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Abstract
In this paper, we propose a Benders’ decomposition algorithm to tackle the real-time railway
traffic management problem. Specifically, we decompose the mixed-integer linear program-
ming formulation at the basis of RECIFE-MILP (Pellegrini et al., 2015), a state-of-the-art
algorithm for this problem. In our Benders’ decomposition, we minimize total delays by
making train routing and scheduling decisions in the master problem. Given these deci-
sions, we compute the trains arrival and passing times in the slave problem to deduce the
total delay. By applying our Benders’ decomposition algorithm to RECIFE-MILP, we tackle
large instances representing traffic in the Rouen-Rive-Droite control area, in France.
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1 Introduction

For many railway systems, during peak hours, the infrastructure capacity is completely
exploited for ensuring the trains circulations. Many trains travel within short time through
critical points. If a disturbance occurs, the traffic may be perturbed and, as a result, conflicts
may emerge. In a conflict, multiple trains would claim the same track section concurrently
if traveling at the planned speed. Hence, some trains must be stopped or decelerated for
ensuring safety, and delays propagate. In locations such as junctions, which are areas where
multiple lines cross, the emergence of conflicts is very frequent and effectively dealing with
them may be particularly difficult.

Two kinds of delays occur in railway traffic: primary and secondary delay. The un-
expected events which disturb the traffic cause the primary delay. The secondary delay
is the result of delay propagation due to the interactions between trains. We do not have
means to avoid unexpected events; hence the primary delay cannot be prevented. Instead,
the secondary delay may be avoided or reduced by suitably managing traffic. The real-
time Railway Traffic Management Problem (rtRTMP) consists in modifying trains route
and schedule to limit the delay propagation. This problem is tackled by dispatchers. They
do it manually, so the result of their choices is generally suboptimal. The use of an efficient
algorithm to help dispatchers decision making is crucial to ensure an effective traffic man-
agement when disruptions occur. The design of this efficient algorithm is typically based
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on two main models used to represent the railway infrastructure: macroscopic and micro-
scopic. In the macroscopic model, the infrastructure is seen as a set of nodes (junctions
or stations) connected by lines, and the separation between trains is imposed through the
control of generic headway times. In the microscopic one, the infrastructure is seen as a set
of track sections where the train separation is imposed according to the signaling system,
as it happens in reality. With the former, we can solve very large instances, but with low
precision at the local level; hence, the optimization choices may have unexpected effects
on the traffic when they are actually implemented, due for example to the specific signaling
system in place. With the latter, these unexpected effects are avoided by considering in
the optimization all necessary details. However, solving large instances may become very
difficult due to memory or computational time limits.

In the operations research literature, many algorithms have been proposed to address the
rtRTMP. In the following, we report the most relevant contributions. We group the contri-
butions in two categories: those that propose algorithms without focusing on the size of the
instances, and those that explicitly tackle large instances through decomposition. For what
concerns the first category, several algorithms have been proposed (for recent surveys, see
Cacchiani et al. (2014); Corman and Meng (2015)). In some papers, the authors propose
heuristic solution approaches in which train routes are fixed and the optimization concerns
the scheduling decisions. An algorithm which determines trains optimal scheduling on a
single track is proposed by Higgins et al. (1996). This algorithm can both give support
to trains dispatchers to tackle the rtRTMP and evaluate the impact of timetable changes.
A heuristic algorithm is designed by Sahin (1999) to tackle train rescheduling problem in
disrupted situations. In Dessouky et al. (2006), the authors propose a branch-and-bound al-
gorithm for rescheduling trains using fixed routes. Some authors propose heuristic solution
approaches that consider a limited number of alternative routes selected during the solution
process (D’Ariano et al., 2008; Corman et al., 2010; Acuna-Agost et al., 2011); others start
with a small number of alternative routes and increase it throughout the solution process
(Caimi et al., 2011, 2012). While several algorithms exist to tackle the rtRTMP considering
a limited number of alternative routes, few algorithms have been proposed to address the
rtRTMP considering all alternative routes. An effort in this direction is the work of Ro-
driguez (2007); Törnquist Krasemann (2012); Pellegrini et al. (2014, 2015). An algorithm
based on a constraint programming approach is proposed by Rodriguez (2007). Törnquist
Krasemann (2012) proposes a greedy heuristic for the rtRTMP, modeling track segments.
The impact of the microscopic representation of the infrastructure on the optimal solution
is assessed by Pellegrini et al. (2014). In the paper, the authors show that the consideration
of a fine granularity of the infrastructure representation, up to the track-circuit level, may
allow the detection of better solutions than the use of the rough granularity, which is limited
to the block section level. The RECIFE-MILP algorithm is proposed by Pellegrini et al.
(2015). All these algorithms do not explicitly focus on the problem represented by the size
of the instances to be tackled. However, a few papers exist dealing with this problem. For
example, D’Ariano and Pranzo (2009); Corman et al. (2012, 2014) propose heuristic ap-
proaches to decompose the instances to be solved. The authors decompose large instances
of the rtRTMP by dispatching areas and apply a bi-level optimization approach to solve the
problem. At the lower level, the system manages traffic in their control areas without any
knowledge of the traffic flow elsewhere. At the higher level, a coordinator module is re-
sponsible for the traffic management over a railway network including several areas with a
global vision of the traffic flows. Others, as Lusby et al. (2012), propose classic mathemat-
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ical decomposition approaches as column generation. This column generation approach is
applied to a set packing model to tackle real-time train routing at junctions. The set packing
model of the problem is formulated as an integer linear program with a resource based con-
straint system. Meng and Zhou (2014) propose a Lagrangian relaxation approach to tackle
the simultaneous train rerouting and rescheduling on N-track railway network. A logic Ben-
ders’ decomposition approach is proposed by Lamorgese and Mannino (2015); Lamorgese
et al. (2016) to solve the rtRTMP. In the paper, the authors combine a macroscopic and a
microscopic model to perform a decomposition of the initial problem into two sub-problems
(master and slave problem). This approach allows dealing with large instances but it does
not consider many details of the microscopic infrastructure characteristics. In a recent sem-
inar, Lamorgese and Mannino (2016) present a standard Benders’ decomposition approach
to tackle the train’s rescheduling problem formulated with an alternative graph model. In
their approach, the authors replace the standard Benders’ feasibility and optimality cuts with
strong cuts obtained by strengthening and lifting the standards ones.

