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We consider the polyharmonic equation (-∆) m u = e u in R N with m ≥ 3 and N > 2m. We prove the existence of many entire stable solutions. This answer some questions raised by Farina and Ferrero in [7].

Introduction

In this paper, we are interested in the existence of entire stable solutions of the polyharmonic equation

(1.1) (-∆) m u = e u in R N .
with m ≥ 3 and N > 2m. Moreover, a solution to (1.1) is said stable outside a compact set K if it's stable in R N \ K. For simplicity, we say also that u is stable if Ω = R N .

Definition 1. A solution u to (1.1) is said stable in Ω ⊆ R N if        Ω |∇(∆ m-1 2 
For m = 1, Farina [START_REF] Farina | Stable solutions of -∆u = e u on R N[END_REF] showed that (1.1) has no stable classical solution in R N for 1 ≤ N ≤ 9. He also proved that any classical solution which is stable outside a compact set in R 2 verifies e u ∈ L 1 (R 2 ), therefore u is provided by the stereographic projection thanks to Chen-Li's classification result in [START_REF] Chen | Classification of solutions of some nonlinear elliptic equations[END_REF], that is, there exist λ > 0 and x 0 ∈ R 2 such that

u(x) = ln 32λ 2 (4 + λ 2 |x -x 0 | 2 ) 2
for some λ > 0. (1.2) Later on, Dancer and Farina [START_REF] Dancer | On the classification of solutions of -∆u = e u on R N : stability outsider a compact set and applications[END_REF] showed that (1.1) admits classical entire solutions which are stable outside a compact set of R N if and only if N ≥ 10.

It is well known that for any m ≥ 1, λ > 0 and x 0 ∈ R 2m , the function u defined in (1.2) resolves (1.1) in the conformal dimension R 2m , they are the so-called spherical solutions, since they are provided by the stereographic projections.

For m = 2, the stability properties of entire solutions to (1.1) were studied in many works, especially the study for radial solutions is complete. Let u(x) = u(r) be a smooth radial solution to (1.1), then u satisfies the following initial value problem

(1.3)      (-∆) m u = e u , u (2k+1) (0) = 0, ∀ 0 ≤ k ≤ m -1, ∆ k u(0) = a k , ∀ 0 ≤ k ≤ m -1.
Here the Laplacian ∆ is seen as ∆u = r 1-N r N -1 u and a k are constants in R. Equivalently,

let v k = (-∆) k u for 0 ≤ k ≤ m -1, the equation (1.
3) can be written as a system

-v k - N -1 r v k = v k+1 for 0 ≤ k ≤ m -2; and -v m-1 - N -1 r v m-1 = e v 0 (1.4) where v k (0) = (-1) k a k and v k (0) = 0 for any 0 ≤ k ≤ m -1.
Let m = 2, a 0 = u(0) = 0 (It's always possible by the scaling u(λx) + 2m ln λ). Denote by u β the solution to (1.3) verifying a 1 = β, it's known from [START_REF] Berchio | Existence and stability of entire solutions to a semilinear fourth order elliptic problem[END_REF][START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF][START_REF] Warnault | Liouville theorems for stable radial solutions for the biharmonic operator[END_REF] that:

• There is no global solutions to (1.3) if N ≤ 2.

• For N ≥ 3, there exists β 0 < 0 depending on N such that the solution to (1.3) is globally defined, if and only if β ≤ β 0 . • If N = 3 or 4, any entire solution u β is unstable in R N , but stable outside a compact set. • If 5 ≤ N ≤ 12, then u β is stable outside a compact set for every β < β 0 while u β 0 is unstable outside every compact set. [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF] the examples of non radial stable solutions for ∆ 2 u = e u in R N with any N ≥ 5, and Warnault proved in [START_REF] Warnault | Liouville theorems for stable radial solutions for the biharmonic operator[END_REF] that no stable (radial or not) smooth solution exists for ∆ 2 u = e u if N ≤ 4.

