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Conformal metrics in R 2m with constant Q-curvature and arbitrary volume

Introduction

In R 2m , if the conformal metric g u = e 2u |dx| 2 satisfies (-∆) m u = Q(x)e 2mu , it is well known that (see for instance [START_REF] Chang | Nonlinear elliptic equations in conformal geometry[END_REF]) Q(x) is just the Q-curvature of the metric g u . Here |dx| 2 is the Euclidean metric.

One interesting question in conformal geometry is to understand the metrics with constant Q-curvature, i.e. to understand solutions of (-∆) m u = Qe 2mu in R 2m with Q ∈ R. Considering v = u -ln λ with λ > 0, (-∆) m u = Qe 2mu is equivalent to (-∆) m v = λ 2m Qe 2mv . Therefore the precise value of Q is not important and we can reduce the study to Q ∈ {0, ±1}.

For Q > 0 case, let (S 2m , g S 2m ) be the standard unit sphere in R 2m+1 , π : S 2m \{(0, . . . , 0, 1)} → R 2m be the stereographic projection. We know that Q g S 2m = (2m -1)! and (π -1 ) * g S 2m = 4|dx| 2 (1 + |x| 2 ) 2 =: g π .

Consequently Q(g π ) = (2m -1)!. By scaling and translation, for any x 0 ∈ R 2m , λ > 0, u x 0 ,λ = ln 2λ 1 + λ|x -x 0 | 2 (1.1) satisfies Q g u x 0 ,λ = (2m -1)! and vol g u x 0 ,λ = R 2m e 2mu x 0 ,λ dx = vol(S 2m ).

For m = 1, Chen & Li [START_REF] Chen | Classification of solutions of some nonlinear elliptic equations[END_REF] proved that any solution to

-∆u = e 2u in R 2 , vol(g u ) = R 2 e 2u dx < ∞ (1.2)
is given by the formula (1.1), hence vol(g u ) = vol(S 2 ), i.e. any conformal metric g in R 2 with positive constant Gauss curvature and finite volume is provided by the stereographic projection of S 2 into R 2 , up to translation and dilation.

Remark that without the assumption of finite volume, Liouville [START_REF] Liouville | Sur l'équation aux différences partielles ∂ 2 log λ ∂u∂v ± λ 2a 2 = 0[END_REF] showed that there are many other entire solutions to -∆u = e 2u in R 2 .

The situation is very different for m > 1. Consider the problem (-∆) m u = (2m -1)!e 2mu in R 2m , vol(g u ) = R 2m e 2mu dx < ∞. (1.3) Chang & Chen [START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF] proved the existence of non-spherical solutions: When m > 1, for any 0 < V < vol(S 2m ), there exists a solution to (1.3) such that vol(g u ) = V .

The condition vol(g u ) < vol(S 2m ) was not only suggested by technical reasons, but it is also necessary when m = 2. Indeed, let m = 2, Lin showed in [START_REF] Lin | A classification of soluions of conformally invariant fourth order equations in R n[END_REF] that any solution to (1.3) verifies vol(g u ) ≤ vol(S 4 ), and the equality holds if and only if the solution is spherical (i.e. given by (1.1)). Moreover, when m = 2, Wei & Ye [START_REF] Wei | Nonradial solutions for a conformally invariant fourth order equation in R 4[END_REF] proved the existence of solution with any asymptotic behavior at infinity predicted by Lin. In particular, it means that for m = 2 and any volume V less than vol(S 4 ), there exists a very rich family of non radial solutions of (1.3) with vol(g u ) = V . Thus the situation in R 4 is somehow well understood for Q > 0.

Recently, Martinazzi [START_REF] Martinazzi | Conformal metrics on R 2m with constant Q-curvature and large volume[END_REF] found striking and new phenomena for m ≥ 3: The solutions to (1.3) can have volume larger than vol(S 2m ). More precisely, (i) for m = 3, there exists V * > 0 such that for any V ≥ V * , we have a solution u of (1.3) in R 6 such that vol(g u ) = V ; (ii) for any m ≥ 3 odd, there exists V m > vol(S 2m ) such that for every V ∈ (0, V m ], there is a solution u of (1.3) satisfying vol(g u ) = V . However, he could not rule out that V 3 < V * in (i)-(ii) (when m = 3) and he asked if a gap phenomenon is possible, that is, could it be a volume V in (V 3 , V * ) such that the problem (1.3) has no solution verifying vol(g u ) = V ? He asked also if the result in (i) could be generalized for m ≥ 5 odd.

In this work, we generalize completely (i)-(ii) by proving that for m ≥ 3 odd, there exist solutions to (1.3) with arbitrary volume.

Theorem 1.1. For every m ≥ 3 odd, and every V ∈ (0, +∞), there exists a conformal metric in R 2m satisfying Q g ≡ (2m -1)! and vol(g) = V .