In this work, we consider RECIFE-MILP, which allows solving some rtRTMP instances
to optimality considering all details in the infrastructure. However, it has been shown (Pel-
legrini et al., 2015) that its performance may strongly worsen when tackling very large
instances in the short time allowed by the real-time nature of the problem. For this for-
mulation, we propose a Benders’ decomposition (Benders, 1962) to increase the size of
the instances which can be effectively tackled. In our Benders’ decomposition algorithm,
we separate the rtRTMP into two problems: the master and slave. The master problem is
the real-time train routing and scheduling problem, it contains the routing and scheduling
variables (binary variables) and one dummy variable representing the contribution of con-
tinuous variables to the master problem objective function. The schedule here is intended as
the order in which trains cross common tracks, and do not include time information. Once
an incumbent solution is found in the master problem, it is sent to the dual of the slave prob-
lem. This solution is a specific route and schedule assignment for each train in the instance.
The slave problem contains the continuous variables which determine the track sections oc-
cupation and reservation times, and deduces the delay suffered by each train. Based on the
result of the dual problem, we add an optimality or feasibility cut to the master problem to
cut off the current solution, if suboptimal or infeasible for the overall problem. This process
is repeated until the algorithm converges to an optimal solution or the maximum computa-
tional time imposed by the real-time nature of the problem has elapsed. Starting from this
standard Benders’ reformulation, we propose a reduced one to improve the computational
performance. Solving these reformulations with an iterative and an integrated Benders’ al-
gorithm, we tackle instances representing traffic in the Rouen-Rive-Droite control area, in
France.

The remainder of this paper is organized as follows. Section 2 presents the RECIFE-
MILP formulation of the rtRTMP. The RECIFE-MILP Benders’ reformulation and the Re-
duced RECIFE-MILP Benders’ reformulation proposed are presented in Section 3 and Sec-
tion 4, respectively. Computational experiments are reported in Section 5. Conclusions and
directions for future work are discussed in Section 6.

2 RECIFE-MILP formulation

In this section, we present the RECIFE-MILP formulation of the rtRTMP proposed by Pel-
legrini et al. (2015). RECIFE-MILP is a heuristic algorithm based on the truncated solution
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Figure 1: Example of the track-circuit reservation with the 3-aspect signaling system. The
arrows represent the reference track-circuits for tc3 and tc4, i.e., the first track-circuit of the
n-2nd preceding block section, with n equal to 3.

of mixed-integer linear programming (MILP) formulation. This formulation is based on a
microscopic representation of the infrastructure, capable to consider all the characteristics
of the infrastructure in deep details.

Before presenting the RECIFE-MILP formulation of the rtRTMP, we define some tech-
nical expressions used to indicate some relevant elements of the railway system.
Track-circuit: a detection device on which the presence of a train is automatically detected.
Running time: the time spent by the head of a train on a track-circuit when traveling at the
planned speed.
Clearing time: the time elapsed between the moment when the train’s head leaves a track-
circuit and the moment when its tail leaves it.
Occupation time: the time interval during which a train physically occupies a track-circuit.
Block section: a block section is a sequence of track-circuits whose access is controlled by
a signal.
Reservation time: in the blocking time theory (Pachl, 2009), a train is allowed to enter a
block section opened by an n-aspect signal only if the following n − 1 block sections are
available. Before entering, the train reserves these n− 1 block sections, and in particular it
reserves all their track-circuits. Hence, the reservation time of the track-circuit starts before
a train enters the reference track-circuit (the first track-circuit of the n−2nd preceding block
section, e.g., in the example of Figure 1, the reference track-circuit of tc3 is tc2 in case of a
3-aspect signaling system) and ends when it enters the track-circuit itself.
Formation time: in addition to the reservation time, a supplementary time is needed before
a train starts the occupation of a sequence of block sections. This supplementary time is the
formation time. It is used for example to take into account the signal visibility distance.
Release time: the release time corresponds to the lapse of time in which the reservation of
a track-circuit is still active after a train exits it.
Utilization: we name utilization the sum of reservation and occupation time.
Route: the complete sequence of track-circuits traversed by a train during its trip is named
route.