• If 5 ≤ N ≤ 12, there exists β 1 < β 0 such that u β is stable in R N , if and only if β ≤ β 1 . • If N ≥ 13, u β is stable for every β ≤ β 0 . Moreover, Dupaigne et al. showed in
Recently, Farina and Ferrero [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF] studied (1.1) for general m ≥ 3, they obtained many results about the existence and stability of solutions, especially for the radial solutions. More precisely, they proved that

• For N ≤ 2m, no stable solution (radial or not) exists;

• For m ≥ 1 odd and 1 ≤ N ≤ 2m -1, any radial solution is stable outside a compact set;

• For m ≥ 1 and N = 2m, then the spherical solutions, i.e. solutions given by (1.2) are stable outside a compact set. • For m ≥ 3 odd, if (-1) k a k ≤ 0 for same 1 ≤ k ≤ m -1, then the radial solution is stable outside a compact set; • For m ≥ 2 even and u(0) = 0, there exists a function Φ : R m-1 → (-∞, 0) (depending on N ) such that the solution to (1.3) is global if and only if a m-1 ≤ Φ(a 1 , ..., a m-2 ). Moreover, if a m-1 < Φ(a 1 , ..., a m-2 ), then the solution is stable outside a compact set; It is also worthy to mention that for the conformal or critical dimension N = 2m with m ≥ 2, many existence results were established by prescribing the behavior of u at infinity. See [START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF][START_REF] Wei | Nonradial solutions for a conformally invariant fourth order equation in R 4[END_REF][START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF] for m = 2 and see [START_REF] Hyder | Conformal metrics on R 2m with constant Q-curvature, prescribed volume and asymptotic behavior[END_REF] for m ≥ 3. Clearly, these results imply the existence of many non radial solutions which are stable outside a compact set.

However, in the supercritical dimensions N > 2m with m ≥ 3, less is known for stable solutions. Farina and Ferrero raised then the question (see for instance Problem 4.1 (iii) in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]) about the existence of stable solutions. In this work, we will provide rich examples of stable solutions. First we consider radial solutions to (1.3) and show that the solution is stable if we allow a m-1 to be negative enough.

Theorem 1.1. Let m ≥ 2 and N > 2m. Given any (a k ) 0≤k≤m-2 , there exists β ∈ R such that the solution to equation (1.3) is stable in R N for any a m-1 ≤ β.
Furthermore, given any N > 2m, we prove the existence of non radial stable solution to (1.1) and the existence of stable radial solutions for the following borderline situations.

(i) N > 2m, m ≥ 3 is odd, and (-1) k a k > 0 for any 1 ≤ k ≤ m -1;

(ii) N > 2m, m ≥ 4 is even, u(0) = 0 and a m-1 = Φ(a 1 , ..., a m-2 ); The existence of stable radial solutions on the borderline for m ≥ 4 even in arbitrary supercritical dimension is a new phenomenon comparing to m = 2, where the borderline solutions are not stable out of any compact set if 5 ≤ N ≤ 12.

Theorem 1.2. For m ≥ 3 be odd and N > 2m, then there exists entire stable solution u of

(1.3) satisfying sign(a k ) = (-1) k for all 1 ≤ k ≤ m -1.
Theorem 1.3. For any m ≥ 3 and N > 2m, there exist non radial stable solutions to (1.1). Moreover, when m ≥ 4 is even, there are radial stable solutions on the borderline hypersurface of existence, i.e. when a m-1 = Φ(a k ).

The proof of Theorem 1.3 is based on the following result, which is inspired by [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF], where we construct some stable solutions to (1.1) by super-sub solution method.

Proposition 1.4. For any m ≥ 2 and N > 2m, let P (x) be a polynomial verifying

lim |x|→∞ P (x) ln |x| = ∞ and deg(P ) ≤ 2m -2.
Then there exists C P ∈ R such that for any C ≥ C P , we have a solution u of (1.1) verifying

-P (x) -C ≤ u(x) ≤ -P (x) -C + (1 + |x| 2 ) m-N 2 in R N .
Consequently, there exists C P ∈ R such that the above solution u is stable in R N for any C ≥ C P .

It will be interesting to know if all radial solutions are stable in high dimensions as for m = 2 and N ≥ 13. Unfortunately, we are not able to answer this question completely, but we can prove that for m ≥ 3 odd, and a wide class of initial data (a k ), the corresponding radial solutions are effectively always stable in large dimensions.

