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CONFORMAL METRICS IN R2m WITH CONSTANT Q-CURVATURE AND

ARBITRARY VOLUME

XIA HUANG AND DONG YE

Abstract. We study the polyharmonic problem ∆mu = ±eu in R2m, with m ≥ 2. In particu-
lar, we prove that for any V > 0, there exist radial solutions of ∆mu = −eu such that∫

R2m

eudx = V.

It implies that for m odd, given any Q0 > 0 and arbitrary volume V > 0, there exist conformal
metrics g on R2m with constant Q-curvature equal to Q0 and vol(g) = V . This answers some
open questions in Martinazzi’s work [12].

1. Introduction

In R2m, if the conformal metric gu = e2u|dx|2 satisfies (−∆)mu = Q(x)e2mu, it is well known
that (see for instance [1]) Q(x) is just the Q-curvature of the metric gu. Here |dx|2 is the
Euclidean metric.

One interesting question in conformal geometry is to understand the metrics with constant
Q-curvature, i.e. to understand solutions of (−∆)mu = Qe2mu in R2m with Q ∈ R. Considering
v = u − lnλ with λ > 0, (−∆)mu = Qe2mu is equivalent to (−∆)mv = λ2mQe2mv. Therefore
the precise value of Q is not important and we can reduce the study to Q ∈ {0,±1}.

For Q > 0 case, let (S2m, gS2m) be the standard unit sphere in R2m+1, π : S2m\{(0, . . . , 0, 1)}
→ R2m be the stereographic projection. We know that QgS2m = (2m− 1)! and

(π−1)∗gS2m =
4|dx|2

(1 + |x|2)2
=: gπ.

Consequently Q(gπ) = (2m− 1)!. By scaling and translation, for any x0 ∈ R2m, λ > 0,

ux0,λ = ln
2λ

1 + λ|x− x0|2
(1.1)

satisfies

Q
(
gux0,λ

)
= (2m− 1)! and vol

(
gux0,λ

)
=

∫
R2m

e2mux0,λdx = vol(S2m).

For m = 1, Chen & Li [3] proved that any solution to

−∆u = e2u in R2, vol(gu) =

∫
R2

e2udx <∞(1.2)

is given by the formula (1.1), hence vol(gu) = vol(S2), i.e. any conformal metric g in R2 with
positive constant Gauss curvature and finite volume is provided by the stereographic projection
of S2 into R2, up to translation and dilation.

Remark that without the assumption of finite volume, Liouville [10] showed that there are
many other entire solutions to −∆u = e2u in R2.
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The situation is very different for m > 1. Consider the problem

(−∆)mu = (2m− 1)!e2mu in R2m, vol(gu) =

∫
R2m

e2mudx <∞.(1.3)

Chang & Chen [2] proved the existence of non-spherical solutions: When m > 1, for any
0 < V < vol(S2m), there exists a solution to (1.3) such that vol(gu) = V .

The condition vol(gu) < vol(S2m) was not only suggested by technical reasons, but it is also
necessary when m = 2. Indeed, let m = 2, Lin showed in [9] that any solution to (1.3) verifies
vol(gu) ≤ vol(S4), and the equality holds if and only if the solution is spherical (i.e. given
by (1.1)). Moreover, when m = 2, Wei & Ye [14] proved the existence of solution with any
asymptotic behavior at infinity predicted by Lin. In particular, it means that for m = 2 and
any volume V less than vol(S4), there exists a very rich family of non radial solutions of (1.3)
with vol(gu) = V . Thus the situation in R4 is somehow well understood for Q > 0.

Recently, Martinazzi [12] found striking and new phenomena for m ≥ 3: The solutions to
(1.3) can have volume larger than vol(S2m). More precisely,

(i) for m = 3, there exists V ∗ > 0 such that for any V ≥ V ∗, we have a solution u of (1.3)
in R6 such that vol(gu) = V ;

(ii) for any m ≥ 3 odd, there exists Vm > vol(S2m) such that for every V ∈ (0, Vm], there is
a solution u of (1.3) satisfying vol(gu) = V .

However, he could not rule out that V3 < V ∗ in (i)-(ii) (when m = 3) and he asked if a gap
phenomenon is possible, that is, could it be a volume V in (V3, V

∗) such that the problem (1.3)
has no solution verifying vol(gu) = V ? He asked also if the result in (i) could be generalized for
m ≥ 5 odd.