If a train starts its trip at null speed, in the model its occupation of the first track-circuit is
accounted only from the time at which it starts moving. Its staying still on the track-circuit
before that time is represented through the reservation time.

In RECIFE-MILP, in addition to the actual track-circuits, two dummy ones are consid-
ered, tc0 and tc∞. They represent the entry and the exit locations of the infrastructure,
respectively. Each track-circuit has a running time and a clearing time which depend on the
type of train traversing them and on the route traveled. For the dummy track-circuits, the
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running time and clearing times are null.
In the RECIFE-MILP formulation, the following notation is used:

T ≡ set of trains;
wt ≡ weight associated to train t’s delay;
tyt ≡ type corresponding to train t (train characteristics);
init t, exit t ≡ earliest time at which train t can be operated and earliest time at which it can
reach its destination given init t and the route assigned in the timetable;
Rt,TC t ≡ set of routes and track-circuits available for train t;
TC r ≡ set of track-circuits composing route r;
pr,tc , sr,tc ≡ track-circuits preceding and following tc along r;
rt ty,r,tc , ct ty,r,tc ≡ running and clearing time of tc along r for a train of type ty ;
ref r,tc ≡ reference track-circuit of tc along route r;
bsr,tc ≡ block section including track-circuit tc along route r;
forbs , relbs ≡ formation and release time for block section bs;
M ≡ large constant.

The formulation contains non-negative continuous variables:
for all triplets of t ∈ T , r ∈ Rt and tc ∈ TC r:

ot,r,tc : time at which t starts the occupation of tc along r,
lt,r,tc : longer stay of t’s head on tc along r, due to dwell time

and scheduling decisions (delay);

for all pairs of t ∈ T and tc ∈ TC t:

sU t,tc : time at which t starts tc utilization;
eU t,tc : time at which t ends tc utilization;

for all t ∈ T :

Dt : delay suffered by train t when exiting the infrastructure.

In addition it includes binary variables:
for all pairs of t ∈ T and r ∈ Rt:

xt,r =

{
1 if t uses r,
0 otherwise,

for all triplets of t, t′ ∈ T such that the index t is smaller than the index t′, and tc ∈
TC t ∩ TC t′ :

yt,t′,tc =

{
1 if t utilizes tc before t′ (t ≺ t′),
0 otherwise (t � t′).

In the formulation, the objective (1) is the minimization of the total weighted delays suf-
fered by trains at their exit from the infrastructure. This weighting of the objective function
allows taking into account different train priorities. These priorities may be linked to the
type of circulation (e.g., freight or passenger) or other aspects as the number of passengers
traveling on each train. A train t cannot be operated earlier than init t (Constraints (2)).
Constraints (3) indicate that the start time of track-circuit occupation along a route is zero
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if the route itself is not used. A train starts occupying track-circuit tc along a route after
spending in the preceding track-circuit its longer stay and its running time, if the route is
used (Constraints (4)). Constraints (5) impose that a train must use exactly one route. The
value of delay Dt at least equals the difference between the actual and the scheduled arrival
times at the exit of the infrastructure (Constraints (6)). A train’s utilization of a track-circuit
starts as soon as the train starts occupying the track-circuit refr,tc along one of the routes
including it, minus the formation time (Constraints (7)). The utilization of a track-circuit
lasts till the train utilizes it along any route, plus the formation and the release time (Con-
straints (8)). The track-circuit utilizations by two trains must not overlap (Constraints (9)
and (10)).

min
∑
t∈T

wtDt. (1)

ot,r,tc ≥ initt xt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r : pr,tc = tc0, (2)

ot,r,tc ≤Mxt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r, (3)

ot,r,tc = ot,r,pr,tc + lt,r,pr,tc + rtr,tyt,pr,tcxt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r : pr,tc 6= tc0, (4)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (5)

Dt ≥
∑
r∈Rt

ot,r,tc∞ +
∑
r∈Rt

rtr,tyt,tc∞xt,r + ctr,tyt,tc∞xt,r − exitt ∀t ∈ T, (6)

sU t,tc ≤
∑

r∈Rt:
tc∈TCr

(
ot,r,ref r,tc − forbsr,tc xt,r

)
∀t ∈ T, tc ∈ TC t, (7)

eU t,tc ≥
∑

r∈Rt:
tc∈TCr

ot,r,ref r,tc + relbsr,tc xt,r + ctr,tyt,tc xt,r + rtr,tyt,tc xt,r + lt,r,tc ∀t ∈ T, tc ∈ TC t,

(8)

eU t,tc −M(1− yt,t′,tc) ≤ sU t′,tc ∀t, t′ ∈ T, t < t′, tc ∈ TC t ∩ TC t′ , (9)

eU t′,tc −Myt,t′,tc ≤ sU t,tc ∀t, t′ ∈ T, t < t′, tc ∈ TC t ∩ TC t′ . (10)

For a more detailed discussion of this formulation we refer the interested reader to Pel-
legrini et al. (2014, 2015).
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3 RECIFE-MILP Benders’ reformulation

By fixing routing and scheduling variables in the RECIFE-MILP formulation (1)-(10) (let
them be x̄t,r and ȳt,t′,tc) we get the following Benders’ Sub-Problem (BSP). In our Ben-
ders’ decomposition algorithm, we do not solve the BSP (11)-(19): its dual is solved to
generate Benders’ cuts. Hence, we present also the formulation of the Dual of the Benders’
Sub-Problem (DBSP). Based on the DBSP (20)-(33) formulation, we present the Restricted
Benders’ Master Problem (RBMP) that is the reformulation of RECIFE-MILP (1)-(10).

