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GRADED MESH APPROXIMATION IN WEIGHTED SOBOLEV

SPACES AND ELLIPTIC EQUATIONS IN 2D

JAMES H. ADLER AND VICTOR NISTOR

Abstract. We study the approximation properties of some general finite-

element spaces constructed using improved graded meshes. In our results, ei-

ther the approximating function or the function to be approximated (or both)
are in a weighted Sobolev space. The finite-element spaces that we define are

obtained from conformally invariant families of finite elements (no affine in-

variance is used), stressing the use of elements that lead to higher regularity
finite-element spaces. We prove that for a suitable grading of the meshes, one

obtains the usual optimal approximation results. We provide a construction

of these spaces that does not lead to long, “skinny” triangles. Our results
are then used to obtain hm-quasi-optimal rates of convergence for the FEM

approximation of solutions of strongly elliptic interface/boundary value prob-

lems.

Introduction

Consider the typical problem of approximating the solutions of a diffusion prob-
lem with zero Dirichlet boundary conditions,

(0.1)

 −div(A∇u) = f in Ω
ν ·A · ∇u = 0 on ∂NΩ
u = 0 on ∂DΩ.

Here, ν is the outward normal vector to the boundary, Ω is a polygonal domain
in two space dimensions (2D) or three space dimensions (3D), and f ∈ Hm−1(Ω).
We allow piecewise smooth coefficients, so we consider also transmission problems.
This problem arises in many practical applications. Typically one is interested in
approximating the solution, u, with some simpler functions or at least in approx-
imately computing some quantities of interest associated to u. One of the most
commonly used methods to approximate u is the Finite-Element Method (FEM).
See for instance [8, 14, 17, 21, 37, 38] for introductions to this method. The results
here extend almost without change to systems such as the elasticity system and to
non-homogeneous boundary conditions.
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2 J. H. ADLER AND V. NISTOR

The standard applications of FEM to approximate the solution, u, of Equation
(1) requires it to possess good regularity properties. However, it is known [7, 26,
27, 30] that the solution, u, of this equation on non-smooth domains is typically
not in Hm+1(Ω), but rather has the limited regularity, u ∈ Hs−ε(Ω), where s = sΩ

is a constant associated to Ω and where ε > 0 is arbitrary. This is not an artifact
of the method, but it does lead to decreased rates of convergence in the FEM
approximations. Due to its practical importance, many works have been devoted
to correcting this deficiency, see for example [1, 4, 9, 10, 11, 12, 14, 25, 23, 13, 28,
32, 35].

A common result of the above research is that the solution, u, of equation (1)
has better regularity properties in a weighted Sobolev space [30, 31, 35]. More
precisely, let rΩ(x) denote the distance from x to the set of singular points of Ω
[35] and define the weighted Sobolev space of order m and weight a by

(0.2) Kma (Ω) = {v : Ω→ C, r|α|−aΩ ∂αv ∈ L2(Ω), |α| ≤ m}.

Then, u ∈ Km+1
a+1 (Ω), for a > 0 small enough (more precisely, a < π/αmax, where

αmax ∈ (0, 2π] is the maximum angle of Ω). In two dimensions, this is enough
to recover quasi-optimal rates of convergence for the finite-element approximations
of u [1, 9, 12, 35]. The proof of this result depends essentially on an approxima-
tion property of the solution, u, in weighted Sobolev spaces using graded meshes.
More precisely, it was shown (see for example [3, 9, 12, 35]) that there exists a
sequence of nested meshes, Tn, with the following property: Let Sn be the se-
quence of finite-element spaces of continuous functions on Ω that restrict to each
triangle of Tn a polynomial of order m. Then, dim(Sn) → ∞ and there exists a
sequence of interpolation operators In and a constant C > 0 with the property
‖u − In(u)‖H1(Ω) ≤ C dim(Sn)−m/2‖u‖Km+1

a+1 (Ω), for m ≥ 1. Since there exists a

constant C such that ‖u‖Km+1
a+1 (Ω) ≤ C‖f‖Hm−1(Ω), the above approximation be-

comes

(0.3) ‖u− In(u)‖H1(Ω) ≤ Ca dim(Sn)−m/2‖f‖Hm−1(Ω),

for some constant Ca > 0. This is the same result that one would obtain in the
classical case of quasi-uniform meshes, if the solution u were in Hm+1(Ω).

In this paper, we extend the approximation result of Equation (3) above and
offer different variants of the construction of the sequence of graded meshes Tn. For
instance, we offer a construction that yields a minimum angle condition independent
of m. This is relevant for the hp-version of the FEM as long skinny triangles are
avoided. We also include interfaces, in the sense that we partition the domain, Ω,
into several polygonal subdomains, Ωj , and we only assume u ∈ Km+1

a+1 (Ωj) for all

j, but u ∈ K1
a+1(Ω) for the entire domain.

Another new feature of this paper is that in it we consider finite-element spaces
with higher regularity, forcing us to consider finite-element spaces generated by
conformally invariant families (this definition is slightly more general than the one
in Section 2.3 of [21], for instance). Therefore, the constructions are not restricted
to Lagrange finite elements. This may be useful for higher order problems. See
[18, 16, 29] for example. In addition, we provide L2-error estimates.

To formulate more precisely the general form of the problem, assume that the
straight polygonal domain, Ω, is decomposed as Ω = ∪Kk=1Ωk, where Ωk are disjoint
straight polygonal domains. The set Γ := ∂Ω r ∪Kk=1∂Ωk, that is, the part of
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the boundary of some Ωk that is not contained in the boundary of Ω, is called
the interface, as usual. Then, assume that the coefficients A = [aij ] have only
jump discontinuities across the interface Γ. That is, the restriction to any of the
domains, Ωk, of any of the coefficients, aij , extends to a smooth function on Ωk.
Also, Equation (1) is formulated in a weak sense, which implies the usual matching
and jump conditions at the interface. (See Section 3 for details.) We also assume
that −div(A∇) is uniformly strongly elliptic, in the usual sense, see Equation (31).

The paper is organized as follows. In Section 1, we describe the family of finite
elements that we consider as well as stating the outline of the problem. In Section 2,
we state and prove the approximation results. In addition, we describe the graded
meshes and how they produce optimal results. Section 3 gives examples on how the
above results can be applied to finite-element discretizations for certain problems.
We also explain how to obtain classical “textbook” hm-error estimates. Finally, we
make some concluding remarks toward the end of the paper.

1. Conformal Families of Finite Elements

We consider a bounded polygonal domain, Ω ⊂ R2, with straight edges. We also
assume that we are given a disjoint decomposition of the boundary into “Dirichlet”
and “Neumann” parts, ∂Ω = ∂DΩ∪∂NΩ, with ∂DΩ a closed subset, and both ∂DΩ
and ∂NΩ sets with finitely many components.

This section explains the type of finite elements considered in this paper. The
reader may skip this section at the first reading and go to the next section, as-
suming for instance that order m Lagrange elements are used, in which case this
construction is simpler.

1.1. A Typical Finite Element. Consider (essentially) the framework of Ciarlet
[22, 21]. The main difference in our approach is that we emphasize more the
interpolant rather than the degrees of freedom. Also, our families will not be,
in general, affine equivalent, so we do not consider reference finite elements.

Consider an arbitrary triangle, T , fixed throughout this subsection. Denote by
Pj , the space of polynomials P : R2 → R of degree (at most) j, and fix a dimension-
N space PT ,

(1.1) Pm ⊂ PT ⊂ Pm′ .

In addition to the integer parameters m and m′ introduced above in Equation (4),
we also fix two integers r ≤ s. The integer s determines the smoothness of the
functions that can be interpolated (by the higher order of the derivatives appearing
among the degrees of freedom) and is called the degree of the interpolant. The
integer r is defined such that the resulting finite-element (FE) space has smoothness
Hr+1. The integer m is called the polynomial degree of approximation and the
integer m′ is called the maximum polynomial degree of the FE spaces.

Then, consider linear functionals, `i, on Cs(R2), 1 ≤ i ≤ N = dim(PT ), called
degrees of freedom, whose restrictions to PT form a basis of P∗T , where P∗T denotes
the space of linear functionals on PT . Assume that the degrees of freedom are of
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one of the following three types, with p and q denoting polynomials:

(1.2)

`i : PT → R, `i(p) = ∂jx∂
k
yp(z), where z ∈ T and j + k ≤ s ,

`i(p) =

∫
σ

q(x, y)∂kνp(x, y)dσ , where σ = an edge of T and k ≤ s, or

`i(p) =

∫
T

q(x, y)p(x, y)dxdy.

