The Kendall and Mallows Kernels for Permutations - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2016

The Kendall and Mallows Kernels for Permutations

Abstract

We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings. Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional classification problems in biomedical applications.
Fichier principal
Vignette du fichier
techreportv2.pdf (1.95 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01279273 , version 1 (25-02-2016)
hal-01279273 , version 2 (12-09-2016)

Identifiers

Cite

Yunlong Jiao, Jean-Philippe Vert. The Kendall and Mallows Kernels for Permutations. 2016. ⟨hal-01279273v2⟩
677 View
825 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More