8δ 2 j ) + C 0 p log δ j + C 1 p 2 log δ j , then Z p satisfies -∆ a Z p (x) = ∇ log a(x) • ∇U j + 1 γµ 2 p-1 j 1 - C 0 4p - C 1 4p 2 ∇ log |x -ξ j | 4
in Ω and

Z p (x) = O δ j γ -1 µ -2 p-1 j on ∂Ω.
According to the definition of U j in [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF], we get by direct computation that

I p :=∇U j + 1 γµ 2 p-1 j 1 - C 0 4p - C 1 4p 2 ∇ log |x -ξ j | 4 = 1 γµ 2 p-1 j 1 - C 0 4p - C 1 4p 2 ∇ log |x -ξ j | 4 (δ 2 j + |x -ξ j | 2 ) 2 + O δ j δ 2 j + |x -ξ j | 2 .
Note that

∇ log |x -ξ j | 4 (δ 2 j + |x -ξ j | 2 ) 2 = 4δ 2 j |x -ξ j |(δ 2 j + |x -ξ j | 2 )
, applying polar coordinates with center ξ j , i.e. r = |x -ξ j |, there holds

I p q L q (Ω) ≤ 1 (γµ 2 p-1 j ) q 2 2q+1 π +∞ 0 δ 2 j r(δ 2 j + r 2 ) q rdr + 2πC +∞ 0 δ j δ 2 j + r 2 q rdr = Cδ 2-q j (γµ 2 p-1 j ) -q .
In conclusion, for any 1 < q < 2, we have

I p L q (Ω) ≤ Cδ 2-q q j γ -1 µ -2 p-1 j . Applying L q theory, Z p W 2,q (Ω) ≤ C I p L q (Ω) + Z p C 2 (∂Ω) ≤ Cγ -1 µ -2 p-1 j δ 2 q -1 j + δ j .
By Sobolev embedding theorem, we obtain

Z p (x) C α (Ω) ≤ Cδ 2 q -1 j γ -1 µ -2 p-1 j for any α ∈ 0, 2 - 2 q . Lemma 2.3 is proved since q ∈ (1, 2) is arbitrary. Denote u j (x) = U j (x) + H p j (x), U ξ (x) = m j=1 u j (x). ( 22 
)
Observe that |y| ≤ 1 δ j p 2M where x = δ j y + ξ j , we have that

u j (δ j y + ξ j ) = 1 γµ 2 p-1 j v ∞ (y) + 1 p w 0 (y) + 1 p 2 w 1 (y) + 1 - C 0 4p - C 1 4p 2 H(ξ j , ξ j ) -log(8δ 4 j ) + C 0 p log δ j + C 1 p 2 log δ j + O δ j |y| + δ β j
and for any i = j,

u i (δ j y + ξ j ) = 1 γµ 2 p-1 i U δi,ξi (x) + 1 p w 0 x -ξ i δ i + 1 p 2 w 1 x -ξ i δ i + 1 - C 0 4p - C 1 4p 2 H(x, ξ i ) -log(8δ 2 i ) + C 0 p log δ i + C 1 p 2 log δ i + O(δ β i ) = 1 γµ 2 p-1 i 1 - C 0 4p - C 1 4p 2 -4 log |ξ i -ξ j | + H(ξ j , ξ i ) + O δ j |y| + δ β i = 1 γµ 2 p-1 i 1 - C 0 4p - C 1 4p 2 G(ξ j , ξ i ) + O δ j |y| + δ β i . Hence for |y| ≤ 1 δ j p 2M , U ξ (δ j y + ξ j ) = 1 γµ 2 p-1 j p + v ∞ (y) + 1 p w 0 (y) + 1 p 2 w 1 (y) + O δ j |y| + m i=1 δ β i , (23) 
is a good approximation for a solution to problem (1) provided that log(8µ

4 j ) = 1 - C 0 4p - C 1 4p 2 H(ξ j , ξ j ) + C 0 p log δ j + C 1 p 2 log δ j + 1 - C 0 4p - C 1 4p 2 µ 2 p-1 j i =j µ -2 p-1 i G(ξ j , ξ i ). ( 24 
)
Lemma 2.4.

Let Σ = µ = (µ 1 , . . . , µ m ) ∈ R m ∀ i = 1, . . . , m, 1 Cp C ≤ µ i ≤ Cp C ,
where C > M is large enough but fixed independent of p, then system [START_REF] Ren | Singular point condensation and least energy solutions[END_REF] is solvable in Σ.

Proof. Let us consider the following vector function

g(t; µ) = log µ j - 1 4 H(ξ j , ξ j ) + 1 A 3 + C 1 4p - t 4 i =j µ j µ i 2 p-1 G(ξ j , ξ i ) where A = 4 1 -C0 4p -C1 4p 2 , C 0 = 12 -12 log 2, µ = (µ 1 , . . . , µ m ) ∈ R m and t ∈ [0, 1], then system (24) is equivalent to g(1; µ) = 0. Denote T := t g(t; µ) = 0 is solvable, t ∈ [0, 1] .
Obviously g(0; µ) = 0 is solvable for all C > 0, that is, T = ∅. It's easy to see that T is closed. Now we would prove that T is open. If so, T = [0, 1] which tells us that ( 24) is solvable. Indeed, for any µ ∈ Σ, then

µ i µ j ∈ 1 C 2 p 2C , C 2 p 2C .
Using the expansion of exponential function, we can get that

C 2 p 2C 1 p-1 = e 2 p-1 log(Cp C ) = 1 + O log p p , as p → ∞. Therefor ∀ i, j, µ j µ i 1 p-1 = 1 + O log p p , as p → ∞.
Direct computation gives out that

(∇ µ g(t; µ)) jj = 1 µ j - t 2(p -1)µ j i =j µ j µ i 2 p-1 G(ξ j , ξ i ) = 1 µ j 1 + O log p p
and for any i = j,

(∇ µ g(t; µ)) ji = t 2(p -1)µ i µ j µ i 2 p-1 G(ξ j , ξ i ) = 1 µ i O log p p , which lead to det (∇ µ g(t; µ)) = 1 µ 1 . . . µ m 1 + O log p p = 0.
So ∇ µ g(t; µ) is not singular over Σ for any t ∈ [0, 1] and large p.