In this work, we generalize completely (i)-(ii) by proving that for m ≥ 3 odd, there exist
solutions to (1.3) with arbitrary volume.

Theorem 1.1. For every m ≥ 3 odd, and every V ∈ (0,+∞), there exists a conformal metric
in R2m satisfying Qg ≡ (2m− 1)! and vol(g) = V .

The result for m even is less complete, but still suggests that no gap phenomenon exists for
(1.3).

Theorem 1.2. For every m ≥ 2 even, let

V =

{∫
R2m

e2mudx, with radial function u satisfying (1.3)

}
.

Then V is an interval.

Our approach is to study respectively entire radial solutions of the following polyharmonic
equations (m ≥ 2):

(1.4) ∆mu = −eu in R2m

and

(1.5) ∆mu = eu in R2m.

The main results are

Theorem 1.3. Let m ≥ 2. Then for any V ∈ (0,+∞), there exists a radial solution u to (1.4)
such that ∫

R2m

eudx = V.

Theorem 1.4. Let m ≥ 2. If there exists an entire radial solution u0 to (1.5), then for any
0 < V < ‖eu0‖L1(R2m), there exists a radial solution u of (1.5) such that∫

R2m

eudx = V.
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Notice that given a solution u to (1.4) or (1.5), the function v := 1
2m [u− ln(2m)!] solves

(−∆)mv = ±(−1)m+1(2m− 1)!e2mv in R2m,

∫
R2m

e2mvdx =
1

(2m)!

∫
R2m

eudx.

Hence, Theorems 1.1 and 1.2 are just direct consequence of Theorems 1.3 and 1.4 respectively.
So we need just to prove Theorems 1.3 and 1.4.

Furthermore, for the negative constant Q-curvature case, i.e. when Q < 0, there is no entire
solution to ∆u = e2u in RN for m = 1 and any dimension N ≥ 1 (see for example Theorem
1 in [13]). Here again, we find a completely different situation for m > 1. Recently, Hyder &
Martinazzi showed that for any m ≥ 2, V > 0, and any polynomial P (x) of degree ≤ (2m− 2)
verifying lim‖x‖→∞ x·∇P (x) =∞, there exists u such that (−∆)mu = −(2m− 1)!e2mu in R2m

and ∫
R2m

e2mudx = V, u(x) = −P (x) +
2V

vol(S2m)
ln ‖x‖+ C + o(1) as ‖x‖ → ∞.

The above result is a direct consequence of Theorem 1.2 in [7] combined with Theorem C there,
which was previously proved in [11].

2. Proof of Theorem 1.3

2.1. Preliminaries. Consider the following initial value problem in RN for general dimensions
N ≥ 3.

(2.1)


∆mu = −eu,
u(2i+1)(0) = 0, ∀ 0 ≤ i ≤ m− 1,

∆iu(0) = ai, ∀ 0 ≤ i ≤ m− 1.

Here u(x) = u(r) is a radial function, the Laplacian ∆ is seen as ∆u = r1−N (rN−1u′
)′

and ai
are constants in R. We will denote u(ai) the radial solution to (2.1).

Clearly, there exist suitable constants αi such that Φα(r) =
∑

0≤j≤m−1 αjr
2j verifies

∆iΦα(0) = ai, ∀ 0 ≤ i ≤ m− 1.

As ∆m(u(ai) −Φα) = −eu(ai) < 0, it’s easy to check that u(ai)(r) ≤ Φα(r) whenever u(ai) exists.
Therefore −eu(ai) is locally bounded whenever u(ai) exists. Applying standard ODE theory, we
can claim that for any (ai) ∈ Rm, the unique radial solution of (2.1) is defined globally in R+,
in other words, an entire radial solution to ∆mu = −eu exists in RN for any (ai).

Remark 2.1. For N 6= 2m, if u is a solution to (2.1) with eu ∈ L1(RN ), we can get solution
with arbitrary L1 norm by the scaling uλ(x) = u(λx) + 2m lnλ, since

∆muλ = −euλ ,
∫
RN

euλdx = λ2m−N
∫
RN

eudx.

So our main concern here is only relevant for N = 2m. We should mention that Farina &
Ferrero provide recently in [4] many precise studies for radial solutions of ∆mu = ±eu in RN
with general m,N ∈ N∗.

The following Lemma is inspired by [4]. It’s a simple but important fact for our proof.