If `i is of the first type (type I), then we say that its support is z. If `i is of the
second type (type II), then we say that its support is σ. Finally, if `i is of the third
type (type III), we say that its support is T . Thus, the support of `i is the support
of the corresponding distribution. If `i is of type II, then ν is a unit normal vector
to σ and dσ is the arc length measure on σ. The motivation for considering degrees
of freedom that are not type I is provided, for instance, by [5, 6].

Denote by ΣT := {`i} the set of the given linear functionals, which are assumed
to be a linearly-independent set. Since ΣT is a basis of P∗T , there exists a dual basis
{pi} ⊂ PT such that

`i(pj) = δij ,

and, then, we define the interpolation operator as usual,

(1.3) IT = IT,PT ,Σ : Cs(T )→ PT , IT (f) =

N∑
i=1

`i(f)pi.

(Recall that δij denotes the Kronecker symbol: δii = 1 and δij = 0 if i 6= j.) The
fact that {pi} is the dual basis to {`i} ensures that I2

T = IT , and, hence, IT is a
projection onto PT , that is IT (p) = p, for all p ∈ PT . Then, ΞT := (T,PT , IT ) is
a finite element on T . The support of ΞT is the set consisting of the supports of
the degrees of freedom `i ∈ ΣT . Note, however, that the set ΣT is not determined
by the triple ΞT := (T,PT , IT ), in the sense that the same finite element can be
obtained from a different choice of degrees of freedom. It is in this sense that we
choose to make IT a more important ingredient of the definition than the set ΣT .
The reason for this choice is the better invariance properties of the interpolation
operator IT , see below. This is the main difference to [21]. Finally, note that the
support of ΞT is independent on the choice of the degrees of freedom.

If T ′ is any other triangle and L is an invertible affine map (that is a linear map
plus a translation) such that L(T ) = T ′, then L can transport PT , IT , and the
support of ΞT = (T,PT , IT ) to T ′ as usual. Explicitly, let

(1.4) PT ′ := {p ◦ L−1, p ∈ PT } and IT (f) = IT (f ◦ L) ◦ L−1.

Then, we denote by

(1.5) L(ΞT ) := ΞT ′ = (T ′,PT ′ , IT ′),
the corresponding finite element on T ′.

1.2. Assumptions on the Families of Finite Elements. Assume that to each
triangle, T , in the plane there is associated a finite element ΞT = (T,PT , IT ) and
that this family depends continuously on T (in an obvious sense, see Assumption
1). Notice that the continuity condition implies the continuity of the supports of
the elements, ΞT . In particular, if one of the finite elements has an edge in its
support, then all the edges of all triangles are in the supports of the corresponding
ΞT . The following three assumptions are made for this family, F = {ΞT }, of finite
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elements. First, in order to obtain interpolation estimates in the usual way, we
assume that the family is continuous and conformally invariant.

Assumption 1: Continuity and conformal invariance. The family F = {ΞT },
ΞT = (T,PT , IT ), is continuous and conformally invariant in the following sense.
First, the spaces, PT ⊂ Pm′ , and the interpolants, IT : Cs(R2) → R, depend
continuously on T and, second, if L is a conformal linear map (the composition of
dilations and isometries) and L(T ) = T ′, then L(ΞT ) = ΞT ′ .

Next, we want the resulting finite-element spaces to have smoothness Cr.
Assumption 2: Matching of derivatives. Let σ be an edge and choose any
triangle T with σ as an edge. Also, denote by ΣT,σ the set of degrees of freedom
`i ∈ ΣT with support contained in σ. We assume that if `i(p) = 0 for all `i ∈ ΣT,σ,
then ∂kνp = 0 on σ for all k ≤ r (here, as before, ν is the normal derivative to σ).

The third assumption has to do with constructing degrees of freedom of the
associated finite-element space. Let T be a triangle with associated finite element
ΞT . Fix a set of degrees of freedom, ΣT , defining ΞT . We shall regard ΣT as a
subset of the space, Cs(R2)′, of continuous linear maps, Cs(R2) → R. In order
to formulate the assumption on the meshes, we need to introduce the following
notation:

(1) Let z be a vertex of T , then denote Vz as the linear span of the degrees of
freedom supported on z.

(2) Let σ be an edge of T , then denote Vσ as the linear span of the set of
degrees of freedom of ΣT supported on σ.

(3) Let σ be an edge of T and z ∈ σ be a point that is not a vertex of σ,
then denote Vσ,z as the linear span of the set of degrees of freedom of ΣT
supported on z.

(4) Finally, denote VT as the set of degrees of freedom of ΣT supported on T .

Then, the third assumption on the family F of finite elements is as follows.

Assumption 3: Independence of degrees of freedom. The sets Vz, Vσ, and
Vσ,z, introduced above, do not depend on T (they depend only on the indicated
subscripts).

1.3. Examples of Families of Finite Elements. We now construct examples
of families, F = {ΞT }, ΞT = (T,PT , IT ), of finite elements satisfying the three
assumptions of the previous subsection, where T ranges through the set of all
triangles.

The most important example is also the simplest: Lagrange triangles of type (m)
[21]. Recall that in this case, m = m′ and r = s = 0, so PT = Pm for any triangle
T . The degrees of freedom are given by the evaluations at the points z ∈ T that,
in barycentric coordinates on T , are of the form [λ0/m, λ1/m, λ2/m], where λ1, λ2,
and λ3 are integers. See [21] for a proof that all the conditions are satisfied for this
finite element. In fact, these families are even affine invariant (not just conformally
invariant).

Higher regularity finite-element spaces are needed for fourth order problems and
in certain formulations of second-order elliptic problems using the least-squares
finite-element method. Two examples that yield C1-finite elements are the Argyris
and the Bell triangle [21]. The Argyris triangle provides an example with m =
m′ = 5, s = 1, and r = 2. The degrees of freedom are all the partial derivatives
of order ≤ r = 2 at the vertices and the normal derivative at the midpoints of
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the edges (so N = 21). The Bell triangle is similar, but m = 4 (m′, s, and r
are the same). Both the Argyris and Bell triangles require C2-regularity of the
function to be approximated (in the domain of the interpolant), while yielding only
C1-regularity for the resulting finite-element space.

1.4. Finite-Element Space and Interpolation. With the notation and the as-
sumptions of Subsection 1.2, let F denote the given family of finite elements, ΞT .
We now extend the constructions of that subsection to a mesh, T = {Tj}, on Ω
yielding a finite-element space, S(T ,F) = S(T ), and an interpolation operator,
IT ,F = IT , as follows. Recall, that a mesh T on Ω is a set of disjoint (open) trian-

gles, Tj ⊂ Ω, satisfying ∪T j = Ω. We also assume that ∂DΩ, the Dirichlet part of
the boundary, is a union of edges of triangles, T ∈ T . Hence, the Neumann part
of the boundary, ∂NΩ, has the same property. Eventually (beginning with Section
2), we require the triangles of T to be aligned to the interface. For this discussion,
though, this is not necessary. We also assume that the meshes are conforming,
meaning, as usual, that if the closures Ti and Tj of two triangles Ti and Tj of this

mesh intersect, then their intersection Ti ∩ Tj is either a vertex or an edge of these
triangles.

Consider for each triangle, T , the space PT and the support of the finite element
ΞT . The union of the supports of all the finite elements, ΞT , is the support of T .
Recall the notation introduced in Subsection 1.2 and consider the following. For
each vertex z of T , consider a basis Σz of the set Vz. For each edge σ of T , consider
a basis Σσ of Vσ. Finally, for each edge σ of T and z ∈ σ that is the support of
some degree of freedom, consider a basis Σσ,z of Vσ,z. Notice that the sets Σz, Σσ,
and Σσ,z are defined using a triangle T of the mesh. However, by Assumption 3 of
Subsection 1.2, these sets do not depend on the choice of T . Then, the set ΣT ,F
of degrees of freedom associated to T and F is defined as the union of the sets Σz,
Σσ, Σσ,z considered above, and of the basis of all the spaces VT , where T ranges
through all the triangles of T .

We now define the finite-element space, S(T ) = S(T ,F), associated to F :=
{ΞT = (T,PT ,ΣT )} and T as follows. Consider the set of families, (fT ), fT ∈ PT ,
for all T ∈ T . Such a family, (fT ), is called matching if `i(fT ) = `i(fT ′) and if T
and T ′ are two adjacent triangles of T , such that `i ∈ ΣT ,F is a degree of freedom
that is common to both T and T ′. Then,

(1.6) S(T ,F) := {(fT ), fT ∈ PT is a matching family and fT = 0 on ∂DΩ } .