Theorem 1.5. Let m ≥ 3 be odd, then there exists N 0 depending only on m such that for any N ≥ N 0 , the radial solution to

(1.3) with a k ≤ 0 for 1 ≤ k ≤ m -1 is stable in R N .
The following Hardy inequalities will play an important role in our study of stability, see Theorem 3.3 in [START_REF] Mitidieri | A simple approach to Hardy inequalities[END_REF]. Let m ≥ 2 and

N > 2m. If m is odd, then λ N,m R N ϕ 2 |x| 2m dx ≤ R N |∇(∆ m-1 2 ϕ)| 2 dx for any ϕ ∈ C ∞ 0 (R N ),
where

(1.5) λ N,m := (N -2) 2 16 m 2 m-1 2 i=1 (N -4i -2) 2 (N + 4i -2) 2 .
If m is even, then

µ N,m R N ϕ 2 |x| 2m dx ≤ R N |∆ m 2 ϕ| 2 dx for any ϕ ∈ C ∞ 0 (R N ),
where

(1.6) µ N,m := 1 16 m 2 m-2 2 i=0 (N + 4i) 2 (N -4i -4) 2 .
Theorem 1.1 is proved in Section 2. More examples of stable solutions will be given in Section 3, including the proofs of Theorem 1.2, 1.3 and 1.5.

A first existence result

Here we prove Theorem 1.1. We will make use of a well-known comparison result (see for instance Proposition 13.2 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]).

Lemma 2.1. Let u, v ∈ C 2m ([0, R)) be two radial functions such that ∆ m u -e u ≥ ∆ m v -e v in [0, R) and ∆ k u(0) ≥ ∆ k v(0), (∆ k u) (0) ≥ (∆ k v) (0), ∀ 0 ≤ k ≤ m -1. (2.1)
Then for any r ∈ [0, R) we have

∆ k u(r) ≥ ∆ k v(r), for all 0 ≤ k ≤ m -1.
Now, we consider radial solutions to the initial value problem (1.3). Denote (2.2)

c k = ∆ k (r 2k ) = k i=1 2i(N -2 + 2i) for any k ≥ 1. Case 1: m ≥ 3 is odd. Fix ∆ k u(0) = a k for 0 ≤ k ≤ m -2. Consider the solution u (a k ) to (1.
3) associated to the initial values a k , 0 ≤ k ≤ m -1. We know that the solution is globally defined in R N for any (a k ), see [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]. Clearly, the polynomial

Ψ(r) = a 0 + 1≤k≤m-1 a k c k r 2k with c k given by (2.2) verifies ∆ m Ψ ≡ 0 in R N and ∆ k Ψ(0) = a k for all 0 ≤ k ≤ m -1.
As ∆ m (u (a k ) -Ψ) = -e u (a k ) < 0, it's easy to check that u (a k ) (r) < Ψ(r) for any r > 0. We claim that: u (a k ) is stable when a m-1 is small enough. In fact, we need only to get the following estimate:

(2.3) e Ψ(r) ≤ λ N,m r 2m in R N , where λ N,m > 0 is given by (1.5). Let h(r) = c m-1 r 2-2m   a 0 + 1≤k≤m-2 a k c k r 2k + 2m ln r -ln λ N,m   .
Obviously lim r→+∞ h(r) = 0 and lim r→0 h

(r) = -∞. So H 0 = sup (0,∞) h(r) < ∞ exists and (2.3) holds if -a m-1 ≥ H 0 . We conclude that if a m-1 ≤ -H 0 , R N |∇(∆ m-1 2 φ)| 2 dx - R N e u (a k ) φ 2 dx ≥ R N |∇(∆ m-1 2 φ)| 2 dx - R N e Ψ φ 2 dx ≥ R N |∇(∆ m-1 2 φ)| 2 dx -λ N,m R N φ 2 |x| 2m dx ≥ 0, i.e. u (a k ) is stable in R N .
Case 2: m is even. Let ∆ k u(0) = a k for 0 ≤ k ≤ m-2 be fixed. We can check that the scaling u(λx)+2m ln λ does not affect the stability of the solution, so we can assume that a 0 = 0 without loss of generality. By Theorem 2.2 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF], the solution to (1.4) is global if and only if a m-1 ≤ β 0 = Φ(a k ). For any a m-1 < β 0 , consider