Lemma 2.2. Let m ≥ 3 and u be a radial solution to (2.1), if am−2 = ∆m−2u(0) = 0. Then
limr→+∞∆m−1u(r) < 0.

Proof. Let v = ∆m−1u. As ∆v = −eu < 0, v(r) is decreasing in R+, so limr→+∞ v(r) = ` ∈
R ∪ {−∞} exists. Assume that ` ≥ 0, then v(r) > 0 in R+ and ∆m−2u(r) is increasing in r,
which implies limr→+∞∆m−2u(r) = `1 > 0, since ∆m−2u(0) = 0. By iterations, we conclude
that

lim
r→+∞

∆ku(r) =∞, ∀ 0 ≤ k ≤ m− 3.
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Therefore limr→+∞∆v(r) = −∞. Again, by integrations, we get limr→+∞ v(r) = −∞, which
contradicts ` ≥ 0, hence there holds ` < 0.

A useful consequence of Lemma 2.2 is the following continuity result.

Proposition 2.3. Let m ≥ 3 and Σ0 := Rm−2 × {0} × R. Then for any (ai)0≤i≤m−1 ∈ Σ0, i.e.
am−2 = 0, the radial solution u(ai) to equation (2.1) satisfies

V (ai) :=

∫
RN

eu(ai)dx <∞.

Moreover, the function V is continuous in Σ0.

Proof. Given (ai) ∈ Σ0, limr→+∞∆m−1u(ai)(r) < 0 by Lemma 2.2, hence there is R > 0 large

such that ∆m−1u(ai)(R) < 0.

By ODE theory, the radial solution u(ai) to equation (2.1) is continuous with respect to (ai)

in Ckloc(RN ) for any k ∈ N, see for example the proof of Proposition A3 in [5]. Consequently,
there exists δ > 0 small such that for any |(a′i)− (ai)| ≤ δ, there holds∥∥∥u(a′i)

− u(ai)

∥∥∥
C2m(BR)

≤ 1 and ∆m−1u(a′i)
(R) ≤

∆m−1u(ai)(R)

2
=: −M < 0.

As ∆m−1u is decreasing in r for any radial solution to ∆mu = −eu, we have ∆m−1u(a′i)
(r) ≤ −M

if r ≥ R and |(a′i)− (ai)| ≤ δ. Therefore, for r ≥ R and |(a′i)− (ai)| ≤ δ,

∆m−2u(a′i)
(r)

= ∆m−2u(a′i)
(R) +

∫ r

R

1

ρN−1

[
RN−1

(
∆m−2u(a′i)

)′
(R) +

∫ ρ

R
sN−1∆m−1u(a′i)

(s)ds

]
dρ

≤ C1 +

∫ r

R

(
−M
N
ρ+ C2ρ

1−N
)
dρ

≤ − Mr2

2N
+
MR2

2N
+ C1 +

C2R
2−N

N − 2
= −Mr2

2N
+ C3.

Here Ci are some constants independent of (a′i) verifying |(a′i)− (ai)| ≤ δ. We get then M ′ > 0
and R′ ≥ R such that

∆m−2u(a′i)
(r) ≤ −M ′ < 0, for all r ≥ R′, |(a′i)− (ai)| ≤ δ.

By iterations, we can conclude that there exist M0 > 0 and R0 large such that

u(a′i)
(r) ≤ −M0r

2m−4, for all r ≥ R0, |(a′i)− (ai)| ≤ δ.

Clearly V (ai) <∞ by the above estimate. It’s not difficult to deduce the continuity of V in (ai)
using the continuity of u(ai) in C0

loc(RN ) with respect to (ai), and the uniform estimate out of a
compact set, we omit the details.

If m = 2, we consider radial solutions to the following biharmonic equation

(2.2)


∆2u = −eu

u′(0) = u′′′(0) = 0,

∆u(0) = a, u(0) = −b.

Corresponding to Lemma 2.2 for m ≥ 3, we have

Lemma 2.4. For any a, b ∈ R, the radial solution to (2.2) satisfies limr→+∞∆u(r) < 0.
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Proof. Let v = ∆u, as ∆v = −eu < 0, v is decreasing in r ∈ (0,+∞). So limr→+∞ v(r) = `

exists. If ` ≥ 0, we have v(r) > 0 in R+, then u is increasing in r and ∆v = −eu ≤ −eu(0) = −e−b
in RN . Then limr→+∞ v(r) = −∞ since

v(r)− a =

∫ r

0

1

ωN−1ρN−1

∫
Bρ

∆vdxdρ ≤ −e−b r
2

2N
.