Let u ∈ Cs(Ω). Then, for each triangle T in the mesh T , the interpolant uT :=
IT (u) ∈ PT is defined, where IT is associated to T and the family F := {ΞT },
ΞT = (T,PT , IT ), as before. The assumptions from Subsection 1.2 on the finite
element shows that the collection (uT ) is a matching family, so it is in S(F). We
then define

(1.7) IT ,F (u) = (IT (u)) ∈ S(T ,F).

2. Discretization Error Estimates and κ-Refinements

The purpose of this section is to describe a sequence of (graded) triangular
meshes, Tn, in the domain, Ω, that provide quasi-optimal approximations of func-
tions in suitable weighted Sobolev spaces. In particular, we extend the approx-
imation results of [12, 35] from Lagrange elements to the more general elements
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described above. We also consider approximations in other norms. Let m ≤ m′

and r ≤ s be as in the previous section. That is, the integer m is the polynomial
degree of approximation, the integer m′ is the maximum polynomial degree of the
FE spaces, the integer s is the degree of the interpolant, and the integer r + 1
is the smoothness of the FE space. Also, we consider a continuous family, F , of
conformally invariant finite elements, as described above in Subsection 1.2.

Next, consider the interfaces. Recall that the domain, Ω, is a polygonal domain
with straight edges (called a straight polygon). For simplicity, we do not allow for
cracks or vertices that touch the boundary. The case of cracks would be very similar
to that of the interface, but would allow functions with jump discontinuities along
the crack. We leave for the reader to make the necessary changes to deal with
cracks. On the other hand, when considering mixed boundary conditions, it is well
known that singularities appear at the points where the boundary conditions change
(from Dirichlet to Neumann). These singularities are very similar in structure to
the singularities that appear at geometric vertices. Thus, we define the set V of
singular points of Ω as the set where singularities of the solutions of elliptic partial
differential equations may arise. These consist, in this case, of all the geometric
vertices of Ω, all points where the type of boundary conditions change, all points
where the interface touches the boundary, and all the non-smooth points of the
interface (more singular points would have to be included if cracks were allowed,
such as the tips and ends of the cracks and the non-smooth points of the cracks).

Assume that Ω = ∪Kj=1Ωj , with Ωj also straight polygons. Assume the domains,

Ωj , are open and disjoint. We are looking to approximate a function u ∈ K1
a+b+1(Ω),

such that the restriction of u to any of the subdomains, Ωj , satisfies u ∈ Km+1
a+b+1(Ωj)

for all j. Here, a > 0 is a constant that depends on the Problem (1) (for instance on
the domain Ω), whereas b ∈ R is a parameter that is considered in view of further
applications, including the least squares finite-element method [32]. It is, therefore,
convenient to assume that the initial refinement of Ω is such that the interface is
resolved exactly by the meshes, that is, the interface is a union of the edges of the
meshes that are considered. It turns out that it is enough to assume that the initial
mesh, T0, resolves the interface exactly.

For the remaining part of this paper, we assume that the boundary of Ω and the
interface Γ are piecewise linear. For simplicity of the theoretical analysis, we again
assume that there are no cracks. We note, however, that the mesh refinement in
the case of cracks is completely similar, as long as one resolves the crack exactly
and allows for discontinuous approximation functions along it.

2.1. Approximation Away from the Singular Points. We start by discussing
the simpler approximation of the solution, u, away from the singular points. Recall
that all estimates in the spaces Kma (Ω) localize to subsets of Ω.

Let P be any polygonal domain. In the applications considered here, P is a subset
of Ω. Let T be a mesh of P and let S(T ,F) be the associated finite-element space
as described in the previous section, Section 1. By a mesh or a triangulation of P
we shall mean the same thing, since we only consider conforming meshes.

We denote by uI = IT ,F (u) ∈ S(T ,F) the interpolant of u. The interpolant
IT (u) = IT ,F (u) has the following approximation property that generalizes classical
results from [8, 17, 21, 37]. Many of the results below hold in greater dimensions,
so we introduce d to be the dimension of the domain, assuming though that d = 2
in this paper.
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Theorem 2.1. Let α > 0 and 0 ≤ q ≤ p ≤ m + 1 be fixed integers, with m as in
Equation (4), p > s + 1 = s + d/2 and q ≤ r + 1. Then, there exists a constant
C(α,m) > 0 with the following property. Let T be a triangulation of P and assume
that all triangles T in T have angles ≥ α and sides of length ≤ h. Then, the
interpolant uI := IT ,F (u) ∈ S(T ,F) satisfies

|u− uI |Hq(P) ≤ C(α,m)hp−q|u|Hp(P),

for all u ∈ Hp(P).

This result is well known for affine invariant families [17, 21]. The main point of
this proof is to extend it to conformally invariant families of finite elements.

Proof. Note that for d ≥ 2 the relation r ≤ s gives q < p.
Consider a triangle OAB as shown in the left side of Figure 2.1 and denote by

Ô, Â, and B̂ the measures of its angles. Denote by S the set of triangles OAB with
the following properties:

(1) O = (0, 0) is the origin,
(2) A = (x, 0) is on the positive x-axis (x > 0),

(3) the angles of the triangle satisfy Ô ≤ Â ≤ B̂ (so |AB| ≤ |OB| ≤ |OA|),
and

(4) B is in the upper half-plane.

Then, any triangle T in the plane is congruent to a unique triangle T1 in S. Denote
the set of triangles OAB in S for which |OA| = x by Sx. Since the set of conformal
mappings contains the set of dilations, we have that every triangle T is conformally
equivalent to a triangle T1 ∈ S1. The vertex B then completely determines the
triangle OAB in S1 (since O and A are fixed). Therefore, the set S1 identifies with
the set

(2.1) B := {B = (x, y) ∈ Rd, y > 0, x2 + y2 ≤ 1, and (x− 1)2 + y2 ≤ 1}.

The set of triangles in S1 that have all angles ≥ α hence form a compact set
Kα ⊂ S1. See right side of Figure 2.1.

Since Hp(R2) ⊂ Cs(R2), for each triangle T ∈ S, the interpolation map gives
rise to a continuous, linear map IT : Hp(R2)→ Pm′ . The function

S 3 T → IT ∈ L(Hp,Pm′),

is then a continuous function, by the assumption that the family F of finite elements
is continuous. Since the range of each of the interpolants IT contains the space Pm
of polynomials of degree ≤ m, we have that

(2.2) |u− IT (u)|Hq(T ) ≤ CT |u|Hp(T ),

by the Bramble-Hilbert Lemma [17, 21]. The continuity of the family of interpolants
IT and the compactness of the set Kα implies that the constant CT in Equation
(12) can be chosen to be independent of T ∈ Kα ⊂ S1 and, hence, to depend only
on α and q < p ≤ m.

Next, if T is any triangle in Sx, x ≤ h, with all angles ≥ α, the dilation invariance
of the interpolation IT and of the semi norms |u|Hq(T ) and |u|Hp(T ) (up to a factor)
gives

(2.3) |u− IT (u)|Hq(T ) ≤ C(α,m)xp−q|u|Hp(T ) ≤ C(α,m)hp−q|u|Hp(T ),
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since x = |OA| is the diameter of the triangle T . The invariance of all the terms
of Equation (13) under isometries then gives the same result for all triangles with
angles ≤ α and sides ≤ h. Adding together the squares of all the estimates (13) for
all the triangles in T then gives the desired result. �

Figure 1. Left Side: Sample triangle in T . Right Side: Depiction
of the set, S1.

We also obtain the following usual estimate.

Corollary 2.2. Using the assumptions and notation of Theorem 2.1, there exists a
constant C = C(α,m) such that

‖u− uI‖Hq(P) ≤ C(α,m)hp−q‖u‖Hp(P).

for all u ∈ Hp(Ω).

Proof. The proof follows by adding all the squares of the estimates of Theorem 2.1
for (q, p) replaced by (q − j, p− j), j = 0, . . . , q. �

The following estimate for the interpolation error on a proper subdomain of Ω
(i. e., not at a positive distance from the corners) then follows from the equivalence
of the Hm(Ω)-norm and the Kma (Ω)-norm on proper subsets of Ω. Recall that rΩ(x)
denotes the distance from x to the singular points of Ω, as in the introduction. If
G is an open subset of Ω, define

(2.4) Kma (G; rΩ) := {f : Ω→ C, r|α|−aΩ ∂αf ∈ L2(G), for all |α| ≤ m},
and let ‖u‖Km

a (G) denote the corresponding norm:

(2.5) ‖u‖2Km
a (G) =

∑
|α|≤m

‖r|α|−aΩ ∂αf‖2L2(G).