Benders’ Sub-Problem (BSP)

min
∑
t∈T

wtDt. (11)

ot,r,tc ≥ initt x̄t,r ∀t ∈ T, r ∈ Rt, tc ∈ TCr : pr,tc = tc0, (12)

ot,r,tc ≤Mx̄t,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r, (13)

−ot,r,tc + ot,r,pr,tc + lt,r,pr,tc = −rtr,tyt,pr,tc x̄t,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r : pr,tc 6= tc0,
(14)

Dt −
∑
r∈Rt

ot,r,tc∞ ≥ −(exitt −
∑
r∈Rt

rtr,tyt,tc∞ x̄t,r − ctr,tyt,tc∞ x̄t,r) ∀t ∈ T, (15)

sU t,tc −
∑

r∈Rt:
tc∈TCr

ot,r,refr,tc
≤ −

∑
r∈Rt:

tc∈TCr

forbsr,tc x̄t,r ∀t ∈ T, tc ∈ TCt, (16)

eU t,tc −
∑

r∈Rt:
tc∈TCr

ot,r,refr,tc
− lt,r,tc ≥

∑
r∈Rt:

tc∈TCr

relbsr,tc x̄t,r + ctr,tyt,tcx̄t,r + rtr,tyt,tcx̄t,r

∀t ∈ T, tc ∈ TC t, (17)

eU t,tc − sU t′,tc ≤M −Mȳt,t′,tc ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ , (18)

eU t′,tc − sU t,tc ≤Mȳt,t′,tc ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ . (19)

Let αt,r,tc, βt,r,tc, λt,r,tc, θt, φt,tc, ωt,tc, ηt,t′,tc, ψt,t′,tc, be the dual variables
associated with Constraints (12)-(19) respectively. The Dual of the Benders’ Sub-Problem
(DBSP) is written as follows.
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Dual of Benders’ Sub-Problem (DBSP)

max(
∑
t∈T

∑
r∈Rt

∑
tc∈TCr

x̄t,r(inittαt,r,tc +Mβt,r,tc − rtr,tyt,pr,tcλt,r,tc)

+
∑
t∈T

∑
r∈Rt

∑
tc∈TCt

x̄t,r((relbsr,tc + ctr,tyt,tc + rtr,tyt,tc
′)ωt,tc − forbsr,tc φt,tc)

−
∑
t∈T

(exitt −
∑
r∈Rt

x̄t,r(rtr,tyt,tc∞ + ctr,tyt,tc∞))θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCt∩TCt′

M((1− ȳt,t′,tc)ηt,t′,tc + ȳt,t′,tcψt,t′,tc)). (20)

αt,r,tc + βt,r,tc + λt,r,tc −
∑

tc∈TCt

φt,tc − ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt, tc ∈ TCr : pr,tc = tc0,

(21)

λt,r,tc − λt,r,pr,tc + βt,r,tc −
∑

tc∈TCt

φt,tc − ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt, tc ∈ TCr, (22)

λt,r,tc −
∑

tc∈TCt

ωt,tc ≤ 0 ∀t ∈ T, r ∈ Rt, tc ∈ TCr, (23)

αt,r,tc∞ + βt,r,tc∞−λt,r,tc∞ − θt ≤ 0 ∀t ∈ T, r ∈ Rt, (24)

θt ≤ 1 ∀t ∈ T, (25)

φt,tc − ηt,t′,tc − ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ , (26)

ωt,tc + ηt,t′,tc + ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ , (27)

αt,r,tc ≥ 0 ∀t ∈ T, r ∈ Rt, tc ∈ TCr, (28)

βt,r,tc ≤ 0 ∀t ∈ T, r ∈ Rt, tc ∈ TCr, (29)

λt,r,tc ∈ R ∀t ∈ T, r ∈ Rt, tc ∈ TCr, (30)

ωt,tc, θt ≥ 0 ∀t ∈ T, tc ∈ TCt, (31)
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φt,tc ≤ 0 ∀t ∈ T, tc ∈ TCt, (32)

ηt,t′,tc, ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ . (33)

Given the DBSP (20)-(33), we can generate the cuts that are necessary to reformulate the
RECIFE-MILP formulation (1)-(10) as the Restricted Benders’ Master Problem (RBMP).