This contradicts the assumption ` ≥ 0. So ` < 0.

Here and after, ωN−1 denotes the volume of the standard sphere SN−1 ⊂ RN . Denote ua,b
the radial solution to (2.2) and

Ṽ (a, b) :=

∫
RN

eua,bdx.

Using Lemma 2.4, we can prove the continuity of Ṽ very similarly as for Proposition 2.3, so we
omit the proof.

Proposition 2.5. For any (a, b) ∈ R2, Ṽ (a, b) <∞. Moreover, Ṽ is continuous in R2.

2.2. Solutions with large volume for (1.4). Here we prove the existence of radial solutions
to (1.4) with any large volume. As mentioned in Remark 2.1, the problem is relevant only in
the conformal dimension. From now on, we fix N = 2m, even though similar result holds true
for any N ≥ 3. The crucial point is to consider some special initial conditions.

More precisely, for m ≥ 3 and N = 2m, let

c0 := 4m−1 ×
m−1∏
k=1

[
k(m− 1 + k)

]
(2.3)

and consider (2.1) with (ai) = (−b, 0, . . . 0, c0) ∈ Σ0 = Rm−2 × {0} × R.

(2.4)


∆mu = −eu,
u(2i+1)(0) = ∆ku(0) = 0, ∀ i = 0 . . .m− 1; k = 1, . . .m− 2,

∆m−1u(0) = c0,

u(0) = −b < 0.

Theorem 2.6. Let m ≥ 3, denote by ub the radial solution to equation (2.4). Then

(2.5) lim
b→+∞

∫
R2m

eubdx = +∞.

Similarly, let a = 8 in (2.2) for m = 2, there holds

(2.6) lim
b→+∞

Ṽ (8, b) = +∞.

Proof. We handle the cases m ≥ 3 and m = 2 together. For simplicity and without confusion,
we denote by u the solution to (2.4) or the solution to (2.2) with a = 8.

For any m ≥ 2, let Φ(x) = Φ(r) = r2m−2 − b. Hence ∆mΦ = 0 in R2m and ∆iΦ(0) = ∆iu(0)
for any 0 ≤ i ≤ m − 1. Set w = u − Φ, then ∆mw = ∆mu = −eu < 0 and ∆iw(0) = 0 for
0 ≤ i ≤ m − 1. By iterations, we deduce easily that ∆iw ≤ 0 in R2m for 0 ≤ i ≤ m − 1. In
particular, w ≤ 0 in R2m, i.e. u ≤ Φ in R2m.

Let R0 := b
1

2m−2 , the unique zero of Φ in (0,∞). To prove (2.5) or (2.6), we proceed by three
steps.

Step 1. Estimate of ∆m−1w(R0).
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As ∆mw = −eu, we have, for any r > 0,

∆m−1w(r) = −
∫ r

0

1

ρ2m−1

∫ ρ

0
eu(s)s2m−1dsdρ ≥ −

∫ r

0
ρ1−2m

∫ ρ

0
eΦ(s)s2m−1dsdρ

= −
∫ r

0
es

2m−2−bs2m−1ds

∫ r

s
ρ1−2mdρ

= − 1

2m− 2

∫ r

0
es

2m−2−bs

[
1−

(s
r

)2m−2
]
ds

≥ −
∫ r

0
es

2m−2−b
(

1− s

r

)
sds

= −r
2

2

∫ 1

0
er

2m−2tm−1−b(1−√t)dt.
For the second inequality, we used the convexity of the function h(x) = x2m−2 in R+ and we
applied the change of variable t = r−2s2 for the last line. Therefore,

∆m−1w(R0) ≥ −R
2
0

2

∫ 1

0
eb(t

m−1−1)
(
1−
√
t
)
dt =: ξ(b).

Moreover, there exists λ > 0 depending on m such that λ(1 − t) ≤ 1 − tm−1 for any t ∈ [0, 1].
So we get∫ 1

0
eb(t

m−1−1)(1−
√
t)dt ≤

∫ 1

0
eλb(t−1)(1− t)dt

=
1

λ2b2
−
(

1

λb
+

1

λ2b2

)
e−λb = O

(
1

b2

)
as b→∞.