Note that this definition is similar to that of the usual weighted Sobolev spaces
Kma (Ω) introduced in Equation (2). In particular, Kma (Ω) = Kma (Ω, rΩ). Also, we
write Kma (G; rΩ) = Kma (G) when convenient.

Proposition 2.3. Fix α > 0, ξ > 0, and integers 0 ≤ q ≤ p ≤ m + 1 such that
p > s+d/2 and q ≤ r+1. Let G ⊂ Ω be an open subset such that rΩ > ξ on G and
let T = (Tj) be a triangulation of Ω with angles ≥ α and sides ≤ h. Then, for any
given weights a, b ∈ R, there exists a constant C = C(α,m, ξ, a, b) > 0 such that

‖u− uI‖Kq
b(G) ≤ C hp−q‖u‖Kp

a(G), ∀u ∈ Kpa(Ω).
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Proof. This follows from Theorem 2.1 and the equivalence of the Ht and Kta norms
on Kta(G; rΩ), for any t and a. �

Similarly, we introduce a version of the L∞ weighted Sobolev spaces by

(2.6) Wm,∞(G; rΩ) := {v : G→ R, r|α|Ω ∂αv ∈ L∞(G), for all |α| ≤ m},
with norm

(2.7) ‖v‖Wm,∞(G) =
∑
|α|≤m

‖r|α|Ω ∂αv‖L∞(G).

We sometimes write Wm,∞(G) = Wm,∞(G; rΩ). Also, when the domain is clear,
we omit it from the notation of the norm.

Then, we have the following lemma, whose proof is a direct calculation.

Lemma 2.4. There exist absolute constants Cm, m ≥ 0, such that ‖vu‖Km
a (G) ≤

Cm‖v‖Wm,∞(G)‖u‖Km
a (G).

2.2. Graded κ-Refinement. The next step is to extend the above estimates of
Proposition 2.3 to hold near the singular points. In [12], it has been shown that
this can be done by considering graded meshes and the behavior of the spaces Kma
under appropriate dilations. Most of the triangles in a graded mesh refinement (to
be defined below) are divided into four equal triangles using the so called uniform
refinement.

Definition 2.5. Let T be a triangle, the uniform refinement of T is to decompose
T as the union of four equal triangles using the midpoints of its sides. This is
illustrated in Figure 2 by taking A′ and B′ to be located at the midpoints of AQ
and BQ, respectively, and M being the midpoint of AB.

Figure 2. One refinement of the triangle T with singular point
Q, and a given κQ. When κQ = 1

2 |AB|, we have uniform refine-
ment.

The graded mesh refinement procedure depends on some choices of parameters.
Thus, for each singular point Q of Ω, choose a number, κQ ∈ (0, 1/2], and a set κ =
{κQ}. A general procedure was developed in [12, 35] to give a refinement pattern
that obtains optimal approximation properties. We extend this construction by
considering more complicated refinements of certain trapezoids that arise in this
construction. To this end, for each Q, in addition to κQ, choose

(2.8) κQ = κ
(1)
Q < κ

(2)
Q < . . . < κ

(jQ)
Q = 1.
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The refinement is described as follows. Again, assume that the term “singular
point” refers to both geometric and artificial singular points described above. Recall
that the initial mesh resolves the boundary exactly and that no edge of the initial
mesh contains two singular points (in the sense just described).

Definition 2.6. Let T = QAB be a triangle with a distinguished vertex Q. (In
applications, Q will be a singular point of the problem.) Then, in a κ-refinement of
T , first divide T into a smaller triangle QA′B′ with side lengths QA′ = κQQA and
QB′ = κQQB, and a trapezoid, ABB′A′ with AB parallel to A′B′ = κQAB, as
shown in the left side of Figure 3. Then, refine the trapezoid A′B′BA by dividing

the segments QA and QB with the given ratios κ
(i)
Q introduced in Equation (18).

More precisely, on AA′, consider points A1, A2, . . . , AjQ such that QAi = κ
(i)
Q QA

(in particular, A1 = A′ and AjQ = A). Divide QB similarly and also consider the
midpoint, M , of AB. Then, divide ABB′A′ into triangles by joining the corre-
sponding points A1, A2, . . . , Aj , B1, B2, . . . , Bj , and using no point other than M .
Thus, the resulting refinement of QAB into triangles uses only the points Q, A, B,
M , and A1, A2, . . . , Aj , B1, B2, . . . , Bj .

Figure 3. κ-refinement of triangle with singular point Q.

An example of a κ-refinement of a triangle T = QAB is given in the right side
of Figure 3, with j = 5. Note that if we apply the κ–refinement to two adjacent

triangles that share the same distinguished point Q, then, the constants κ
(i)
Q match,

because they belong to the same singular point. This ensures that the resulting
mesh refinement is conforming (i.e. there are no hanging nodes). See Figure 4. If
further refinement is needed, the smaller triangle is refined with the same procedure
described above. The trapezoid region is refined uniformly. This allows for further
refinements to be done in a simple and recursive way.

Two examples of κ-refinement of a triangle are given in Figure 5. Note that
a variant of the division of the bottom trapezoid is compatible with the “newest
vertex bisection” method [20].

Definition 2.7. Let T be a mesh such that every singular point of Ω is a vertex of
a triangle in T , no triangle of T contains more than one singular point from among
the singular points of Ω, and the interface and the Dirichlet part of the boundary,
∂DΩ, is a union of edges of T (so T is aligned to the interface). A mesh with this
property is called admissible. Then, define the κ–refinement of T to be the mesh
κ(T ) obtained by applying uniform refinement to all triangles of T that contain
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Figure 4. Matching κ-refinement for two triangles that share an
edge and both touch the singular point Q.

Figure 5. (a): κ-refinement of a triangle with singular point Q

using κQ ≤ 1/8 and κ
(i)
Q = 2jQ−i. (b): Similar to (a), but with

one less bisection of the trapezoid. Angles are similar to angles in
Figure (a).

no singular point and by applying the κ-refinement to all triangles T of T that
contain a singular point of Ω (necessarily unique among the vertices of T ). Then,
the singular point of T will play the role of a distinguished point in the κ-refinement
of T .

We then have the following simple observation.

Lemma 2.8. With a fixed admissible initial mesh T0, κ(T0) is also admissible and,
hence, we can define by induction Tn+1 = κ(Tn).

We also obtain the following proposition stating that the minimum angle of the
meshes, Tn, is bounded below from 0.

Proposition 2.9. There exists an α0 > 0 that only depends on the angles of the

initial mesh T0 and the constants κ
(j)
Q , such that the minimum angle in any triangle

in the meshes, Tn, satisfies

αmin ≥ α0.

Proof. This follows from the fact that all the triangles in the refinements, Tn, belong
to finitely many similarity classes, a fact easily proved by induction. �
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The following estimate on the number of triangles of Tn and of the dimension of
the resulting finite element spaces Sn = S(Tn,Fn) is useful for the optimal error
estimates.

Proposition 2.10. The number of triangles, #Tn, of the mesh Tn satisfies #Tn ≤
C22n, for C > 0. Consequently, the dimension of the finite element space, Sn :=
S(Tn,F), associated to the meshes Tn, satisfies dim(Sn) ≤ C22n.

Proof. The statement about Sn follows from the corresponding statement about Tn.
To prove the statement about the number of elements of Tn, #Tn, we observe that
each triangle of Tn is divided in four equal triangles in Tn+1, unless that triangle
contains a singular point, in which case it is divided into at most a triangles, where a
is a fixed constant. Moreover, the number of triangles of Tn that contain a singular
point is b, which is a constant independent of n. Let cn be defined by c0 = #T0

and cn+1 = (a− 4)b+ 4cn. Then,

cn = 4n#T0 + (4n − 1)(a− 4)b/3 ≤ C4n.

Using, induction, this last inequality then gives

#Tn+1 ≤ ab+ 4(#Tn − b) = (a− 4)b+ 4#Tn ≤ cn+1 ≤ C4n,

which is the desired estimate. �

Assume that for each singular point, Q, a constant, aQ ∈ (0, 1], is given. (Also,
recall that the set of singular points includes the vertices of Ω.) In applications,
the constant aQ comes from regularity estimates, but, in general, κQ ≤ 2−m/aQ .
See for instance the discussion in Section 3. The simplest method to perform the
κ–refinement, in which each triangle is divided into four smaller triangles (i. e.,
jQ = 2 for all Q as in Figure 2), leads to smaller and smaller angles as aQ → 0.
(Incidentally, this simple refinement is related to the ones introduced in [2, 9, 12, 36]
for the Dirichlet problem.) However, this is inconvenient in some applications and
has disadvantages. Thus, we present a version of the κ–refinement procedure that
leads to meshes with a lower bound on the minimum angle of the triangles in the
refinements, independently of m, as follows.