For any t 0 ∈ T with g(t 0 ; µ 0 ) = 0 and µ 0 ∈ Σ, using Implicit Function Theorem, we see that g(t; µ) = 0 is solvable in some open neighborhood of (t 0 , µ 0 )), that is, for |t -t 0 | small enough, we have g(t; µ) = 0 with

µ ∈ 1 2Cp C , 2Cp C m .
A direct computation shows that, for p large, µ = (µ 1 , . . . , µ m ) satisfies

µ j = e t 4 i =j G(ξj ,ξi)-3 4 + 1 4 H(ξj ,ξj ) 1 + O log 2 p p .
Observe that µ j may not be O(1) since ξ i → x 0 for all i = 1, . . . , m, but we can derive that 1

C ≤ µ j ≤ Cp M for some fixed positive number C. To conclude, T is open in [0, 1].
Remark 2. For p large, from the above computations, we can get easily that for any j = 1, . . . , m, µ

2 p-1 j = O(1). If for some j = 1, . . . , m, |x -ξ j | ≤ p -2M , let x = δ j y + ξ j , then p + v ∞ (y) + 1 p w 0 (y) + 1 p 2 w 1 (y) ≥ p -2 log(1 + |y| 2 ) + O(1) ≥ 8M log p + 4 log µ j + O(1) > 4M log p
with p large enough. By [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF] we obtain that 0 < U ξ ≤ 2 √ e and for any ρ > 0, sup

B(ξj ,ρ) U ξ → √ e as p → ∞. If for all j = 1, . . . , m, |x -ξ j | ≥ p -2M , from the definition of u j u j (x) = 1 γµ 2 p-1 j log 8δ 2 j (δ 2 j + |x -ξ j | 2 ) 2 + 1 p w 0 ( x -ξ j δ j ) + 1 p 2 w 1 ( x -ξ j δ j ) + (1 - C 0 4p - C 1 4p 2 )H(x, ξ j ) -log 8δ 2 j + C 0 p log δ j + C 1 p 2 log δ j + O(δ β j ) ,
using the property of δ j and µ j , we find that

1 2γµ 2 p-1 j G(x, ξ j ) ≤ u j (x) ≤ C log p p , if |x -ξ j | ≥ 1 p 2M . (25) 
By maximum principle, G(x, ξ j ) > 0 in Ω. In conclusion,

0 < U ξ ≤ 2 √ e in Ω.
Let us set

S p [u] = ∆ a u + u p + , where u + = max{u, 0}, (26) 
and we introduce the following functional defined in H 1 0 (Ω):

J p [u] = 1 2 Ω a(x)|∇u| 2 - 1 p + 1 Ω a(x)u p+1 + ( 27 
)
whose nontrivial critical points are solutions to [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF].

It is easy to see that problem (1) is equivalent to S p [u] = 0, u + ≡ 0 in Ω, u = 0 on ∂Ω by maximum principle. We will look for solutions u of problem (1) in the form u = U ξ + φ, where φ will represent a higher-order term in the expansion of u.

Observe that

S p [U ξ + φ] = L[φ] + R ξ + N [φ] = 0 (28) with L[φ] := ∆ a φ + W ξ φ, W ξ = pU p-1 ξ (x) (29) 
and

R ξ := ∆ a U ξ + U p ξ , N [φ] = (U ξ + φ) p + -U p ξ -W ξ φ. (30) 
In terms of φ, problem (28) becomes

L[φ] = -R ξ + N [φ] in Ω, φ = 0 on ∂Ω. (31) 
The main step in solving problem (31) is that of a solvability theory for the linear operator L under a suitable choice of the points ξ i . In developing this theory, we will take into account the invariance, under translations and dilations, of the problem ∆v + e v = 0 in R 2 . We will perform the solvability theory for the linear operator L in weighted L ∞ -norm space. For any h ∈ L ∞ (Ω), define

h * = sup x∈Ω m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 -1 h(x) . (32) 
We conclude this section by showing an estimate of R ξ in • * .

Proposition 1. There exist C > 0 and p 0 > 0 such that for any ξ ∈ Λ and p ≥ p 0 we have

R ξ * ≤ C p 4 .
Proof.

∆ a U ξ = m j=1 ∆ a u j = m j=1 ∆U j = m j=1 1 γµ 2 p-1 j ∆U δj ,ξj + 1 pδ 2 j ∆w 0 x -ξ j δ j + 1 p 2 δ 2 j ∆w 1 x -ξ j δ j = m j=1 1 γµ 2 p-1 j -e U δ j ,ξ j + 1 pδ 2 j f 0 x -ξ j δ j + 1 p 2 δ 2 j f 1 x -ξ j δ j - 1 p e U δ j ,ξ j w 0 x -ξ j δ j - 1 p 2 e U δ j ,ξ j w 1 x -ξ j δ j , (33) 
where for i = 0, 1, f i (y) = 1 (1 + |y| 2 ) 2 f i (y) with f i given by [START_REF] Esposito | Concentrating solutions for the Hénon equation in R 2[END_REF].

If for some i = 1, . . . , m, |x -ξ i | ≤ p -2M , then for any k = i, |x -ξ k | ≥ 1 2 p -M , |∆ a u k | = e U δ k ,ξ k γµ 2 p-1 k -1 + 1 8p f 0 x -ξ k δ k + 1 8p 2 f 1 x -ξ k δ k - 1 p w 0 x -ξ k δ k - 1 p 2 w 1 x -ξ k δ k ≤ C p e U δ k ,ξ k 1 + 1 p v 2 ∞ x -ξ k δ k + 1 p 2 v 4 ∞ x -ξ k δ k ≤ Cpe U δ k ,ξ k , (34) 
from which we can deduce that

sup |x-ξi|≤p -2M m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 -1 ∆ a u k ≤ sup |x-ξi|≤p -2M Cpδ k (δ 2 k + |x -ξ k | 2 ) 1 2 ≤ Cp M +1 δ k ≤ C p 4 . (35) 
On the other hand,