Restricted Benders’ Master Problem (RBMP)

min z (34)

z − (
∑
t∈T

∑
r∈Rt

∑
tc∈TCr

xt,r(inittαt,r,tc +Mβt,r,tc − rtr,tyt,pr,tcλt,r,tc)

+
∑
t∈T

∑
r∈Rt

∑
tc∈TCt

xt,r((relbsr,tc + ctr,tyt,tc + rtr,tyt,tc
′)ωt,tc − forbsr,tc φt,tc)

−
∑
t∈T

(exitt −
∑
r∈Rt

xt,r(rtr,tyt,tc∞ + ctr,tyt,tc∞))θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCt∩TCt′

M((1− yt,t′,tc)ηt,t′,tc + yt,t′,tcψt,t′,tc)) ≥ 0

((α, β, λ, θ, φ, ω, η, ψ) ∈ PS) (35)

∑
t∈T

∑
r∈Rt

∑
tc∈TCr

xt,r(inittαt,r,tc +Mβt,r,tc − rtr,tyt,pr,tcλt,r,tc)

+
∑
t∈T

∑
r∈Rt

∑
tc∈TCt

xt,r((relbsr,tc + ctr,tyt,tc + rtr,tyt,tc
′)ωt,tc − forbsr,tc φt,tc)

−
∑
t∈T

(exitt −
∑
r∈Rt

xt,r(rtr,tyt,tc∞ + ctr,tyt,tc∞))θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCt∩TCt′

M((1− yt,t′,tc)ηt,t′,tc + yt,t′,tcψt,t′,tc) ≤ 0

((α, β, λ, θ, φ, ω, η, ψ) ∈ RS) (36)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (37)

xt,r ∈ {0, 1} ∀t ∈ T, r ∈ Rt, (38)

yt,t′,tc ∈ {0, 1} ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ , (39)
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z ≥ 0. (40)

The additional dummy variable z represents the contribution of the RECIFE-MILP con-
tinuous variables to the RBMP (34)-(40) objective function, while sets Ps and Rs contain
the extreme points and extreme rays, respectively, of the polyhedron S representing the
feasible solution space of the DBSP (20)-(33). The RBMP (34)-(40) has only one dummy
variable z and the binary variables xt,r and yt,t′,tc of the original problem, RECIFE-MILP
(1)-(10). Note that the values of (α, β, λ, θ, φ, ω, η, ψ) are known because they are either
the extreme points Ps or the extreme rays Rs calculated in the DBSP (20)-(33). Constraints
(35) and (36) represent respectively the classic Benders’ optimality and feasibility cuts.
Constraints (37) represent the routing constraints equivalent to (5) in the RECIFE-MILP
formulation (1)-(10). We have thus reformulated the RECIFE-MILP formulation (1)-(10) as
an equivalent problem (RBMP (34)-(40)) with binary variables and one continuous dummy
variable.

At the beginning of our RECIFE-MILP Benders’ decomposition algorithm, we seek
a feasible solution to the RBMP (34)-(40) by fixing sets Ps and Rs to empty (Ps := ∅,
Rs := ∅). The problem obtained, when the constraints (35) and (36) are removed, is called
the Unrestricted Benders’ Master Problem (UBMP) which is formulated as follows.

Unrestricted Benders’ Master Problem (UBMP)

min z (41)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (42)

xt,r ∈ {0, 1} ∀t ∈ T, r ∈ Rt, (43)

yt,t′,tc ∈ {0, 1} ∀t, t′ ∈ T, t < t′, tc ∈ TCt ∩ TCt′ , (44)

z ≥ 0. (45)

We tackle our reformulation of the RECIFE-MILP formulation (1)-(10) with two Ben-
ders’ decomposition algorithms: the iterative algorithm and the integrated one. The inte-
grated algorithm uses the lazy constraint callback method. Here, we embed the DBSP (20)-
(33) into the branch-and-bound procedure of the UBMP (41)-(45). In particular, at any node
where an incumbent is found, we run a callback in which the DBSP (20)-(32) is solved. If
the DBSP (20)-(33) is unbounded we add the appropriate feasibility cut (Constraints (35))
to the UBMP (41)-(45). If the DBSP (20)-(33) is bounded we seek if its objective function
value is equal to the value of the UBMP (41)-(45) objective function. If so, a new integer
incumbent solution is found and it is tested for the optimality. If it is not optimal, we add
the appropriate optimality cut (Constraints (36)). Thus, in the integrated algorithm instead
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of iteratively solving the UBMP (41)-(45) and the DBSP (20)-(33), the whole problem is
solved in one single integrated procedure. The algorithm stops when the optimal solution is
found or when the computational time limit is elapsed. A similar approach is followed by
Wu (2013) and Feizollahi et al. (2015).

For comparison, we also tackle the problem with the iterative algorithm in which the
UBMP (41)-(45) and the DBSP (20)-(33) are iteratively solved at the optimum. At each
iteration, we add to the UBMP (41)-(45) either a Benders’ optimality cut or a Benders’
feasibility cut depending the solution of the DBSP (20)-(33) until the optimum is found (the
objective function value is the same for the UBMP (41)-(45) and the DBSP (20)-(33)) or
when the computational time limit is elapsed.

Note that for the rtRTMP, the UBMP (41)-(45) cannot be infeasible: any solution that
fixes a routing decision for each train (x variables) is feasible because there are no con-
straints on the scheduling (y variables). As a result, the infeasibility case of the UBMP (41)-
(45) is not considered in the algorithms.