As ∆m−1w(r) is decreasing in r, there holds

∆m−1w(r) ≥ ∆m−1w(R0) ≥ ξ(b) = O
(
b

1
m−1

−2
)

for r ≤ R0.(2.7)

Step 2. Estimates of ∆iu(r), i = 0, ...,m− 1 for r > R0.
Define r0 = inf {r > 0, u(r) = 0} ∈ (R0,+∞]. We claim that

lim
b→+∞

(r0 −R0) = 0.(2.8)

Remark that u ≤ 0 in [R0, r0], so ∆mw = −eu ≥ −1 if R0 ≤ r ≤ r0. Therefore, if r ∈ [R0, r0],

∆m−1w(r) ≥ ∆m−1w(R0)−
∫ r

R0

1

ω2m−1ρ2m−1

(∫
BR0

eΦdx+

∫
Bρ\BR0

dx

)
dρ,

= ∆m−1w(R0)−
∫ r

R0

ρ1−2m

(∫ R0

0
es

2m−2−bs2m−1ds+

∫ ρ

R0

s2m−1ds

)
dρ.

When b→ +∞, there holds

η(b) :=

∫ R0

0
es

2m−2−bs2m−1ds = R2m
0

∫ 1

0
e−b(1−t

2m−2)t2m−1dt = O

(
R2m

0

b

)
.

We obtain that for r ∈ [R0, r0],

(2.9) ∆m−1w(r) ≥ ∆m−1w(R0)− η(b)R1−2m
0 (r −R0)− 1

2m

∫ r

R0

ρ

[
1−

(
R0

ρ

)2m
]
dρ.

On the other hand, by the convexity of h(x) = x2m in R+,

1

2m

∫ r

R0

ρ

[
1−

(
R0

ρ

)2m
]
dρ ≤

∫ r

R0

ρ

(
1− R0

ρ

)
dρ =

(r −R0)2

2
, ∀ r ≥ R0.
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Denote r̃0 := min {r0, R0 + 1}. Combining (2.7) and (2.9), for r ∈ [R0, r̃0], we have (as m ≥ 2)

∆m−1w(r) ≥ O
(
b

1
m−1

−2
)
−O

(
R0

b

)
(r −R0)− (r −R0)2

2
≥ O(1).(2.10)

Using again (2.7), we obtain

∆m−1w(r) ≥ O
(
b

1
m−1

−2
)

+O(1)χ[R0,r̃0], ∀ r ∈ [0, r̃0].

Here and in the following, χA denotes the characteristic function of a subset A and O(1) denotes
a quantity uniformly bounded for b sufficiently large.

By iterations, for 0 ≤ j ≤ m− 2 and r ∈ [0, r̃0], we get

∆jw(r) ≥ O
(
b

1
m−1

−2
)
r2(m−1−j) +O(1)χ[R0,r̃0].(2.11)

In particular, let j = 0, there holds

u(r) ≥ Φ(r) +O
(
b

1
m−1

−2
)
r2(m−1) +O(1)χ[R0,r̃0], ∀ r ∈ [0, r̃0].

Using the convexity of Φ, we have then

u(r) ≥ (2m− 2)R2m−3
0 (r −R0) +O

(
b

1
m−1

−2
)
r2(m−1) +O(1) in [R0, r̃0].

Fix any ε ∈ (0, 1), suppose that r0 > R0 + ε. Then

0 > u(R0 + ε) ≥ (2m− 2)b
2m−3
2m−2 ε+O

(
b

1
m−1

−1
)

+O(1),

which is impossible for b large enough, since

2m− 3

2m− 2
− 1

m− 1
+ 1 =

4m− 7

2(m− 1)
> 0, ∀ m ≥ 2.

In other words, when b is sufficiently large, we have r0 ≤ R0 + ε, so the claim (2.8) is proved.
An immediate consequence of (2.8) is

(2.12) lim inf
b→+∞

∆m−1u(r0) ≥ c0.

Indeed, applying the first inequality in (2.10),

∆m−1w(r0) ≥ O
(
b

1
m−1

−2
)
−O

(
R0

b

)
(r0 −R0)− (r0 −R0)2

2
,

we get lim infb→+∞∆m−1w(r0) ≥ 0 by (2.8), hence (2.12) holds true as ∆m−1Φ ≡ c0.

Step 3. The proof of (2.5) and (2.6).
Consider first m ≥ 3. Recall that we denote by u, the radial solution of (2.4). Let

V (b) :=

∫
R2m

eudx = ω2m−1

∫ ∞
0

eu(s)s2m−1ds.