∆ a u i (δ i y + ξ i ) = 1 γµ 2 p-1 i e U δ i ,ξ i -1 + 1 8p f 0 x -ξ i δ i + 1 8p 2 f 1 x -ξ i δ i - 1 p w 0 x -ξ i δ i - 1 p 2 w 1 x -ξ i δ i = 1 γµ 2 p-1 i δ 2 i e v∞ -1 + 1 8p f 0 (y) + 1 8p 2 f 1 (y) - 1 p w 0 (y) - 1 p 2 w 1 (y) . (36) 
By ( 23), we have

U p ξ (δ i y + ξ i ) =   p γµ 2 p-1 i   p   1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3 w 1 (y) + O   δ i |y| p + m j=1 δ β j p     p = 1 γµ 2 p-1 i δ 2 i   1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3   w 1 (y) + O p 2 δ i |y| + p 2 m j=1 δ β j     p .
To further computations, we first consider the region |x-ξ i | ≤ √ δ i p -2M . By Taylor expansion of exponential and logarithmic function, we have that when p → ∞,

1 + η(y) p + β(y) p 2 + γ(y) p 3 p = e η(y) 1 + 1 p β(y) - η 2 (y) 2 + 1 p 2 γ(y) -η(y)β(y) + η 3 (y) 3 + β 2 (y) 2 + η 4 (y) 8 - η 2 (y)β(y) 2 + O log 6 (|y| + 2) p 3 provided -4 log(|y| + 2) ≤ η(y) ≤ C and |β(y)| + |γ(y)| ≤ C log(|y| + 2). Thus U p ξ = 1 γµ 2 p-1 i δ 2 i e v∞ 1 + 1 p w 0 - 1 2 v 2 ∞ + 1 p 2 w 1 -w 0 v ∞ + 1 3 v 3 ∞ + 1 2 w 2 0 + 1 8 v 4 ∞ - 1 2 v 2 ∞ w 0 + O log 6 (|y| + 2) p 3 + δ i |y| + m j=1 δ β j . (37) 
Combining (33)-(37), it is easy to get that

∆ a u i + U p ξ = 1 γµ 2 p-1 i δ 2 i 8 (1 + |y| 2 ) 2 O log 6 (|y| + 2) p 3 + δ i |y| ≤ δ 2 i p 4 log 6 (|y| + 2) + p 3 δ i |y| (δ 2 i + |x -ξ i | 2 ) 2 , which implies that sup |x-ξi|≤ √ δip -2M m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 -1 ∆ a u i + U p ξ ≤ C p 4 sup |y|≤δ -1/2 i p -2M 1 (1 + |y| 2 ) 1 2 log 6 (|y| + 2) + |y| ≤ C p 4 . If √ δ i p -2M ≤ |x -ξ i | ≤ p -2M
, by (36),

|∆ a u i | = O p γδ 2 i e v∞ = O 1 δ 2 i 1 (1 + |y| 2 ) 2 and due to (1 + s p ) p ≤ e s , U p ξ (x) = 1 γµ 2 p-1 i δ 2 i   1 + 1 p   v ∞ (y) + 1 p w 0 (y) + 1 p 2 w 1 (y) + O δ i |y| + m j=1 δ β j     p ≤ C γδ 2 i e v∞(y)+ 1 p w0(y)+ 1 p 2 w1(y)+O √ δi|y|+ m j=1 δ β j ≤ C δ 2 i γ 1 (1 + |y| 2 ) 2 .
Thus in this region,

m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 -1 (∆ a u i + U p ξ )(x) = O 1 (1 + |y| 2 ) 1 2 ≤ Cp 2M δ 1 2 i ≤ C p 4 .
Finally, for any i = 1, . . . , m, |x -ξ i | ≥ p -2M , then as the computations in (34) and Remark 2,

|∆ a U ξ | ≤ Cp m i=1 e U δ i ,ξ i , U p ξ ≤ C log p p p , hence sup {x:|x-ξi|≥p -2M ∀ i=1,...,m} m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 -1 ∆ a U ξ + U p ξ ≤ C sup {x:|x-ξi|≥p -2M ∀ i=1,...,m} sup 1≤k≤m pδ k (δ k + |x -δ k | 2 ) 1 2 + log p p p δ -1 k (δ 2 k + |x -ξ k | 2 ) 3 2 ≤ C sup 1≤k≤m p 2M +1 δ k + log p p p δ -1 k ≤ C p 4 ,
which leads to the end of proof.

3. Analysis of the linearized operator. In this section, we prove bounded invertibility of the operator L, uniformly on ξ ∈ Λ, by using the weighted L ∞ -norm introduced in (32). Let us recall that L[φ] = ∆ a φ + W ξ φ, where W ξ = pU p-1 ξ . For simplicity of notations, we will omit the dependence of W ξ on ξ. As in Proposition 1, we have for the potential W (x) the following expansion. Lemma 3.1. Let p 0 be large enough, then there exists D 0 > 0 such that for any p > p 0 ,

0 < W (x) ≤ D 0 m j=1 e U δ j ,ξ j (x)
for any ξ = (ξ 1 , . . . , ξ m ) ∈ Λ. Furthermore, for |y| ≤ 1 δ j p 2M , j = 1, . . . , m,

W (δ j y + ξ j ) = 8 δ 2 j (1 + |y| 2 ) 2 1 + 1 p w 0 -v ∞ - 1 2 v 2 ∞ + O log 4 (|y| + 2) p 2 .
Proof. If |x -ξ j | ≤ p -2M for some j = 1, . . . , m, let x = δ j y + ξ j , with (1

+ s p ) p ≤ e s , W (δ j y + ξ j ) = δ -2 j 1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3 w 1 (y) + O m i=1 δ β i p + δ j |y| p p × 1 - 1 p v ∞ (y) + O log(|y| + 2) p 2 ≤ Cδ -2 j 1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3 w 1 (y) + O m i=1 δ β i p + δ j |y| p p ≤ Cδ -2 j e v∞(y)+ 1 p w0(y)+ 1 p 2 w1(y)+O m i=1 δ β i + √ δj |y| ≤ Cδ -2 j e v∞(y) = Ce U δ j ,ξ j (x) (38) since v ∞ = log 8 (1 + |y| 2 ) 2 > 4 log(δ j p 2M ) ≥ -p -C log p ≥ -2p provided p large enough. Indeed, if |y| ≤ δ -1 2 j p -2M
, by [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF],