4 Reduced RECIFE-MILP Benders’ reformulation

By studing the rtRTMP structure, we realize that most x−variables in an incumbent so-
lution of the UBMP (41)-(45) are zero. Hence, many constraints in the sub-problem are
negligible: for example when we know the routing decision for each train, Constraints (13)
in the BSP (11)-(19) become unnecessary because they are trivially satisfied or their role
is simply to set some variables equal to zero. Hence, many variables (as βt,r,tc) and many
constraints (as some Constraints (21) and (22)) in the DBSP (20)-(33) are also unnecessary.
For the same reason, we can discard all constraints in the BSP (11)-(19) associated with the
unused routes (x̄t,r = 0). Moreover, we observe that, in the BSP (11)-(19), the disjunctive
Constraints (18) and (19) are imposed for all track-circuits which may possibly be used by
two trains t and t′. However, if the routes chosen for the two trains imply that a possibly
shared track-circuit is used by either only one or none of them, the scheduling decision im-
plied by the corresponding y−variable is actually negligible from a practical point of view:
RECIFE-MILP will fix this variable, but this information will not be used for the practi-
cal implementation of the solution since, in reality, no precedence needs to be set unless
both trains are passing in the same location. Hence, the value of these practically negligi-
ble y−variable can be disregarded in the BSP (11)-(19), together with the corresponding
constraints. Remark that, when only one train uses a possibly shared track-circuit, only one
assignment of the y−variable is feasible: if t is using it, then the variable must be equal
to 0 since the utilization variables of t′ must be set to 0; if t′ is using it, then the variable
must be set to 1. This implication is not explicit in the UBMP (41)-(45): it can generate
solutions which result infeasible for the BSP (11)-(19) due to the negligible y−variables.
To avoid the generation of Benders’ feasibility cuts due to these variables, we remove from
the BSP (11)-(19) the Constraints (18) and (19) which correspond to the track-circuits not
actually used by each pair of trains. The result of the constraint and variable removals,
from the BSP (11)-(19) and hence from the DBSP (20)-(33), is the Reduced RECIFE-MILP
Benders’ reformulation, whose details are described in the rest of this section.

In the Reduced RECIFE-MILP Benders’ reformulation, we apply the same Benders’
algorithms, the iterative algorithm and the integrated one, replacing the BSP (11)-(19) and
the DBSP (20)-(33) by the Red-BSP (46)-(53) and the Red-DBSP (54)-(66) described in the
following.
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Reduced Benders’ Sub-Problem (Red-BSP)

Let, r̄ be the route used by train t and r̄′ the route used by train t′, where t, t′ ∈ T . Remark,
the set of track-circuits available for train t (TCt) is reduced to TC r̄ (set of track-circuits
composing the route r̄) and the set of track-circuits available for train t′ (TCt′ ) is also
reduced to TC r̄′ . The Reduced Benders’ Sub-Problem (Red-BSP) can then be formulated
as follows.

min
∑
t∈T

wtDt. (46)

ot,r̄,tc ≥ initt ∀t ∈ T, r̄, tc ∈ TC r̄ : pr̄,tc = tc0, (47)

−ot,r̄,tc + ot,r̄,pr,tc + lt,r̄,pr̄,tc = −rt r̄,tyt,pr̄,tc ∀t ∈ T, r̄, tc ∈ TC r̄ : pr̄,tc 6= tc0, (48)

Dt − ot,r̄,tc∞ ≥ −(exitt − rtr̄,tyt,tc∞ − ctr̄,tyt,tc∞) ∀t ∈ T, (49)

sU t,tc − ot,r̄,ref r̄,tc
≤ −forbsr̄,tc ∀t ∈ T, tc ∈ TC r̄, (50)

eU t,tc − ot,r̄,ref r̄,tc
− lt,r̄,tc ≥ relbsr̄,tc + ctr̄,tyt,tc + rtr̄,tyt,tc ∀t ∈ T, tc ∈ TC r̄, (51)

eU t,tc − sU t′,tc ≤M −Mȳt,t′,tc ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ , (52)

eU t′,tc − sU t,tc ≤Mȳt,t′,tc ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ . (53)

As a consequence, the Red-DBSP (54)-(66) is the following.

Reduced Dual of Benders’ Sub-Problem (Red-DBSP)

max(
∑
t∈T

∑
tc∈TCr̄

inittαt,r̄,tc − rtr̄,tyt,pr̄,tcλt,r̄,tc

+
∑
t∈T

∑
tc∈TCt

(relbsr̄,tc + ctr̄,tyt,tc + rtr̄,tyt,tc)ωt,tc − forbsr̄,tc φt,tc

−
∑
t∈T

(exitt − rtr̄,tyt,tc∞ + ctr̄,tyt,tc∞)θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCr̄∩TCr̄′

M((1− ȳt,t′,tc)ηt,t′,tc + ȳt,t′,tcψt,t′,tc)). (54)
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αt,r̄,tc + λt,r̄,tc − φt,tc − ωt,tc ≤ 0 ∀t ∈ T, r̄, tc ∈ TC r̄ : pr̄,tc = tc0, (55)

λt,r̄,tc − λt,r̄,pr,tc − φt,tc − ωt,tc ≤ 0 ∀t ∈ T, r̄, tc ∈ TC r̄, (56)