By equation ∆mu = −eu, we get

r2m−1(∆m−1u)′(r) = −
∫ r

0
eu(s)s2m−1ds ≥ − V (b)

ω2m−1
.

For any r > r0, using the above inequality on [r0, r], there holds

∆m−1u(r0) ≤ ∆m−1u(r) +
V (b)

ω2m−1

∫ r

r0

s1−2mds ≤ ∆m−1u(r) +
V (b)

ω2m−1

∫ ∞
r0

s1−2mds

= ∆m−1u(r) +
V (b)r2−2m

0

(2m− 2)ω2m−1
.

Tending r to +∞, we conclude by Lemma 2.2 that

V (b) > (2m− 2)ω2m−1r
2m−2
0 ∆m−1u(r0).



8 XIA HUANG AND DONG YE

Hence limb→+∞ V (b) = +∞ by (2.12) and limb→+∞ r0 = +∞.

The proof of (2.6) is completely similar, so we omit it.

Remark 2.7. The formula (2.6) gives a positive answer to a question in [12], page 981. Assume

that u solves (2.2) with a = 8 in R4. Let v(x) = u(λx) + 4 lnλ with λ = eb/4, then ∆2v = −ev,
v(0) = 0 and v′′(0) = eb/2u′′(0) = 2eb/2. Hence v′′(0)→ +∞ is equivalent to b→ +∞.

2.3. Proof of Theorem 1.3 completed. Let m ≥ 3 and ũb be the radial solution to equation
(2.1) with (ai) = (−b, 0, ...0,−c0) ∈ Σ0. As above, there holds ũb ≤ Ψ(r) := −r2m−2− b in R2m.
Hence

lim
b→+∞

∫
R2m

eũbdx ≤ lim
b→+∞

∫
R2m

eΨdx = lim
b→+∞

∫
R2m

e−|x|
2m−2−bdx = 0.

By Proposition 2.3, Theorem 2.6 and the above estimate, we get readily that V (Σ0) = (0,∞),
so we are done.

The argument for m = 2 is completely similar. Considering the radial solution ũb to (2.2)

with a = −8, we prove easily that infR2 Ṽ (a, b) = 0. Using (2.6) and Proposition 2.5, there holds

Ṽ (R2) = (0,∞).

3. Proof of Theorem 1.4

For (1.5), we use a different approach, which is based on the following well-known comparison
result (see for instance Proposition A.2 in [4])

Lemma 3.1. Let u, v ∈ C2m([0, R)) be two radial functions such that ∆mu− eu ≥ ∆mv− ev in
[0, R) and

∆ku(0) ≥ ∆kv(0), (∆ku)′(0) ≥ (∆kv)′(0), ∀ 0 ≤ k ≤ m− 1.(3.1)

Then we have u ≥ v in [0, R).

Let u0 be an entire radial solution of (1.5) with V0 := ‖eu0‖L1(R2m) ∈ (0,∞], consider uα the
solution to the following initial value problem

(3.2)


∆mu = eu,

u(2i+1)(0) = 0, ∀ 0 ≤ i ≤ m− 1,

∆iu(0) = ∆iu0(0), ∀ 0 ≤ i ≤ m− 2,

∆m−1u(0) = ∆m−1u0(0)− α, α > 0.

For any α > 0, by Lemma 3.1, we have uα ≤ u0 whenever it exists. On the other hand, we have
uα ≥ Φα =

∑
0≤j≤m−1 αjr

2j with αj ∈ R verifying ∆iΦα(0) = ∆iuα(0) for i = 0, . . . ,m − 1.
Then no blow-up will occur for uα in any compact set, which means that uα is globally defined
and α 7→ uα is a decreasing family of functions in R2m by Lemma 3.1. We claim that

lim
α→∞

uα(r) = −∞, for any r ≥ 0.(3.3)

Let vα = ∆m−1uα, as 0 ≤ ∆vα = euα ≤ eu0 and

vα(r) = ∆m−1u0(0)− α+
1

2m− 2

∫ r

0
∆vα(s)s

[
1−

(s
r

)2m−2
]
ds,

we get readily that vα tends uniformly to −∞ in any compact set of R+ as α→∞. By iterations,
we obtain that ∆m−2uα, . . .∆uα tend to −∞ uniformly in any compact set of R+, hence (3.3)
is satisfied.