W (δ j y + ξ j ) = p p p-1 γ p-1 µ 2 j 1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3 w 1 (y) + O m i=1 δ β i p + δ j |y| p p-1 = δ -2 j 1 + 1 p v ∞ (y) + 1 p 2 w 0 (y) + 1 p 3 w 1 (y) + O m i=1 δ β i p + δ j |y| p p × 1 - 1 p v ∞ (y) + O log(|y| + 2) p 2 = e v∞ δ 2 j 1 + 1 p (w 0 - 1 2 v 2 ∞ ) + O log 4 (|y| + 2) p 2 × 1 - 1 p v ∞ (y) + O log(|y| + 2) p 2 = e v∞ δ 2 j 1 + 1 p w 0 -v ∞ - 1 2 v 2 ∞ + O log 4 (|y| + 2) p 2 (39) 
where we have used Taylor expansion of exponential and logarithmic function 

W (x) = pU p-1 ξ ≤ Cp log p p p-1 = o e -p 4
= o e U δ j ,ξ j (x) .

So we are done.

Remark 3. As for W , let us point out that if |x-ξ j | ≤ p -2M for some j = 1, . . . , m, there holds

p U ξ (x) + O 1 p 3 p-2 ≤ Cp   p γµ 2 p-1 j   p-2 e v∞ x-ξ j δ j
= O e U δ j ,ξ j (x) .

Since this estimate is true if |x -ξ j | ≥ 1 p 2M for any j = 1, . . . , m, we have

p U ξ (x) + O 1 p 3 p-2 ≤ C m j=1 e U δ j ,ξ j (x) . (40) 
Set

z 0 (y) = |y| 2 -1 |y| 2 + 1 , z i (y) = 4y i |y| 2 + 1 , i = 1, 2.
It is well known that any bounded solution to

∆φ + 8 (1 + |y| 2 ) 2 φ = 0 in R 2
is a linear combination of z i , i = 0, 1, 2. See Lemma 2.1 of [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF]. Now we consider the following linear problem: given h ∈ C(Ω), find a function φ ∈ H 2 (Ω) such that

           L[φ] = h + 1 a(x) 2 i=1 m j=1 c ij e U δ j ,ξ j Z ij in Ω, φ = 0, on ∂Ω, Ω e U δ j ,ξ j Z ij φ = 0, i = 1, 2, 1 ≤ j ≤ m, (41) 
for some coefficients c ij , (i = 1, 2, 1 ≤ j ≤ m). Here and in the sequel, for any i = 0, 1, 2 and j = 1, . . . , m, we denote

Z ij (x) := z i x -ξ j δ j =        |x -ξ j | 2 -δ 2 j δ 2 j + |x -ξ j | 2 if i = 0, 4δ j (x -ξ j ) i δ 2 j + |x -ξ j | 2 if i = 1, 2.
The main result of this section is the following: Proposition 2. There exist p 0 > 0 and C > 0 such that for any p > p 0 , ξ ∈ Λ, h ∈ C(Ω) there is a unique solution to problem (41), which satisfies

φ ∞ ≤ Cp h * . ( 42 
)
Proof. The proof consists of six steps.

Step 1. There exists R > 1 large enough independent of p, such that the operator L satisfies maximum principle in Ω := Ω\∪ m j=1 B(ξ j , Rδ j ) provided p large. Namely, if L[ψ] ≤ 0 in Ω and ψ ≥ 0 on ∂ Ω then ψ ≥ 0 in Ω.

In order to prove this fact, we show the existence of a positive function Z in Ω satisfying L[Z] < 0. We define Z to be

Z(x) = m j=1 Φ 0 - δ k j |x -ξ j | k in Ω, k ∈ (0, 1) but fixed, where Φ 0 satisfies -∆ a Φ 0 = 1 in Ω, Φ 0 = 2 on ∂Ω.
Clearly Φ 0 ≥ 2 in Ω and bounded. Thus in Ω, 1 ≤ Z(x) ≤ C where C is independent of R. On the other hand in Ω,

-∆ a Φ 0 - δ k j |x -ξ j | k =1 + k 2 δ k j |x -ξ j | k+2 -kδ k j ∇ log a(x) • ∇(|x -ξ j |) |x -ξ j | k+1 ≥1 + kδ k j |x -ξ j | k+2 (k -∇ log a(x) ∞ |x -ξ j |) ≥ 1 2 + k 2 δ k j 2|x -ξ j | k+2 , since either kδ k j |x -ξ j | k+2 (k -∇ log a(x) ∞ |x -ξ j |) ≥ k 2 δ k j 2|x -ξ j | k+2 , if |x -ξ j | ≤ k 2 a(x) ∞ or 1 -kδ k j ∇ log a(x) ∞ |x -ξ j | k+1 = 1 + O(δ k j ) ≥ 1 2 , if |x -ξ j | > k 2 a(x) ∞ .
Then for p large,

L[Z] = ∆ a Z + W Z(x) ≤ - m 2 - m j=1 k 2 δ k j 2|x -ξ j | k+2 + D 0 C m j=1 e U δ j ,ξ j ≤ - m 2 - m j=1 δ k j |x -ξ j | k+2 k 2 2 -8D 0 C δ j |x -ξ j | 2-k ≤ - m 2 - k 2 4 m j=1 δ k j |x -ξ j | k+2 < - k 2 4 m j=1 δ j (δ 2 j + |x -ξ j | 2 ) 3 2 since δj |x-ξj | ≤ 1 R , 1 -k > 0, R large enough. Hence the function Z(x)
is what we are looking for.