Ψ(r) = u β 0 (r) + (a m-1 -β 0 )r 2m-2 c m-1 , then ∆ m Ψ = ∆ m u β 0 = e u β 0 ≥ e Ψ . Using Lemma 2.1, we have u (a k ) ≤ Ψ in R N as ∆ k Ψ(0) = ∆ k u (a k ) (0) for any 0 ≤ k ≤ m -1.
As above, if there holds

(2.4) e u β 0 e (a m-1 -β 0 )r 2m-2 c m-1 ≤ µ N,m r 2m in R N , with µ N,m given by (1.6), then u (a k ) is stable in R N . Let g(r) = c m-1 r 2-2m u β 0 (r) -ln
µ N,m r 2m -β 0 . By [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF], the borderline entire solution u β 0 (r) = o(r 2m-2 ) as r → ∞. So lim r→+∞ g(r) = -β 0 , lim r→0 g(r) = -∞, and (2.4) holds if we take -a m-1 ≥ sup (0,∞) g.

More stable solutions

Here we show more examples of stable solutions by proving Theorems 1.2, 1.3 and 1.5.

3.1.

Proof of Theorem 1.2. Consider u ε , solution of (1.3) with the initial conditions a k = (-1) k ε for 0 ≤ k ≤ m -3; a m-2 = -β with β > 0 and a m-1 = ε. Here ε ∈ (0, 1] is a small parameter, for simplicity, we will omit the exponent ε in the following. Let

Ψ(r) := - β c m-2 r 2m-4 + εH(r),
where

H(r) := 1 + m-3 k=1 (-1) k c k r 2k + r 2m-2 c m-1
with c k given by (2.2).

Therefore (-∆) m Ψ ≡ 0 and ∆ k Ψ(0) = ∆ k u(0) for any 0 ≤ k ≤ m -1. Denote also

H + (r) := 1 + m-3 k=1 r 2k c k + r 2m-2 c m-1 .
As we have 1) and consider v :

u ≤ Ψ ≤ - β c m-2 r 2m-4 + εH + (r) in [0, ∞), there holds u(r) ≤ εH + (1) in [0, 1]. Denote γ 0 := e H + (
= u -Ψ + γ 0 cm r 2m . Then ∆ m v = ∆ m u + γ 0 = -e u + γ 0 ≥ 0 for any ε ≤ 1 and r ∈ [0, 1]. Since ∆ k v(0) = 0 for any 0 ≤ k ≤ m -1, we get v ≥ 0 in [0, 1], hence u(r) ≥ εH(r) - β c m-2 r 2m-4 - γ 0 c m r 2m > -H + (1) - β c m-2 - γ 0 c m =: ξ 0 , ∀ r ∈ [0, 1], ε ≤ 1.
Inversely, consider w := u -Ψ + e ξ 0 cm r 2m in [0, 1], there holds ∆ m w = e ξ 0 -e u ≤ 0 in [0, 1]. By Lemma 2.1, we have then ∆ k w(r) ≤ 0 in [0, 1] for any 0 ≤ k ≤ m, so that for r ∈

[0, 1], ∆ m-1 u(r) ≤ ε - e ξ 0 2N r 2 , ∆ m-2 u(r) ≤ -β + ε 2N r 2 - e ξ 0 8N (N + 2) r 4 .
Moreover, as ∆ m-1 u is decreasing, we have ∆ m-1 u(r)

≤ ∆ m-1 u(1) ≤ ε -e ξ 0 2N in (1, ∞). Conse- quently, for r > 1, ∆ m-2 u(r) = ∆ m-2 u(1) + r 1 ρ 1-N ρ 0 s N -1 ∆ m-1 u(s)dsdρ ≤ -β + ε 2N - e ξ 0 8N (N + 2) + r 1 ρ 1-N ρ 0 ε -e ξ 0 min(1, s) 2 2N s N -1 dsdρ = -β + ε r 2 2N -e ξ 0 1 8N (N + 2) + 1 2N 2 r 1 ρ - 2 N + 2 ρ 1-N dρ = -β + e ξ 0 8N (N -2) + ε - e ξ 0 4N 2 r 2 - e ξ 0 N 2 (N 2 -4) r 2-N .
Combining the above estimates, we conclude that if 0