Moreover, by Lemmas 7.6 and 7.8 in [4], for any α > 0, there holds limr→∞∆m−1uα(r) < 0
hence uα(r) ≤ −Cαr2m−2 for r large enough with some Cα > 0. Therefore euα ∈ L1(R2m) for
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any α > 0, and α 7→ ‖euα‖L1(R2m) is continuous in (0,∞), combining with the monotonicity
w.r.t. α. Furthermore, the claim (3.3) implies then

lim
α→∞

∫
R2m

euαdx = 0.

As the monotonicity of uα gives also

lim
α→0+

∫
R2m

euαdx =

∫
R2m

eu0dx = V0,

the proof is completed.

4. Further remarks and open questions

By the proof of Proposition 2.3, for m ≥ 3 and (ai) ∈ Rm, if the solution of (2.1) verifies
limr→+∞∆m−1u(ai)(r) < 0, then vol(gu) is finite and the function V with the initial data as
variables is continuous at the point (ai). However we have no answer for the following question.

Question 1: For any (ai) ∈ Rm with m ≥ 3, let u be the solution of (2.1), is the total volume
vol(gu) finite? If the answer is yes, is the volume function V continuous in whole Rm?

Another natural question comes from Theorem 1.2. Our approach is to study radial solutions
of (1.5). By Hyder & Martinazzi’s result in [7] on the negative constant Q-curvature situation,
for m ≥ 3 odd, the radial solutions of (1.5) can provide arbitrary volume. However, this is not
always true for m even, since when m = 2, V = (0, vol(S4)] by [9, 2, 14].

Question 2: Let m be even and m ≥ 4, do we have V = (0,∞) for radial solutions of (1.5)?

Consider the radial solutions to (1.5) as a initial value problem with u(0) = 0, ∆ku(0) = βk,
1 ≤ k ≤ m − 1. By Theorem 2.2 in [4], there exists a function Φ : Rm−2 → (−∞, 0) such that
the solution u is globally defined in R2m if and only if βm−1 ≤ Φ(β1, . . . βm−2). On the other
hand, for given β1, . . . βm−2, the solution u(βi) is increasing w.r.t. βm−1 by Lemma 3.1, so

supV = sup

{∫
R2m

e2mudx, u = u(βi) with βm−1 = Φ(β1, . . . βm−2).

}
.

Therefore, to answer the above question, we need just to understand the radial solutions with (βi)
on the boundary hypersurface for the global existence. Unfortunately we have few information
for these borderline entire radial solutions. For instance, we don’t know the asymptotic decay
of such solutions as r →∞, see Theorem 2.5 and Problem 2.1 (ii) in [4].

A last question concerns the infinite volume entire solutions. When m = 1, Liouville proved
that given a holomorphic function h in Ω ⊂ C, the function

u(z) := ln
2|h′(z)|

1 + |h(z)|2

satisfies −∆u = e2u in Ω\{z ∈ Ω, h′(z) = 0}. The conformal metrics in R2 with vol(gu) < ∞,
i.e. the solutions to (1.2) correspond to h(z) = az + b with a, b ∈ C. So we can describe many
entire solutions of −∆u = e2u in R2 with infinite volume.

For m ≥ 2, of course we can use entire radial solutions v of (−∆)mv = e2mv in RN with
3 ≤ N ≤ 2m − 1 to construct constant Q-curvature conformal metrics in R2m with infinite
volume, for example by considering u(x) := v(x1, . . . xN ). However, we wonder if other examples
exist.

Question 3: For m ≥ 2, are there entire solutions of (−∆)mu = e2mu in R2m such that u
does not allow any symmetry and e2mu 6∈ L1(R2m)?
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It is worthy to mention that similar problem was studied also in odd space dimensions, with
fractional Laplacian. Let n ≥ 3 be odd, consider

(−∆)
n
2 u = (n− 1)!enu in Rn, V :=

∫
Rn
enudx <∞.(4.4)

Recently, Jin et al. proved in [8] that for n = 3, (4.4) has a solution if and only if V ∈ (0, vol(S3)].
This is similar to Lin’s result in R4 with m = 2 in (1.3). Moreover, for arbitrary n ≥ 5 odd,
Hyder proved in [6] the existence of solution to (4.4) with any V ∈ (0, vol(Sn)], without excluding
the possibility that V > vol(Sn). This would be an interesting problem to understand if similar
phenomenon to [12] or Theorem 1.1 here exists.

Question 4: For n ≥ 5 odd, are there solutions of (4.4) such that V > vol(Sn)?
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