Step 2. Let k be defined in Step 1. Let us define the " inner norm " of φ in the following way

φ i = sup x∈∪ m j=1 B(ξj ,δj ) |φ(x)|.
We claim that there is a constant

C > 0 such that if L[φ] = h in Ω, h ∈ C 0,α (Ω), then φ ∞ ≤ C( φ i + h * )
for any h ∈ C 0,α (Ω). We will establish this estimate with the use of barriers. Indeed, set φ = 4 k 2 ( φ i + h * )Z(x), where Z(x) was defined in the previous step, then on ∂ Ω, φ ≥ |φ| and the above computation shows that L[ φ] ≤ -|h|. By maximum principle we get

|φ(x)| ≤ C( φ i + h * ), ∀ x ∈ Ω.
By the definition of φ i , we obtain

φ ∞ ≤ C( φ i + h * )
for some constant C independent of h.

Step 3. We prove a uniform a-priori estimate for solutions φ of problem L[φ] = h in Ω, φ = 0 on ∂Ω, where h ∈ C 0,α (Ω) and in addition the orthogonality conditions: Ω e U δ j ,ξ j Z ij φdx = 0 for i = 0, 1, 2, j = 1, . . . , m.

(43)

Namely, we prove that there exists a positive constant C such that for any ξ ∈ Λ and h ∈ C 0,α (Ω), φ ∞ ≤ C h * for p sufficiently large. By contradiction, assume the existence of sequences p n → ∞, points ξ n ∈ Λ, functions h n and associated solutions φ n such that h n * → 0 and φ n ∞ = 1. Thus Step 2 shows that lim inf n→∞ φ n i > 0. Let us set φ n j (y) = φ n (δ n j y + ξ n j ) for j = 1, . . . , m.

By Lemma 3.1 and a(x) ∈ C 1 ( Ω), elliptic estimates readily imply that φ n j (y) converges uniformly over compact sets to a bounded solution φ

∞ j of ∆φ + 8 (1 + |y| 2 ) 2 φ = 0, in R 2 .
This implies that φ ∞ j is a linear combination of the functions z i , i = 0, 1, 2. Since φ n j (y) ∞ ≤ 1, by Lebesgue's theorem, the orthogonality conditions on φ n j pass to the limit and give

R 2 8 (1 + |y| 2 ) 2 z i (y) φ ∞ j dy = 0 for i = 0, 1, 2.
Hence φ ∞ j ≡ 0 for any j = 1, . . . , m contradicting to lim inf n→∞ φ n i > 0.

Step 4. We prove that there exists a positive constant C such that any solution φ to L[φ] = h in Ω, φ = 0 on ∂Ω and in addition the orthogonality conditions:

Ω e U δ j ,ξ j Z ij φ = 0 for i = 1, 2, j = 1, . . . , m, (44) 
satisfies φ ∞ ≤ Cp h * .
Proceeding by contradiction as in Step 3, we can suppose further that

p n h n * → 0 as n → ∞. (45) 
But here we loss the limit condition

R 2 8 (1 + |y| 2 ) 2 z 0 (y) φ ∞ j dy = 0.
Hence we have that

φ n j → φ ∞ j = C j |y| 2 -1 |y| 2 + 1 in C 0 loc (R 2 ) ( 46 
)
for some constant C j . To reach a contradiction, we have to show that C j = 0 for any j = 1, . . . , m. We will obtain it from the stronger condition (45) on h n . To this end, we perform the following construction. By Lemma 2.2, there exist radial solutions w and ζ respectively of equations [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] on page 48.

∆w + 8 (1 + |y| 2 ) 2 w = 8 (1 + |y| 2 ) 2 z 0 (y) and ∆ζ + 8 (1 + |y| 2 ) 2 ζ = 8 (1 + |y| 2 ) 2 in R 2 such that as |y| → ∞, w(y) = 4 3 log |y| + O 1 |y| , ζ(y) = O 1 |y| , due to 8 ∞ 0 s (s 2 -1) 2 (s 2 + 1) 4 ds = 4 3 and 8 ∞ 0 s s 2 -1 (s 2 + 1) 3 ds = 0, see
For simplicity, frow now on we will omit the dependence on n. For j = 1, . . . , m, let

v j (x) = w x -ξ j δ j + 4 3 log(δ j )Z 0j (x) + 1 3 H(ξ j , ξ j )ζ x -ξ j δ j . Notice that |v j (x)| ≤ C log( |x-ξj | δj + 2) + C| log δ j |. Suppose h j satisfy the equation ∆ a h j (x) + ∇ log a(x) • ∇v j = 0 in Ω, h j (x) = -v j (x)
on ∂Ω.

Thus h j (x) = -1 3 H(x, ξ j ) + O(δ j ), whose proof is very similar to Lemma 2.3, so we omit it.

Let v j (x) = v j (x) + h j (x), then

v j (x) = v j (x) - 1 3 H(x, ξ j ) + O(δ j ) in C 1 (Ω), v j (x) = 0 on ∂Ω v j (x) = - 1 3 G(ξ i , ξ j ) + O δ j p M + |x -ξ j |p M , for i = j, |x -ξ i | ≤ δ i p -2M . (47) 
Also we can find that

∆ a v j (x) + W v j (x) = e U δ j ,ξ j Z 0j + (W -e U δ j ,ξ j )v j (x) + R j (48) 
where

R j = v j (x) -v j (x) + 1 3 H(ξ j , ξ j ) e U δ j ,ξ j (x) = - 1 3 H(x, ξ j ) + 1 3 H(ξ j , ξ j ) + O(δ j ) e U δ j ,ξ j (x) = e U δ j ,ξ j (x) O (|x -ξ j | + δ j ) . (49) 
Multiply (48) by a(x)φ(x) and integrate by parts to obtain

Ω e U δ j ,ξ j Z 0j a(x)φ(x)dx + Ω (W -e U δ j ,ξ j )v j a(x)φ(x)dx = Ω a(x)h(x)v j dx - Ω a(x)R j φ(x)dx, (50) 
where we have used