< ε ≤ ε 1 := min(1, e ξ 0 4N 2 ), ∆ m-2 u(r) ≤ -β + e ξ 0 2N =: h(β) for any r ∈ [0, ∞).
This yields then for ε ≤ ε 1 , by Young's inequality,

u(r) ≤ ε + ε m-3 k=1 (-1) k c k r 2k + h(β) r 2m-4 c m-2 ≤ 2ε 1 + C 1 + h(β) r 2m-4 c m-2 , ∀ r > 0.
As lim β→∞ h(β) = -∞, there exists β 1 large such that u(r) ≤ ln λ N,m -2m ln r in (0, ∞) if β ≥ β 1 . This means that u is stable for any 0 < ε ≤ ε 1 and β ≥ β 1 .

3.2. Proof of Proposition 1.4 and Theorem 1.3. As already mentioned, Theorem 1.3 is a direct consequence of Proposition 1.4. So we will consider firstly Proposition 1.4.

Let P be s polynomial in R N with deg(P ) ≤ 2m -2 such that ln |x| = o(P (x)) as |x| goes to infinity. We are looking for a solution u of the form u(x) = -P (x) -C + z(x) with

(3.5) (-∆) m z(x) = e -P (x)-C+z(x) in R N and z(x) = O(|x| 2m-N ) as |x| → ∞.
Equivalently, we will resolve the following system:

(3.6)        -∆z = (N -2m)(2m -2)v 1 in R N , -∆v k = (N -2m + 2k)(2m -2k -2)v k+1 in R N , 1 ≤ k ≤ m -2 -∆v m-1 = d m e -P (x)-C e z in R N .
Here

1 d m = m-1 i=1 2i(N -2i -2).
Set W j := (1 + |x| 2 ) j-N 2 for j ∈ Z, the straightforward calculations yield that -∆W j = (N -2j)(2j -2)W j-1 + (N -2j)(N -2j + 2)W j-2 for any j ∈ Z.

Therefore, for 2 ≤ j < N 2 , we have -∆W j ≥ (N -2j)(2j -2)W j-1 .

Let N > 2m,

Z(x) := W m (x) > 0, V k := W m-k (x) > 0 for 1 ≤ k ≤ m -1. So -∆Z ≥ (N -2m)(2m -2)V 1 , -∆V k ≥ (N -2m + 2k)(2m -2k -2)V k+1 for 1 ≤ k ≤ m -2 and -∆V m-1 = N (N -2)W -1 = N (N -2)(1 + |x| 2 ) -1-N 2 . Consider f (x) := -P (x) + N + 2 2 ln(1 + |x| 2 ) + ln d m -ln[N (N -2)] + (1 + |x| 2 ) m-N 2 ,
by our assumption on P and m < N 2 , readily max R N f (x) = C P < ∞ exists. For any C ≥ C P , we have

-∆V m-1 ≥ d m e -P (x)-C P e Z ≥ d m e -P (x)-C e Z in R N .
In other words, (Z, V 1 , ..., V m-1 ) is a super-solution in R N to the system (3.6) for C ≥ C P .

Since the system (3.6) is cooperative, (0, 0, ..., 0) and (Z, V 1 , ..., V m-1 ) form a pair of ordered sub and super-solutions, we obtain the existence of a solution to (3.6), hence a solution of (3.5). Moreover, the solution u satisfies -P

(x) -C ≤ u(x) ≤ -P (x) -C + Z(x) in R N .
To ensure the stability of u, it's sufficient to choose C such that Therefore, if we take C p = max(C P , C P ), u is a stable solution in R N if C ≥ C P . The proof of Proposition 1.4 is completed.

Remark 3.1. We do not know if the assumption lim |x|→∞

P (x)
ln |x| = ∞ is equivalent or not to the apparently weaker condition lim |x|→∞ P (x) = ∞.