Choose κ
(i)
Q = 2jQ−i with jQ as small as possible, so that κQ := κ

(1)
Q =≤ 2−m/aQ

in the definitions above. In particular, κ
(1)
Q = 2jQ−1 ≤ 2−m/aQ < κ

(2)
Q = 2jQ−2.

The side AQ of the triangle ABQ in this κ-refinement is bisected until the shortest
segment has length less than or equal to κQ|AQ|. Proceed similarly with BQ. The
bottom trapezoid is refined into three triangles, whereas the intermediate trapezoids
are merely bisected into two triangles. This is shown in the left side of Figure 5.
This guarantees that the minimum angle of any triangle is bounded from below by
an angle independent of m. We now prove that the version of the κ-refinement just
introduced yields this result, which may be useful for the hp-version of the FEM.

Theorem 2.11. Let the initial triangle ABQ be refined using the κ-refinement with

κ
(i)
Q = 2jQ−i and κ

(1)
Q = κQ ≤ 2−m/aQ < κ

(2)
Q . Then, the minimum angle αmin in

any triangle in the meshes Tn is bounded from below,

αmin ≥ α0,

where α0 only depends on the angles of the initial mesh T0 and is independent of
m.
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Proof. A simple geometric argument shows that the trapezoids constructed from
this refinement are all similar. Therefore, the smallest angle obtained is reached if
one were to bisect only one trapezoid. See right side of Figure 5. The smallest angle
in this configuration can be determined by the lengths of the sides and the angles
of the initial triangle. Further refinement produces triangles with angles that are
similar. Therefore, since m only determines the number of trapezoids introduced,
the minimum angle is independent of this value. �

The assumption that no two singular points of Ω belong to the same triangle of
the mesh is not really needed. Any reasonable division of an initial triangulation
will achieve this condition. For instance, if two singular points of Ω belong to the
same triangle of the mesh, then the corresponding edge can be divided into equal
parts or in a ratio given by the ratio of the corresponding κ constants. In this case,
no new singular points are introduced on the sides of the initial triangle and this is
much easier to implement. In extreme cases, however, large, skinny triangles with
small angles could be introduced worsening the approximation results. In these
instances, the more general procedure should be used instead. For instance, given
a domain, D, with an initial triangulation with minimum angle α, the refinement
can now be done in a way where there is a α0 > 0 (but dependent on κ and m) such
that all the resulting meshes have the minimum angle greater than α0 as shown in
Theorem 2.11. In either case, the following definitions and approximation results
hold.

2.3. Approximation Close to the Singular Points. Again, consider a mesh, T ,
and a continuous, conformally invariant family, F , of finite elements as in Subsection
1.2. We denote by IT ,F the interpolant associated to T and F , as defined in
Subsection 1.4. We denote by Tn, the meshes on Ω, and by F , the fixed conformal
invariant family of finite elements. Then, ITn,F denotes the associated interpolating
operator.

We now want to investigate the approximation properties afforded by the trian-
gulation Tn close to a singular point, Q, of Ω. Denote VQ to be the union of the
(closed) triangles in the initial mesh T0 that have Q as a singular point. Denote
by |x− y| the Euclidean distance from x to y and assume that rΩ(x) = |x−Q| for
x ∈ VQ. By refining the initial mesh, if necessary, we may assume the closed sets
VQ are disjoint.

For any region G ⊂ VQ, denote by λG ⊂ VQ the region obtained by dilating
G with respect to Q with ratio λ < 1. The following interpolation estimates are
then similar to those in [12, 35], but deal with a higher order approximation. In
particular, we need the following simple lemma that is proved by a direct calcu-
lation in [12]. Recall the definitions of the norms ‖ ‖Km

a (G) = ‖ ‖Km
a (G;rΩ) and

‖ ‖Wm,∞(G) = ‖ ‖Wm,∞(G;rΩ), Equations (15) and (17).

Lemma 2.12. Let Q be a singular point of Ω and G ⊂ VQ ⊂ Ω be an open set.
Denote G′ = λG, 0 < λ < 1, and uλ(x) := u(λx), then

‖uλ‖Km
a (G) = λa−1‖u‖Km

a (G′) and ‖uλ‖Wm,∞(G) = ‖u‖Wm,∞(G′).

We now define the space of functions to be approximated. We proceed as in
[35]. Let χQ be a smooth function that is equal to 1 near each singular point
Q ∈ V. We assume that the functions, χQ, have disjoint supports and, in case
Q is an interior point of the domain, then χQ vanishes close to the boundary of
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Ω. If χQ is supported near a vertex of Ω, then we assume that it satisfies the
Neumann boundary conditions on each adjacent side. If the diffusion matrix, A, is
scalar, then we can take χQ to be a function of the distance function to the point
Q. Denote by W ⊂ V, the subset of the set V of singular points of the problem
that are either a vertex whose adjacent sides have Neumann conditions (a so called
“Neumann-Neumann vertex”), or a non-smooth interface point interior to Ω, or a
point where the interface touches the interior of ∂NΩ. Thus, W includes the points
that belong to more than two of the subdomains, Ωj (the so called multiple junction
points), which are typically interior points of Ω. We also have that W is the set
of points Q ∈ V such that χQ satisfies the boundary conditions of the problem.
Then, we define Ws to be the linear span of the functions χQ, and, hence, all the
functions in Ws satisfy the boundary conditions of the problem. We also need to
introduce the broken Sobolev spaces K̂ma (Ω), defined in terms of the decomposition
Ω = ∪Kj=1Ωj ,

(2.9) K̂ma (Ω) := {u : Ω→ R, u|Ωj
∈ Kma (Ωj), j = 1, . . . ,K }.

We then let the approximation space be

(2.10) V := K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) +Ws,

for the fixed approximation parameter m ≥ 1 and some parameters a > 0, a+b > 0.
This choice of approximation space is suggested by the regularity results of [35],
which state that the solution, u, of the transmission/boundary value problem (1)
is such that u ∈ V for b = 0 (see [34] for some related results). The additional
parameter b satisfying a + b > 0 is introduced with some applications using the
least squares finite-element method in mind [32]. Notice that for each triangle
T ∈ Tn, we have T ⊂ Ωj , since the initial mesh T0 is aligned with the interface and,

hence, u ∈ Km+1
a+b+1(T ). Thus, we work with the broken weighted Sobolev spaces in

the same way we would work with the usual weighted Sobolev spaces.
The norm on V is given by the direct sum norm for any choice of a norm ‖ ‖Ws

on the finite-dimensional space Ws:

(2.11) ‖u0 + ws‖V = ‖u0‖K1
a+b+1(Ω) +

K∑
j=1

‖u0‖Km+1
a+b+1(Ωj) + ‖ws‖Ws

,

where u0 ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) and where ws is always an element in Ws.
Then, we have the following lemma (which remains valid in three dimensions). For
definiteness, we choose ‖

∑
Q aQχQ‖Ws

=
∑
Q |aQ|. Also, notice that K1

a+b+1(Ω) ∩
K̂m+1
a+b+1(Ω) is a closed subspace of K̂m+1

a+b+1(Ω) for m ≥ 1, and, hence, the term
‖u0‖K1

a+b+1(Ω) is not really necessary in the definition of the V -norm. Another

good choice of a norm on Ws is the restriction of any Sobolev norm Hk on Ω to
Ws.

The following lemma relies essentially on the additional condition that u0 ∈
K1
a+b+1(Ω), which enforces the continuity across the interface(s).

Lemma 2.13. There is a continuous embedding V → C(Ω). In particular, for
each singular point Q ∈ V and for each u ∈ V , the value u(Q) is well defined and
depends continuously on u.

Proof. Let u ∈ V and U ⊂ Ω be an open subset at positive distance from the
set of singular points V. Then, u ∈ C(Ω), since m + 1 ≥ 2 > d/2 and, hence,
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Hm+1(Ω) ⊂ C(Ω), by the Sobolev embedding theorem. By the dilation invariance
of the spaces Kma (Ωj), Lemma 2.12,

Km+1
1 (Ωj) ⊂ C(Ωj r V) ∩ L∞(Ωj).