L[φ] = h.
First of all, by Lebesgue's theorem and (46), we get

Ω e U δ j ,ξ j Z 0j a(x)φ(x)dx = {y: δj y+ξj ∈Ω} 8 (1 + |y| 2 ) 2 |y| 2 -1 |y| 2 + 1 a(δ j y + ξ j ) φ j (y)dy → 8a(ξ ∞ j )C j R 2 (|y| 2 -1) 2 (|y| 2 + 1) 4 dy = 8π 3 C j a(ξ ∞ j ). (51) 
where up to a subsequence, ξ j → ξ ∞ j , j = 1, . . . , m. By Lemma 3.1 and (47), we have

Ω (W -e U δ j ,ξ j )v j a(x)φ(x)dx = B(ξj , √ δj p -2M ) (W -e U δ j ,ξ j )v j a(x)φ(x)dx + Ω\B(ξj , √ δj p -2M ) W v j a(x)φ(x)dx + o( δ j ) = B 0, 1 √ δ i p 2M 8 (1 + |y| 2 ) 2 1 p w 0 -v ∞ - 1 2 v 2 ∞ 4 3 log(δ j )z 0 (y) φ j a(δ j y + ξ j )dy - 1 3 i =j G(ξ i , ξ j ) B(ξi, √ δip -2M ) W (x)a(x)φ(x)dx + O( 1 p ) = - 8C j 3 a(ξ j ) R 2 (|y| 2 -1) 2 (1 + |y| 2 ) 4 w 0 -v ∞ - 1 2 v 2 ∞ dy - 1 3 i =j G(ξ i , ξ j ) B 0, 1 √ δ i p 2M 8 (1 + |y| 2 ) 2 a(δ i y + ξ i ) φ i dy + o(1) = - 8C j 3 a(ξ ∞ j ) R 2 (|y| 2 -1) 2 (1 + |y| 2 ) 4 w 0 -v ∞ - 1 2 v 2 ∞ dy + o(1), (52) 
since Lebesgue's theorem implies that B 0,

1 √ δ i p 2M 8 (1 + |y| 2 ) 2 a(δ i y + ξ i ) φ i dy → 8C j a(ξ ∞ i ) R 2 |y| 2 -1 (1 + |y| 2 ) 3 dy = 0.
In a straightforward but tedious way, by [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] we can compute

R 2 (|y| 2 -1) 2 (1 + |y| 2 ) 4 w 0 -v ∞ - 1 2 v 2 ∞ dy = -π,
see [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] on page 50. So we obtain

Ω W -e U δ j ,ξ j v j a(x)φ(x)dx = 8π 3 C j a(ξ ∞ j ) + o(1). (53) 
As far as the R.H.S in (50), we have that by ( 47)

Ω a(x)hv j dx ≤ C h * Ω m k=1 δ k (δ 2 k + |x -ξ k | 2 ) 3 2 |v j |dx = C h * m k=1 {y: δ k y+ξ k ∈Ω} 1 (1 + |y| 2 ) 3 2 |v j (δ k y + ξ k )|dy ≤ C h * R 2 log(|y| + 2) (1 + |y| 2 ) 3 2 dy + Cp h * R 2 1 (1 + |y| 2 ) 3 2 dy = O (p h * ) . (54) 
Finally, with (49

) Ω R j a(x)φ(x)dx = O Ω (|x -ξ j | + δ j )e U δ j ,ξ j dx = O(δ j ). (55) 
Hence, inserting (51)-( 55) in ( 50) we obtain that 16π 3

C j a(ξ ∞ j ) = o(1)
for any j = 1, . . . , m.

Necessarily, C j = 0 by contradiction and the claim is proved.

Step 5. We establish the validity of the following estimate:

φ ∞ ≤ Cp h * (56)
for the solutions of problem (41) and h ∈ C 0,α (Ω).

Step 4 gives

φ ∞ ≤ Cp h * + 2 i=1 m j=1 |c ij |
since e U δ j ,ξ j Z ij * ≤ 2 e U δ j ,ξ j * ≤ 16. Arguing by contradiction of (56), we can proceed as Step 3 and suppose further that

p n h n * → 0, φ n ∞ = 1, p n 2 i=1 m j=1 |c n ij | ≥ δ 0 > 0.
We omit the dependence on n. It suffices to estimate the values of constants c ij . For i = 1, 2 and j = 1, . . . , m, now we define Γ ij as the following

∆Γ ij = ∆Z ij in Ω, Γ ij = 0 on ∂Ω.
According to [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] on page 51, we have

Γ ij = Z ij - 8π 3 δ j ∂H D ∂(ξ j ) i (•, ξ j ) + O(δ 3 j ) in C 1 (Ω)
and

|T ij | ≤ |Z ij | + Cδ j ≤ 2 + Cδ j ≤ 3.
Multiply the first equation of (41) by a(x)Γ ij and integrate by part, we get

Ω a(x)hΓ ij dx + 2 l=1 m h=1 c lh Ω e U δ h ,ξ h Z lh a(x)Γ ij dx = Ω W (x)φ(x)a(x)Γ ij dx + Ω ∇(a(x)∇Γ ij )φ(x)dx. ( 57 
)
Since ∆Γ ij = ∆Z ij = -e U δ j ,ξ j Z ij , the above equality can be changed to

Ω a(x)hΓ ij dx + 2 l=1 m h=1 c lh Ω e U δ h ,ξ h Z lh a(x)Γ ij dx = Ω W (x)φ(x)a(x)Γ ij dx - Ω a(x)e U δ j ,ξ j Z ij φdx + Ω φ∇a(x) • ∇Γ ij dx. (58) 
First, let us deduce the following " orthogonality " relations: for 1 ≤ i, l ≤ 2 and 1 ≤ j, h ≤ m with j = h,

Ω e U δ j ,ξ j Z lj Γ ij a(x) = 32 3 πa(ξ j )δ il + O(δ j ), Ω e U δ h ,ξ h Z lh Γ ij a(x)dx = O(δ j p 2M ) + o(δ h ), (59) 
where δ il denotes the Kronecker's symbol. 