Proof of Theorem 1.3. Indeed, if P is non radial in Proposition 1.4, the solution u constructed is clearly non radial. On the other hand, if P is radial, as our super and sub-solutions are radial, we can work in the subclass of radial functions to get a radial solution u. So for m ≥ 4 even, if we consider polynomials P (r) = 0≤k≤j b k r 2k with b j > 0 and 1 ≤ j ≤ m -2, we obtain radial stable solutions u satisfying u(r) = o(r 2m-2 ) at infinity. By [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF], such radial solutions must be on the borderline hypersurface a m-1 = Φ(a k ). Remark 3.2. For m ≥ 3 odd, if we take P (x) = P (r) = b 1 r 2 with b 1 > 0, the radial stable solutions obtained verify that (-∆) k u(0) > 0, i.e. sign(a k ) = (-1) k for 1 ≤ k ≤ m -1, since otherwise u(r) ≤ -Cr 4 at infinity, see [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]. The solutions obtained in the proof of Theorem 1.2 are different, because they satisfy lim r→∞ ∆ m-1 u < 0.

3.3.

Proof of Theorem 1.5. Our argument is based on the following estimate. Lemma 3.3. Let ξ be a radial function in C 2 (R N ). Suppose that ∆ξ ≥ r g(r) with > -1 and g nonincreasing in r, then ξ(r) ≥ ξ(0) + r +2 (N + )( + 2) g(r), ∀ r ≥ 0.

In fact, we have Integrating again, we get ξ(r) ≥ ξ(0) + g(r) r +2 (N + )( + 2)

.

Consider now m odd. Let u be the solution to (1.3) with a k ≤ 0 for all 1 ≤ k ≤ m -1. Denote w k := ∆ k u for 1 ≤ k ≤ m -1. As ∆ m-1 w 1 = -e u < 0 and ∆ k w 1 (0) = a k+1 ≤ 0 for all 0 ≤ k ≤ m -2, we get w 1 ≤ 0 in R N , hence u is decreasing in r. By Lemma 3. In particular, there holds -∆u(r) = -w 1 (r) ≥ r 2m-2 P m-1 (N ) e u(r) , ∀ r > 0.

Using (3.8), we get -u (r) ≥ r 2m-1 (N + 2m -2)P m-1 (N ) e u(r) , ∀ r > 0. 

e u φ 2

 2 φ)| 2 dx -Ω e u φ 2 dx ≥ 0 for any φ ∈ C ∞ 0 (Ω), when m is odd; dx ≥ 0 for any φ ∈ C ∞ 0 (Ω),when m is even.

(3. 7 )

 7 e u(x) ≤ e -P (x)-C+Z(x) ≤ e -P (x)-C+1 ≤ γ N,m |x| 2m in R N , where γ N,m = λ N,m in (1.5) if m is odd and γ N,m = µ N,m given by (1.6) if m is even. Let g(x) = 1 -ln γ N,m -P (x) + 2m ln |x|, clearly C P = max R N \{0} g(x) < ∞ exists since lim |x|→0 g(x) = lim |x|→∞ g(x) = -∞.

  )s N -1 s ds ≥ r 1-N g(r)

1 =0(

 1 3, as-∆w m-1 = e u , -w m-1 (r) ≥ -a m-1 (0) + r 2 2N e u(r) ≥ r 2 2N e u(r) , so we have-∆w m-2 (r) = -w m-1 (r) ≥ r 2 2N e u(r) , ∀ r > 0.Applying again Lemma 3.3, we obtain-w m-2 (r) ≥ -a m-2 + r 4 8N (N + 2) e u(r) ≥ r 4 8N (N + 2) e u(r) .By induction, for all 1 ≤ k ≤ m -1,-w m-k (r) ≥ r 2k P k (N )e u(r) for any r > 0,whereP k (N ) = 2 k k! k-

Thereforee 0 s

 0 -u(r) ≥ e -u(0) + r 2m-1 (N + 2m -2)P m-1 (N ) ds ≥ r 2m P m (N ) , hence e u(r) ≤ P m (N ) r 2mfor any r > 0.As polynomial in N , deg(P m ) = m while deg(λ N,m ) = 2m, so there exists N 0 such that forN ≥ N 0 , P m (N ) ≤ λ N,m , then e u ≤ Pm(N ) r 2m ≤ λ N,mr 2m i.e. the solution u is stable in R N .
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