λt,r̄,tc − ωt,tc ≤ 0 ∀t ∈ T, r̄, tc ∈ TC r̄, (57)

αt,r̄,tc∞ − λt,r̄,tc∞ − θt ≤ 0 ∀t ∈ T, r̄, (58)

θt ≤ 1 ∀t ∈ T, (59)

φt,tc − ηt,t′,tc − ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ , (60)

ωt,tc + ηt,t′,tc + ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ , (61)

αt,r̄,tc ≥ 0 ∀t ∈ T, r̄, tc ∈ TC r̄, (62)

λt,r̄,tc ∈ R ∀t ∈ T, r̄, tc ∈ TC r̄, (63)

ωt,tc, θt ≥ 0 ∀t ∈ T, tc ∈ TC r̄, (64)

φt,tc ≤ 0 ∀t ∈ T, tc ∈ TC r̄, (65)

ηt,t′,tc, ψt,t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ . (66)

Finally, we need also to change the formulation of the RBMP (34)-(40) to take into
account the changes in the Red-DBSP (54)-(66). In particular, Constraints (35) and (36)
become Constraints (67) and (68). The cuts now include only the variables which we con-
sidered in the Red-DBSP (54)-(66).
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z − (
∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rtr̄,tyt,pr̄,tcλt,r̄,tc)

+
∑
t∈T

∑
tc∈TCr̄

xt,r̄((relbsr̄,tc + ctr̄,tyt,tc + rtr̄,tyt,tc)ωt,tc − forbsr̄,tc φt,tc)

−
∑
t∈T

(exitt − xt,r̄(rtr̄,tyt,tc∞ + ctr̄,tyt,tc∞))θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCr̄∩TCr̄′

M((1− yt,t′,tc)ηt,t′,tc + yt,t′,tcψt,t′,tc)) ≥ 0

((α, λ, θ, φ, ω, η, ψ) ∈ PS) (67)

∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rtr̄,tyt,pr̄,tcλt,r̄,tc)

+
∑
t∈T

∑
tc∈TCr̄

xt,r̄((relbsr̄,tc + ctr̄,tyt,tc + rtr̄,tyt,tc)ωt,tc − forbsr̄,tc φt,tc)

−
∑
t∈T

(exitt − xt,r̄(rtr̄,tyt,tc∞ + ctr̄,tyt,tc∞))θt

+
∑
t∈T

∑
t′∈T

∑
tc∈TCr̄∩TCr̄′

M((1− yt,t′,tc)ηt,t′,tc + yt,t′,tcψt,t′,tc) ≤ 0

((α, λ, θ, φ, ω, η, ψ) ∈ RS) (68)

5 Computational experiments

In this section we assess the quality of the RECIFE-MILP Benders’ reformulation and the
Reduced RECIFE-MILP Benders’ reformulation. The two reformulations are solved using
the iterative algorithm and the integrated one. We consider a case-study representing traffic
in the Rouen-Rive-Droite control area to run our experiments. This case-study is recognized
to be difficult to tackle in the time limit imposed for the rtRTMP (Pellegrini et al., 2015). We
set the computational time available for the optimization to one minute, three minutes and
five minutes. The implementation is done using IBM ILOG CPLEX Concert Technology
for C++ (IBM ILOG CPLEX version 12.6 (IBM, 2012)). The weight associated to train t’s
delay is set to 1 for all trains, since we have no information on different trains’ priority. The
route formation and release times are 15 and 5 seconds for all block sections, respectively.

The control area including Rouen-Rive-Droite comprises six stations, with two to six
platforms, and one bifurcation. The presence of multiple stations with several possible
platform assignments implies the availability of a very large number of alternative routes.
The existence of these routes is the main source of complexity of traffic management in
this location, together with the presence of mix traffic. The control area is depicted in
Figure 2. The 190 track-circuits compose 189 block sections and 11 347 routes. The one-
day timetable considered includes 186 trains: 2 high-speed and 107 conventional passenger
trains, 33 freight trains and 44 local movements.

From this one-day timetable, we create 100 random scenarios: 20% of trains, randomly
selected, suffer a random delay between 5 and 15 minutes at their entrance in the control

Rail Lille 2017, 7th International Conference on Railway Operations Modelling and Analysis, 
IAROR, Lille, France, 04 -07 avril 2017



area. We generate one rtRTMP instance from each of these 100 scenarios by considering
all the trains entering the control area within an hour horizon. We set the time horizon from
6:00 am to 07:00 am. This time horizon corresponds to the morning peak hour.

The so obtained one-hour instances include between 10 and 13 trains (mean 11). Each
train can use between 1 and 192 routes (mean 45), which translates into a RECIFE-MILP
formulation with about 117 000 continuous variables, 78 000 binary variables and 364 000
constraints, for an instance including 10 trains. We run the experiments on a computer with
eight Intel Xeon 3.5 Ghz processors and 128 GB RAM.

Oissel St. Etienne du Rouvray Sotteville Darnetal Rouen-Rive-Droite Maromme Malaunay

Paris 
Saint Lazare

Le Havre

Serqueux

Figure 2: Rouen-Rive-Droite control area

In the next subsections, we compare first the two Benders’ reformulations proposed:
the RECIFE-MILP Benders’ reformulation and the Reduced RECIFE-MILP Benders’ re-
formulation. Second we compare the iterative algorithm to the integrated one. Finally we
compare the best pair reformulation-algorithm to the RECIFE-MILP algorithm proposed by
Pellegrini et al. (2015).