Ω a(x)e U δ j ,ξ j Z lj Γ ij = B(ξj ,p -2M ) a(x)e U δ j ,ξ j Z lj Z ij -8πδ j ∂H D (x, ξ j ) ∂(ξ j ) i + O(δ 3 j ) + Ω\B(ξj ,p -2M ) e U δ j ,ξ j |Z lj | |Z ij | + O(δ j ) = B(0, 1 δ j p 2M ) 8a(δ j y + ξ j ) (1 + |y| 2 ) 2 4y l 1 + |y| 2 4y i 1 + |y| 2 -8πδ j ∂H D (ξ j , ξ j ) ∂(ξ j ) i + O(δ j |y| + δ 3 j ) +   {y:δj y+ξj ∈Ω,|y|≥ 1 δ j p 2M } 1 (1 + |y| 2 ) 2 δ 2 j p 4M   = 128a(ξ j ) R 2 y i y l (1 + |y| 2 ) 4 dy + O(δ j ) = 64a(ξ j )δ il R 2 |y| 2 (1 + |y| 2 ) 4 dy + O(δ j ), and for h = j, |x -ξ h | ≥ |ξ j -ξ h | -|x -ξ j |, Ω e U δ h ,ξ h Z lh Γ ij a(x)dx = O B(ξj ,p -2M ) + Ω\B(ξj ,p -2M ) e U δ h ,ξ h |Z lh | |Z ij | + O(δ j ) = O B(ξj ,p -2M ) δ 3 h p 5M + O {y:δ h y+ξ h ∈Ω,|δ h y+ξ h -ξj |≥p -2M } 1 (1 + |y| 2 ) 2 |y| 1 + |y| 2 δ j p 2M = o(δ h ) + O(δ j p 2M ).
√ δj p -2M ) W (x)φ(x)a(x)Γ ij dx - Ω a(x)e U δ j ,ξ j Z ij φdx + O φ ∞ ∇a(x) ∞ Ω |∇Γ ij | + p 2M δ j φ ∞ = B(ξj , √ δj p -2M ) φ(x)a(x)Γ ij W (x) -e U δ j ,ξ j dx + Ω a(x)e U δ j ,ξ j φ (Γ ij -Z ij ) dx + O 1 p 2 φ ∞ = a(ξ j ) p B(0, 1 √ δ j p 2M ) 32y i (1 + |y| 2 ) 3 w 0 -v ∞ - 1 2 v 2 ∞ φ j dy + O 1 p 2 φ ∞ = O 1 p φ ∞ R 2 |y| (1 + |y| 2 ) 3 w 0 -v ∞ - 1 2 v 2 ∞ dy + 1 p 2 φ ∞ = O 1 p φ ∞ , (61) 
where

Ω |∇Γ ij | ≤ Ω |∇Z ij | + Cδ j ≤ Cδ j Ω 1 δ 2 j + |x -ξ j | 2 dx + Cδ j ≤ Cδ j | log δ j |.
Inserting the estimates (60) and (61) into (58), we deduce that

32 3 πa(ξ j )c ij + O e -p 8 2 l=1 m h=1 |c lh | = O h * + 1 p φ ∞ .
Hence we obtain that

2 l=1 m h=1 |c lh | = O h * + 1 p φ ∞ .
Obviously we get As in Step 4, there holds

φ j → C j |y| 2 -1 |y| 2 + 1 in C 0 loc (R 2 )
for some j and constant C j . Hence, in (61) we have a better estimate

B(0, 1 √ δ j p 2M ) 32y i (1 + |y| 2 ) 3 w 0 -v ∞ - 1 2 v 2 ∞ φ j dy converges to R 2 32y i (|y| 2 -1) (1 + |y| 2 ) 4 w 0 -v ∞ - 1 2 v 2 ∞ dy = 0.
Therefore, we get that the R.H.S. of (58) = o p -1 , and in turn, Step 6. Now consider the following Hilbert space

H = φ ∈ H 1 0 (Ω) : Ω e U δ j ,ξ j Z ij φ = 0, ∀ i = 1, 2, j = 1, . . . , m with the norm φ H 1 0 (Ω) = ∇φ L 2 (Ω) . Problem (41) is equivalent to find φ ∈ H such that Ω a(x)∇φ∇ψ -a(x)W φψ dx = Ω a(x)hψdx, ∀ ψ ∈ H.
By Fredholm's alternative theorem, it is equivalent to the uniqueness of solutions to this problem, which is guaranteed by Proposition 2. Moreover, by elliptic regularity theory this solution is in H 2 (Ω). As p > p 0 fixed, by density of C 0,α (Ω) in (C(Ω), • ∞ ), we can approximates h ∈ C(Ω) by smooth functions and, by elliptic regularity theory, we can show that (42) holds for any h ∈ C(Ω). This ends the proof. Remark 4. Given h ∈ C(Ω), let φ be the solution of (41) given by Proposition 2. Multiplying the first equation of (41) by a(x)φ(x) and integrating by parts, we get

Ω a(x)|∇φ| 2 dx = Ω a(x)W φ 2 dx - Ω a(x)hφdx.
According to Lemma 3.1, we get

φ H 1 0 (Ω) ≤ C( φ ∞ + h * ). (62) 
4. The nonlinear problem. We want to solve here the nonlinear auxiliary problem

           ∆ a (U ξ + φ) + (U ξ + φ) p + = 1 a(x) 2 i=1 m j=1 c ij e U δ j ,ξ j Z ij , in Ω, φ = 0, on ∂Ω, Ω e U δ j ,ξ j Z ij φ = 0, ∀ i = 1, 2, j = 1, . . . , m, (63) 
for some coefficients c ij , i = 1, 2 and j = 1, . . . , m, which depend on ξ ∈ Λ. Recalling that N

[φ] = (U ξ +φ) p + -U p ξ -pU p-1 ξ φ, R ξ = ∆ a U ξ +U p ξ ,
we rewrite the first equation in (63) as the form

L[φ] = -R ξ -N [φ] + 1 a(x) 2 i=1 m j=1 c ij e U δ j ,ξ j Z ij .
Using the theory developed in the previous section for the linear operator L, we have Lemma 4.1. There exist C > 0 and p 0 > 0 such that, for any p > p 0 and ξ ∈ Λ, problem (63) has a unique solution φ ξ satisfying

φ ξ ∞ ≤ C p 3 , φ ξ H 1 0 (Ω) ≤ C p 3 , 2 i=1 m j=1 |c ij (ξ)| ≤ C p 4 . (64) 
Furthermore, the function ξ → φ ξ is C 1 .