Then, notice that any function u ∈ K1
a+b+1(Ω) whose restriction to each Ωj extends

to a continuous function on Ωj r V is actually continuous on Ω r V. This gives

K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) = ra+b
Ω

(
K̂m+1

1 (Ω) ∩ K1
a+b+1(Ω)

)
⊂ C(Ω),

as stated, since a+ b > 0. �

It follows that any u ∈ V := K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) +Ws can be written as
(2.12)

u = u0 + ws, ws :=
∑
Q∈W

u(Q)χQ ∈Ws and u0 ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω),

and we call this decomposition the canonical decomposition of u ∈ V .

Assumptions: For simplicity, we assume from now on that the constants κQ are

all the same and we let κ = κQ. We also assume that κ ≤ 2−m/a, for some fixed
a > 0. Also, recall that the approximation degree m ≥ 1 is fixed.

Now estimate the interpolation error on the triangles of the mesh Tn that are

close to a singular point. More precisely, for each singular point Q ∈ V, define V
(n)
Q

to be the union of all the closures of triangles T ∈ Tn that have Q as a vertex.

Similarly, define U
(n)
Q to be the union of all the closures of triangles T ∈ Tn that

touch (i. e., intersect) V
(n)
Q . Then, choose functions η

(n)
Q ∈ C∞(Ω) that are equal

to 0 on V
(n)
Q and are equal to 1 outside U

(n)
Q . These functions, η

(n)
Q , can be chosen

such that they correspond to each other with respect to dilations centered at Q, in

an obvious sense. Thus, for each n, η
(n)
Q is obtained by a dilation with ratio κn−1

from η
(1)
Q .

Recall that we have assumed that κ ≤ 2−m/a, a > 0. We then have the following
simple lemma.

Lemma 2.14. Let G ⊂ Ω be an open subset. Using the functions η
(n)
Q introduced

above, there exists a constant C > 0 such that

‖(1− η(n)
Q )u‖K1

b+1(G) ≤ C2−mn‖u‖Km+1
a+b+1(G),

for any u ∈ Km+1
a+b+1(G, rΩ).

Proof. Assume G = Ω, for simplicity of notation. The general case is identical. The

support of (1−η(n)
Q )u is contained in a set on which rΩ ≤ Cκn, with C independent

of Q or n and, hence,

(2.13) ‖(1− η(n)
Q )u‖K1

b+1
≤ C(κn)a‖(1− η(n)

Q )u‖K1
a+b+1

≤ C2−mn‖u‖Km+1
a+b+1

,

where in the last inequality, Lemma 2.4 is used as well as the fact that the norms

‖1− η(n)
Q ‖Wm,∞ are independent of n by the dilation invariance of the Wm,∞ norm

(Lemma 2.12). �
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To continue the study of the error estimates, now assume that, for each fixed

n, all the functions 1 − η(n)
Q have disjoint supports, so (1 − η(n)

Q )(1 − η(n)
Q′ ) = 0 for

Q 6= Q′ ∈ V and, hence, η(n) :=
∏
Q∈V η

(n)
Q satisfies 1 = η(n) +

∑
Q(1 − η

(n)
Q ).

Denote then by

(2.14) ũn = η(n)u+
∑
Q∈V

u(Q)(1− η(n)
Q ) = η(n)u+

∑
Q∈W

u(Q)(1− η(n)
Q ),

for u ∈ V := Km+1
a+b+1(Ω) + Ws. Note that ũn is well defined since V consists of

continuous functions (Lemma 2.13).
Lemma 2.14 then yields the following corollary.

Corollary 2.15. Using the notation ũn of Equation (24), we have that there exists
a constant C > 0, independent of n, such that

‖u− ũn‖K1
b+1(Ω) ≤ C2−mn‖u‖V ,

for any u ∈ V := K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) + Ws, with canonical decomposition

u = u0 + ws, u0 ∈ Km+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) and ws ∈Ws.

Proof. The proof is obtained by estimating on each region, Ωj , so we assume that
K = 1 (that is, there are no interfaces). Here, u = u0 +

∑
Q u(Q)χQ, with u0 ∈

Km+1
a+b+1(Ω), by the definition of the approximation space V . Since 1 = η(n) +∑
Q(1− η(n)

Q ), we have

(2.15) u− ũn =
∑
Q∈W

(u− u(Q))(1− η(n)
Q ).

Since (1 − χQ)(1 − η(n)
Q ) is a smooth function on Ω that is zero near the set V of

singular points, we have (1−χQ)(1− η(n)
Q ) ∈ Km+1

a+b+1(Ω) for all m and a and b with
a > 0, a+ b > 0.

By decreasing supports of the functions η
(n)
Q , if necessary, we may assume that

χQ′(1 − η(n)
Q ) = 0 for Q 6= Q′ and that (1 − χQ)(1 − η(n)

Q ) = 0. Write u ∈ V as

u = u0 +
∑
Q∈W u(Q)χQ, with u0 ∈ Km+1

a+b+1(Ω). Equation (25) then gives

(2.16) u− ũn =
∑
Q∈W

u0(1− η(n)
Q ).

The result then follows from Lemma 2.14. �

We also mention the following corollary of the above proof.

Corollary 2.16. Using the notation of Corollary 2.15, if u ∈Ws, then u = ũn.

Proof. Indeed, under the assumptions of this corollary, u0 = 0 and, hence, the
result is given by Equation (26). �

We now introduce the modified interpolation operator by

(2.17) uI,n = ITn,F (ũn) ∈ Sn := S(Tn,F),

with ũn defined in Equation (24). Note that the modified interpolation operator
allows the smoothness properties of u close to the singular points to be ignored,
since ũn (unlike u) is constant close to each singular point. Thus, only smoothness
estimates on u away from the singular points are needed, where they are the same



18 J. H. ADLER AND V. NISTOR

as the classical estimates, (an example is the Sobolev embedding H2 ⊂ C, valid in
two and three dimensions).

We want to approximate functions, u in V := Km+1
a+b+1(Ω) + Ws, and the space

introduced in Equation (20). We first show that we assume u ∈ Km+1
a+b+1(Ω).

Let T ∈ T0 be a triangle that has a vertex that is a singular point Q of Ω. Let
κnT ∈ Tn be the triangle obtained by dilating T with ratio κn = κnQ and center Q,
that is, the triangle that is similar to T with ratio κn, has Q as a vertex, and has all
sides parallel to the sides of T . Then, κnT ⊂ κn−1T for n ≥ 1 and κnT ∈ Tn. We
assume that for all triangles T ∈ T0 with singular vertex Q ∈ V, we have χQ = 1
on κT , for all Q.

Lemma 2.17. Let w =
∑
Q aQχQ ∈Ws. Then,

‖w − wI,n‖K1
b+1(Ω) ≤ C2−mn

∑
Q

|aQ| =: C2−mn‖w‖Ws
=: C2−mn‖w‖V ,

for a constant C that is independent of w and n.

Proof. Let W = Ω r ∪κT , where the union is over all triangles T ∈ T0 that have
a vertex in the set V of singular points of the problem. Then, w = wI,n outside
W , by Corollary 2.16. The result is then a consequence of Proposition 2.3 and of
the fact that h ≤ C2−n for the mesh Tn, with C a constant depending only on the
initial mesh T0. �

We want to extend the above lemma to u ∈ V . By linearity, we assume that
u ∈ Km+1

a+b+1(Ω), using the above lemma. The estimates are obtained by breaking
them into regions. We begin with the regions closest to the singularities.

Lemma 2.18. Denote by κnT ⊂ T ⊂ Ωj the triangle with singular point, Q,

obtained from T ∈ T0 after n refinements. Let u ∈ K̂m+1
a+b+1(Ω)∩K1

a+b+1(Ω). Then,

‖u− uI,n‖K1
b+1(κnT ) ≤ C2−mn‖u‖Km+1

a+b+1(κnT ),

where C depends on m and κ, but not on n or T . Here, uI,n is the modified
interpolant given by Equation (27).

Proof. Since ũn = u(Q) = 0 on κnT , uI,n = ITn,F (ũn) = u(Q) = 0 on κnT as well.
Then,

‖u− uI,n‖K1
b+1(κnT ) = ‖u‖K1

b+1(κnT ) ≤ C2−mn‖u0‖Km+1
a+b+1(κnT ),

by Lemma 2.14. �

The bounds on κnT of the previous lemma are combined with bounds on sets of
the form κjT r κj+1T to obtain the following estimate on the arbitrary, but fixed,
triangle T ∈ T0 that has a vertex Q that is a singular point of Ω. Recall that λG
is obtained from G by dilating with ratio λ < 1 and center Q.