5.1 Comparison of the two Benders’ reformulations

To compare the two Benders’ reformulations proposed in this paper, we tackle the 100
instances described at the beginning of this section using the integrated algorithm. We
stop the algorithm after 20 DBSP (20)-(33) solutions and we compare the computational
time employed for the two reformulations. The results show that with the RECIFE-MILP
Benders’ reformulation, the computational time for solving the DBSP (20)-(33) is very
long: 165 seconds in average. The corresponding quantity for the Reduce RECIFE-MILP
Benders’ reformulation is 0.31 seconds. Indeed, the former is not suitable for tackling the
rtRTMP, where the available computational time is only of some minutes. The latter instead
complies with the real-time nature of the problem. In the following, then, we will only
consider the Reduced RECIFE-MILP Benders’ reformulation for the experiments.

5.2 Comparison of the two Benders’ algorithms: the iterative and the integrated ones

In this section, we compare the iterative algorithm to the integrated one to solve the Reduced
RECIFE-MILP Benders’ reformulation.

The computational analysis on the 100 instances previously presented, limiting the com-
putation time to 5 minutes, shows that the integrated algorithm outperforms the iterative one.
For each instance, the integrated algorithm finds better solutions than the iterative one. The
integrated algorithm improves the quality of the objective function value of the iterative one
by 77% in average.
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Table 1: Performance of the Reduced RECIFE-MILP Benders’ algorithm vs the RECIFE-
MILP algorithm on 100 instances (time limit 60 seconds)

Algorithms # optima # best solutions found
RECIFE-MILP 1 96
Reduced RECIFE-MILP Benders’ 0 4

Table 2: Performance of the Reduced RECIFE-MILP Benders’ algorithm vs the RECIFE-
MILP algorithm on 100 instances (time limit 180 seconds)

Algorithms # optima # best solutions found
RECIFE-MILP 9 97
Reduced RECIFE-MILP Benders’ 0 3

5.3 Reduced RECIFE-MILP Benders’ algorithm versus RECIFE-MILP algorithm

In this section, we compare the performance of our Reduced RECIFE-MILP Benders’ algo-
rithm to the RECIFE-MILP one. We choose the RECIFE-MILP algorithm as the benchmark
because it is an efficient algorithm for the rtRTMP.

In Table 1, 2 and 3, we report the results achieved on the 100 instances considered,
setting the computational time available to one, three and five minutes, respectively. The
first column indicates the name of the algorithm. The two last columns contain the number
of instances solved to the optimum within the available computational time and the num-
ber of instances in which each algorithm found the best solution, respectively. The results
show that the RECIFE-MILP algorithm achieves the best performance for more cases than
the Reduced RECIFE-MILP Benders’ algorithm. For the instances on which the Reduced
RECIFE-MILP Benders’ algorithm is the best, we observe that the percentage of optimality
cuts with respect to the total number of Benders’ cuts is very high: 97% in average. Instead,
when the RECIFE-MILP algorithm is the best, we remark that this percentage decreases:
85% in average. Hence, we conjecture that the performance of the Reduced RECIFE-MILP
Benders’ algorithm would improve if the percentage of the optimality cuts generated during
the integrated branch-and-bound process increased. For the instances in which the algo-
rithms get a feasible but sub-optimal solution, the gap is still high: 98% in average for the
RECIFE-MILP algorithm and 100% in average for the Reduced RECIFE-MILP Benders’
algorithm. This is due to the weakness of the linear relaxation of the formulation, which we
will investigate deeply in future works.

Table 3: Performance of the Reduced RECIFE-MILP Benders’ algorithm vs the RECIFE-
MILP algorithm on 100 instances (time limit 300 seconds)

Algorithms # optima # best solutions found
RECIFE-MILP 10 96
Reduced RECIFE-MILP Benders’ 0 4
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6 Conclusion and future work

In this paper, we proposed two reformulations of RECIFE-MILP for the rtRTMP: the RECIFE-
MILP Benders’ reformulation and the Reduced RECIFE-MILP Benders’ reformulation. We
solve them through two Benders’ decomposition algorithms, the iterative and the integrated
one. The latter implements the lazy constraint callback that is the integration of the Ben-
ders algorithm into the branch-and-bound procedure. We tackle large and difficult instances
representing traffic at the Rouen-Rive-Droite control area, in France. The results show that
the RECIFE-MILP Benders’ reformulation is not appropriate for this problem. Instead,
the Reduced RECIFE-MILP Benders’ reformulation can be appropriate thanks to its better
computational performance. Moreover, the integrated algorithm outperforms the iterative
one. Nevertheless, the classic RECIFE-MILP achieves the best result in the majority of the
instances tackled. We conjecture that the Benders’ algorithm performance would improve
if the percentage of optimality cuts generated increased. In future works, we will focus
on how to generate strong inequalities in the unrestricted Benders’ master problem. These
inequalities must make the reduced dual of Benders’ sub-problem bounded and warrant the
generation of optimality cuts.
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