Proof. The proof of this lemma can be done along the lines of that of Lemma 4.1 in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF]. We omit the details.

5. The proof of Theorem 1.1. In view of Lemma 4.1, given ξ = (ξ 1 , . . . , ξ m ) ∈ Λ, we have φ ξ and c ij (ξ) to be the unique solution to problem (63). Set

F p (ξ) = J p (U ξ + φ ξ ), (65) 
where

J p [u] = 1 2 Ω a(x)|∇u| 2 - 1 p + 1 Ω a(x)u p+1 + ,
then we have the following

Lemma 5.1. If ξ = (ξ 1 , . . . , ξ m ) ∈ Λ is a critical point of F p (ξ), then u = U ξ + φ ξ is a critical point of J p , that is, a solution to problem (1).
Proof. The proof is very similar to that of Lemma 5.1 in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF]. We omit it here.

Next lemma shows the leading term of the function F p (ξ).

Lemma 5.2. Let p 0 be large enough and fixed. For any p > p 0 , the following expansion holds: Proof. Let (ξ p 1 , . . . , ξ p m ) ∈ Λ be the maximizer of F p . We need to prove that (ξ p 1 , . . . , ξ p m ) belongs to the interior of Λ. First, we obtain a lower bound. Let (67)

F p (ξ) = 4πe 
Now suppose (ξ p 1 , . . . , ξ p m ) ∈ ∂Λ. There are two possibilities: either there exists a j 0 such that ξ p j0 ∈ ∂B δ (x 0 ), in which case, a(ξ p j0 ) ≤ a(x 0 ) -δ 0 for some δ 0 > 0; or there exists i 0 = j 0 such that ξ p i0 -ξ p j0 = 1 p M . In first case, we have max 

which contradicts to (67). This also shows that a(ξ p j ) → a(x 0 ). By the condition over a, we get ξ p j → x 0 .

  )hΓ ij dx = O( h * ), by (59), L.H.S. of (58) = 32 3 πa(ξ j )c ij + O e -

  lh | ≥ δ 0 > 0 and the claim is established.

eeF 5 = p -1 2 ( 5 = 5 .p 2 w 1 2 . 2 whereLemma 5 . 3 .

 525512253 Since u = U ξ + φ ξ satisfies the equation (63), we haveΩ a(x)(U ξ + φ ξ ) p+1 + dx = Ω a(x)|∇(U ξ + φ ξ )| 2 dx + U δ j ,ξ j Z ij (U ξ + φ ξ )dx = Ω a(x)|∇(U ξ + φ ξ )| 2 dx + U δ j ,ξ j Z ij U ξ dxin view of the last equation in (63). Using U ξ = O(1) and (64) we getΩ a(x)(U ξ + φ ξ ) p+1 + dx = Ω a(x) |∇(U ξ + φ ξ )| 2 dx + O 1 p 4uniformly for ξ ∈ Λ. Hence we can write)|∇(U ξ + φ ξ )| 2 dx + O 1 p p + 1) Ω a(x) |∇U ξ | 2 + 2∇U ξ • ∇φ ξ + |∇φ ξ | 2 dx + O 1 p Recall that U ξ = m j=1(U j + H p j ) defined in[START_REF] Mignot | Variation d'un point retourment par rapport au domaine[END_REF], we haveΩ a(x)|∇U ξ | 2 dx = Ω a(x)(-∆ a U ξ )U ξ dx = (y) + O( δ j |y| + δ β j ) dy + O j )8πp + O(1) + O 1 p j , ξ i ) + O(1). Thus Ω a(x)|∇U ξ | 2 dx = 8πe p m j=1 a(ξ j ) 1 -4 p log µ j -G(ξ j , ξ i ) = -4 log |ξ i -ξ j | + O(1). For p large enough, the following maximization problem max (ξ1,...,ξm)∈Λ F p (ξ 1 , . . . , ξ m ) has a solution in the interior of Λ.

2 ≥ 1 .

 21 j , j = 1, . . . , m form an m-regular polygon in R 2 . Then it is easy to see(ξ 0 1 , . . . , ξ 0 m ) ∈ Λ since M = m 2 +1From Lemma 5.2, using that x 0 is a strict maximum point of a(x), we obtain: max (ξ1,...,ξm)∈ΛF p (ξ 1 , . . . , ξ m ) 0 ) log p + O 1 p 2 .

( 2 p

 2 ξ1,...,ξm)∈ΛF p (ξ 1 , . . . , ξ m ) log p (m -1)a(x 0 ) + a(x 0 ) -δ 0 + O log p p 2 = 4πe p ma(x 0 ) -δ 0 + o 1 p ,
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In the second case, we have max (ξ1,...,ξm)∈Λ F p (ξ 1 , . . . , ξ m )

Combining with (67) we have 16πe

which is impossible by the choice of M in [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF].

Proof of Theorem 1.1: According to Lemma 5.1, the function u p = U ξ + φ ξ where U ξ and φ ξ are defined respectively by [START_REF] Mignot | Variation d'un point retourment par rapport au domaine[END_REF] and Lemma 4.1, is a solution of problem(1) if we adjust ξ so that it is a critical point of F p (ξ) = J p (U ξ + φ ξ ) defined by (65). Lemma 5.3 then guarantees the existence of such critical point ξ p = (ξ p 1 , . . . , ξ p m ) and thus a solution u p for (1). Furthermore, from the ansatz ( 22), we get for any ρ > 0, as p → ∞, u p → 0 uniformly in Ω\B(x 0 , ρ) and

The rest of the properties of u p can be easily seen from the decomposition of u p .

Proof of Remark 1:

We choose now M = m 2 +1 α . We just need to change the lower bound estimate in the proof of Lemma 5.3. Take ξ 0 j = x 0 + p -1 α ξ 0 j where ξ 0 j , j = 1, . . . , m form an m-regular polygon in R 2 , we get then max (ξ1,...,ξm)∈Λ

Using (68) and (69), we prove again that F p (ξ) reaches its maximum in the interior of Λ.