Proposition 2.19. Consider the triangles κξT ⊂ ξT ⊂ Ωj , where T is a triangle
with one vertex Q ∈ V, a singular point of Ω. Let T = (Tj) be a triangulation of

G := ξT r κξT with angles ≥ α and edges ≤ h. Let u ∈ Km+1
a+b+1(Ωj). Then, the

interpolant IT ,F (u) ∈ S(T ,F) satisfies

‖u− IT ,F (u)‖K1
b+1(G;rΩ) ≤ C(a, κ, α,m)ξa(h/ξ)m‖u‖Km+1

a+b+1(G;rΩ) ,

with C(a, κ, α,m) independent of ξ, h, and u.
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Proof. Let ˜̀ be the distance from Q to the opposite side of T . Assume that Q
is the origin, to simplify the notation, and recall the dilation function uλ, where
uλ(x) = u(λx), x ∈ R2. Also, recall that the dilation commutes with interpolation
by the assumption that the family of finite elements, F , is conformally invariant.
Using Lemma 2.12 with λ = ξ, Proposition 2.3 is applied to the region G′ = T r
κT = λ−1G ⊂ Ω. Denoting by M = C(α,m, κ˜̀ξ, a, 1) the constant of Proposition
2.3, we obtain

‖u− IT ,F (u)‖K1
b+1(G) = ‖uλ − IT ,F (u)λ‖K1

b+1(G′) = ‖uλ − IT ,F (uλ)‖K1
b+1(G′)

≤M(h/ξ)m‖uλ‖Km+1
a+b+1(G′) = Mξa(h/ξ)m‖u‖Km+1

a+b+1(G).

This completes the proof. �

Next, denote uI,n to be the modified interpolant of Equation (27).

Proposition 2.20. Let T ∈ T0 have the singular point Q as a vertex. Then, there
exists a constant C > 0, such that

‖u− uI,n‖K1
b+1(T ) ≤ C2−mn‖u‖V = C2−mn

(
‖u0‖Km+1

a+b+1(T ) + ‖ws‖Ws

)
,

for all n and all u ∈ V with canonical decomposition u = u0 + ws.

Proof. Assume that ws = 0, by Lemma 2.17. Also, notice that T ⊂ Ωj , since the

initial mesh T0 is aligned with the interface and, hence, u ∈ Km+1
a+b+1(T ). Fix n. The

proof of the proposition follows from the estimates on the subsets κj−1T r κjT ,
1 ≤ j ≤ n, (Proposition 2.19) and from the estimate on κnT (Lemma 2.18). Let
ũn be as defined in Equation (24). Recall that we write Kma (G; rΩ) = Kma (G) when
convenient. In view of Corollary 2.15, it is enough to show that

‖ũn − uI,n‖K1
b+1(T ) ≤ C2−mn‖u‖V = C2−mn

(
‖u0‖Km+1

a+b+1(T ) + ‖ws‖Ws

)
,

with C a possibly different constant. Then, write

(2.18) ‖ũn−uI,n‖2K1
b+1(T ) = ‖ũn−uI,n‖2K1

b+1(κnT ) +

n∑
j=1

‖ũn−uI,n‖2K1
b+1(κj−1Trκj).

Recall that uI,n = ITn,F (ũn) ∈ Sn := S(Tn,F) and that ũn = 0 on κnT . The
first term ‖ũn − uI,n‖2K1

b+1(κnT )
is, thus, zero. Definition 2.7 shows that the mesh

size h of the restriction of the mesh Tn to κj−1T r κjT , is ≤ Cκj−12j−1−n, for
a constant C that depends only on T0. Let G = κj−1T r κjT . Then, using the
notation in Proposition 2.19, we have that ξ = κj−1 and, therefore,

(2.19) ‖ũn − uI,n‖K1
b+1(G) ≤ C1κ

(j−1)a(κj−12j−1−n/κj−1)m‖ũn‖Km+1
a+b+1(G)

≤ C22−(j−1)m2−nm+(j−1)m‖ũn‖Km+1
a+b+1(G) = C22−nm‖ũn‖Km+1

a+b+1(G)

≤ C32−nm‖ũn‖Km+1
a+b+1(G),

where C1, C2, and C3 depend on κ, but not on u, n, or j. The last inequality is from
Lemma 2.14. We complete the proof by adding up all the above error estimates on
the subsets G := κj−1T r κjT , 1 ≤ j ≤ n. �

Consider now the set G = Ωr
(
∪Q∈V ∪Q∈T∈T0T

)
, that is, the set G is obtained

by removing from Ω all the triangles of the initial mesh T0 that have a vertex among
the singular points of the problem. We write by abuse of notation, Q ∈ T , when
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we really mean that the vertex Q of T is in the closure of T . We then have the
following main approximation result.

Theorem 2.21. Assume u = u0 + ws ∈ V , where u0 ∈ K1
a+b+1(Ω), u|Ωj ∈

Km+1
a+b+1(Ωj), and ws =

∑
Q∈W aQχQ ∈ Ws. Assume a > 0, a + b > 0, and

κ ≤ 2−m/a. Let Tn be the n-th refinement of an initial triangulation, T0, aligned
with the interface. Let Sn := Sn(Tn,F) be the associated finite-element space given
in equation (9) and let uI,n ∈ Sn be the modified interpolant associated to Tn and
F , Equation (27). Then, there exists C > 0, independent of n or u, such that

‖u− uI,n‖K1
b+1(Ω) ≤ C2−mn

( ∑
j

‖u‖Km+1
a+b+1(Ωj) +

∑
Q

|aQ|
)

=: C2−mn‖u‖V .

Note that while u ∈ V := K̂m+1
a+b+1(Ω)∩K1

a+b+1(Ω)+Ws, the difference u−uI,n ∈
Km+1
a+b+1(Ω).

Proof. Again, assume that ws = 0, by Lemma 2.17. The proof is then an immediate
consequence of the estimates in Propositions 2.20 and 2.3 applied, respectively, to
the triangles T ∈ T0 that have singular points as vertices and to the region W that
is the complement of these triangles in Ω (as defined above). We then have

‖u− uI,n‖2K1
b+1(Ω) =

∑
Q∈V

∑
Q∈T
‖u− uI,n‖2K1

b+1(T ) + ‖u− uI,n‖2K1
b+1(W )

≤ C2−mn
( ∑
Q∈V

∑
Q∈T
‖u‖2Km+1

a+b+1(T )
+

K∑
j=1

‖u‖2Km+1
a+b+1(W∩Ωj)

)
≤ C2−mn‖u‖V .

The proof is now complete. �

3. Applications to the Finite-Element Method

In this section, we apply the results of the previous sections to obtain quasi-
optimal convergence rates for the finite-element solution of a transmission/interface
problem, such as (1), using the meshes Tn.

Recall that Ω = ∪Kj=1Ωj , where Ωj are disjoint polygonal domains. Let Γ :=

∂Ω r ∪Kj=1∂Ωk denote the interface. Assume the coefficients A = [aij ] have only
jump discontinuities across the interface Γ. We are interested in approximating the
solution of the boundary value/interface problem, (1), stated in the Introduction.
Note that this problem is really formulated in a weak sense, which implies the usual
matching and jump conditions at the interface,

(3.1) u+ = u−, DA
ν+u = DA

ν−u,

where we have labeled the non-tangential limits u+, u− of u at each side of the in-
terface, and denote the respective conormal derivatives, DA

ν+ and DA
ν−, by DA

ν±u :=∑
i,j νiA

i,j∂ju± = ν ·A · ∇u±, where ν is a choice of unit normal vector to the in-

terface Γ. We shall also assume that −div(A∇) is uniformly strongly elliptic, in
the usual sense, that is, we assume that there exists C > 0 such that

(3.2)

2∑
i,j=1

Ai,j(x)ξiξj ≥ C(ξ2
1 + ξ2

2),
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for all x ∈ Ω and ξ ∈ R2. Then, one of the main results of [35] states that the
solution, u, of the boundary value/interface problem (1) is such that u ∈ V , where
V is the approximation spaces introduced in Equation (20) with b = 0. More
precisely, we have the following result.

Theorem 3.1. Assume ∂DΩ 6= ∅ and that Ω is connected, then there exists η > 0
with the following property. Assume 0 < a < η, m ∈ Z+, and f ∈ K̂m−1

a−1 (Ω), then

there exists a unique solution u = u0 + ws, y0 ∈ K̂m+1
a+1 (Ω) ∩ K1

a+1(Ω), ws ∈ Ws,
of Equation (1) (the transmission problem). Moreover, there is a constant C > 0
such that

‖u‖V := ‖u0‖K1
a+1(Ω) +

K∑
j=1

‖u0‖Km+1
a+1 (Ωj) + ‖ws‖Ws ≤ C

K∑
j=1

‖f‖Km−1
a−1 (Ωj),

The constant C depends on Ω, m, a, and Aij, but not on f .

In the case of the pure Neumann problem we have to take into account the non-
uniqueness of the solution. Once we do that, a similar statement holds true.

The bilinear form associated to the problem (1) is B(u, v) =
∫

Ω
(∇u) ·A · (∇v)dx,

as usual. Then, un ∈ Sn = S(Tn,Fn) denotes the Galerkin approximation of the
solution u of problem (1), namely, it is the unique un ∈ Sn satisfying

(3.3) B(un, vn) = (f, vn), ∀ vn ∈ Sn.

Recall the norm ‖ ‖V introduced in Equation (21), defined on the spaces V :=

K̂m+1
a+1 (Ω) ∩ K1

a+1(Ω) +Ws. Then, we have the following theorem,

Theorem 3.2. Let m ≥ 1, assume the Dirichlet part of the boundary is not empty,
and let u be the corresponding solution to problem (1) with f ∈ K̂m−1

a−1 (Ω) for all j,
where 0 < a < η, with η as in Theorem 3.1. Let Tn be the n-th κ-refinement of an
initial triangulation T0 as in Definition 2.7, let Sn := Sn(Tn,m) be the associated
finite element space given in equation (9) and let un = uSn

∈ Sn be the finite
element solution defined in (32). We assume κ ≤ max{2−m/a, 1/2}. Then, there
exists C > 0, independent of f or n, such that

‖u− un‖H1(Ω) ≤ C2−mn
K∑
j=1

‖f‖Km−1
a−1 (Ωj).

Proof. Notice first that V ⊂ H1(Ω) continuously, that is, there exists C > 0 such
that ‖v‖H1(Ω) ≤ C‖v‖V , for all v ∈ V . Also, Céa’s Lemma gives that there exists
C1 > 0 such that ‖u− un‖H1(Ω) ≤ C1‖u− ũI,n‖H1(Ω), where uI,n ∈ Sn = S(Tn,F)
is the modified interpolant associated to Tn and F , Equation (27). Since u ∈ V ,
by Theorem 3.1 (quoted from [35]), an application of Theorem 2.21 and of Céa’s
Lemma give:

‖u− un‖H1(Ω) ≤ C‖u− uI,n‖H1(Ω) ≤ C‖u− uI,n‖V

≤ C2−mn‖u‖V ≤ C2−mn
K∑
j=1

‖f‖Km−1
a−1 (Ωj).

The proof is now complete. �

A more convenient way of formulating the above theorem may be the following.
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Theorem 3.3. Under the notation and assumptions of Theorem 3.2, un ∈ Sn
satisfies

‖u− un‖H1(Ω) ≤ C dim(Sn)−m/2
∑
j

‖f‖Km−1
a−1 (Ωj),

for a constant C > 0 independent of f and n.

Proof. Let again Tn be the triangulation of Ω after n refinements. Then, the number
of triangles is O(4n) given the refinement procedure of Definition 2.6. Therefore,
dim(Sn) ' 4n by Proposition 2.10, so that Theorem 2.21 gives

‖u− un‖H1(Ω) ≤ C2−nm
∑
j

‖f‖Km−1
a−1 (Ωj) ≤ C dim(Sn)−m/2

∑
j

‖f‖Km−1
a−1 (Ωj).

The proof is complete. �

Using that Hm−1(Ω) ⊂ Km−1
a−1 (Ω) if a ≤ 1, we obtain the following corollary.

Corollary 3.4. Under the hypotheses of Theorem 3.3,

‖u− un‖H1(Ω) ≤ C dim(Sn)−m/2‖f‖Hm−1(Ω),

for a constant C > 0 independent of f ∈ Hm−1(Ω) and n.

Note that we do not claim that u ∈ K1
1(Ω) (which is in general not true).

Finally, using a weighted Sobolev space duality argument, we are able to get an
estimate of the error in the L2(Ω) norm.

Theorem 3.5. Under the notation and assumptions of Theorem 2.21, un ∈ Sn
satisfies

‖u− un‖L2(Ω) ≤ C dim(Sn)−(m+1)/2‖f‖Hm−1(Ω),

for a constant C > 0 independent of f and n.

Proof. Consider the error equation for the bilinear form in (32),

B(φ, v) = (u− un, v), ∀ v ∈ V.
Setting v = u− un yields,

‖u− un‖2L2(Ω) = (u− un, u− un) = B(φ, u− un).

Due to the orthogonality of the error in Sn, we know B(u− un, vn) = 0 ∀vn ∈ Sn.
Thus,

‖u− un‖2L2(Ω) = B(φ− φI,n, u− un).

Using the Cauchy-Schwarz inequality gives,

‖u− un‖2L2(Ω) ≤ ‖u− un‖H1(Ω)‖φ− φI,n‖H1(Ω).

Setting m = 1 and using the results from Theorem 2.21 (again setting b = 0) with
the error equation yields,

‖φ− φI,n‖H1(Ω) ≤ dim(Sn)−1/2‖u− un‖L2(Ω).

Therefore, the proof is concluded by using Corollary 3.4 and some simplifications,

‖u− un‖2L2(Ω) ≤
(
C dim(Sn)−m/2‖f‖Hm−1(Ω)

)(
dim(Sn)−1/2‖u− un‖L2(Ω)

)
⇒ ‖u− un‖L2(Ω) ≤ C dim(Sn)(−m−1)/2‖f‖Hm−1(Ω).

The proof is now complete. �
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In addition to this, one can improve the regularity estimate of Theorem 3.3 as
follows. Choose for each singular point, Q, a small neighborhood, ΩQ. Assume
that the sets, ΩQ, are disjoint. Then, choose 0 < aQ < ηQ such that u|ΩQ

∈
Km+1
aQ+1(ΩQ) + Ws if f ∈ Km−1

aQ−1(ΩQ) for all Q and take 0 < κQ < 2−m/aQ . For

example, if for the Laplacian, ∆, and the same type of boundary conditions (both
Dirichlet or both Neumann) on both sides of Q, take aQ < π/αQ, where αQ is
the angle at Q. On the other hand, if at Q there are different types of boundary
conditions, then take aQ < π/(2αQ). This allows the grading parameter to be
controlled better and may lead to better meshes in practice. For instance, this
restricts the need of “grading” to a few singular points.

3.1. Textbook hm-estimates. Finally, one can obtain “textbook” hm-error esti-
mates as follows. Assume the function ρ is such that 0 ≤ ρ ≤ 1 and that ρ(x) is the
distance to the singular point Q closest to x. Then, there exists an ε > 0 such that,
for any x such that ρ(x) < ε, there will be a unique singular point Q closest to x.
Consider a mesh T on Ω. For any triangle, T , in the given mesh, denote by dT the
diameter of the triangle and by ρT = infx∈T ρ(x), which is essentially the distance
from T to the closest singular point of T . Let a > 0 be the constant arising in the
regularity estimate of Theorem 3.2.

Then, assume that the mesh, T , has the property that there exist constants
C0 > 0 and α > 0 such that

• Any triangle T in the mesh that does not contain a singular point of Ω has
angles ≥ α and

dT ≤ C0hρ
1−a/m
T

• For any triangle T in the mesh that does contain a singular point of Ω, we
have

dT ≤ C0h
m/a.

Denote by uT ∈ S(T ,F) the finite-element solution associated to T and F , then,

‖u− uT ‖H1(Ω) ≤ C1h
m
∑
j

‖f‖Km−1
a−1 (Ωj),

with a constant C1 that depends only on C0 and α. Provided that one constructs a
mesh with “few” triangles, then the above estimate can be used to recover Theorem
3.3 by using estimates analogous to Equations (29) and (23). See also [?], where
similar conditions were provided.

Conclusion

We have shown that by using a sequence of graded meshes, optimal approxima-
tion results can be regained for mixed boundary value/transmission problems of
type (1), whose solutions contain singularities. General conformally invariant fami-
lies of finite elements with high order can also be used in the context of these graded
meshes and weighted spaces. Thus, for problems that require higher regularity or
smoothness of the finite-element spaces, such as for problems of high order or those
requiring higher order p-refinement, optimal results can still be obtained. Future
work involves extending these results to the least-squares finite-element method ap-
plied to problems with corner singularities [19, 24, 33, 32]. In these applications, the
addition of the graded meshes can be used to show that the least-squares functional
does in fact predict the optimal rate of convergence of the finite-element method.
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Another natural problem is to study the Multigrid method for the resulting spaces.
See [15] for results in this direction.
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