The result for m even is less complete, but still suggests that no gap phenomenon exists for (1.3).

Theorem 1.2. For every m ≥ 2 even, let

V = R 2m
e 2mu dx, with radial function u satisfying (1.3) .

Then V is an interval.

Our approach is to study respectively entire radial solutions of the following polyharmonic equations (m ≥ 2):

(1.4) ∆ m u = -e u in R 2m and (1.5) ∆ m u = e u in R 2m .
The main results are Theorem 1.3. Let m ≥ 2. Then for any V ∈ (0, +∞), there exists a radial solution u to (1.4) such that

R 2m e u dx = V. Theorem 1.4. Let m ≥ 2.
If there exists an entire radial solution u 0 to (1.5), then for any 0 < V < e u 0 L 1 (R 2m ) , there exists a radial solution u of (1.5) such that

R 2m e u dx = V.
Notice that given a solution u to (1.4) or (1.5), the function

v := 1 2m [u -ln(2m)!] solves (-∆) m v = ±(-1) m+1 (2m -1)!e 2mv in R 2m , R 2m e 2mv dx = 1 (2m)! R 2m e u dx.
Hence, Theorems 1.1 and 1.2 are just direct consequence of Theorems 1.3 and 1.4 respectively. So we need just to prove Theorems 1.3 and 1.4.

Furthermore, for the negative constant Q-curvature case, i.e. when Q < 0, there is no entire solution to ∆u = e 2u in R N for m = 1 and any dimension N ≥ 1 (see for example Theorem 1 in [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]). Here again, we find a completely different situation for m > 1. Recently, Hyder & Martinazzi showed that for any m ≥ 2, V > 0, and any polynomial P (x) of degree ≤ (2m -2) verifying lim x →∞ x•∇P (x) = ∞, there exists u such that (-∆) m u = -(2m -1)!e 2mu in R 2m and

R 2m e 2mu dx = V, u(x) = -P (x) + 2V vol(S 2m ) ln x + C + o(1) as x → ∞.
The above result is a direct consequence of Theorem 1.2 in [START_REF] Hyder | Conformal metrics on R 2m with constant Q-curvature, prescribed volume and asymptotic behavior[END_REF] combined with Theorem C there, which was previously proved in [START_REF] Martinazzi | Conformal metrics on R 2m with constant Q-curvature[END_REF].

2. Proof of Theorem 1.3

2.1. Preliminaries. Consider the following initial value problem in R N for general dimensions N ≥ 3.

(2.1)

     ∆ m u = -e u , u (2i+1) (0) = 0, ∀ 0 ≤ i ≤ m -1, ∆ i u(0) = a i , ∀ 0 ≤ i ≤ m -1.
Here u(x) = u(r) is a radial function, the Laplacian ∆ is seen as ∆u = r 1-N r N -1 u and a i are constants in R. We will denote u (a i ) the radial solution to (2.1).

Clearly, there exist suitable constants α i such that Φ α (r) = 0≤j≤m-1 α j r 2j verifies

∆ i Φ α (0) = a i , ∀ 0 ≤ i ≤ m -1. As ∆ m (u (a i ) -Φ α ) = -e u (a i ) < 0, it's easy to check that u (a i ) (r) ≤ Φ α (r) whenever u (a i ) exists.
Therefore -e u (a i ) is locally bounded whenever u (a i ) exists. Applying standard ODE theory, we can claim that for any (a i ) ∈ R m , the unique radial solution of (2.1) is defined globally in R + , in other words, an entire radial solution to ∆ m u = -e u exists in R N for any (a i ).

Remark 2.1. For N = 2m, if u is a solution to (2.1) with e u ∈ L 1 (R N ), we can get solution with arbitrary L 1 norm by the scaling

u λ (x) = u(λx) + 2m ln λ, since ∆ m u λ = -e u λ , R N e u λ dx = λ 2m-N R N e u dx.
So our main concern here is only relevant for N = 2m. We should mention that Farina & Ferrero provide recently in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF] many precise studies for radial solutions of

∆ m u = ±e u in R N with general m, N ∈ N * .
The following Lemma is inspired by [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]. It's a simple but important fact for our proof.

Lemma 2.2. Let m ≥ 3 and u be a radial solution to

(2.1), if a m-2 = ∆ m-2 u(0) = 0. Then lim r→+∞ ∆ m-1 u(r) < 0. Proof. Let v = ∆ m-1 u. As ∆v = -e u < 0, v(r) is decreasing in R + , so lim r→+∞ v(r) = ∈ R ∪ {-∞} exists. Assume that ≥ 0, then v(r) > 0 in R + and ∆ m-2 u(r) is increasing in r, which implies lim r→+∞ ∆ m-2 u(r) = 1 > 0, since ∆ m-2 u(0) = 0. By iterations, we conclude that lim r→+∞ ∆ k u(r) = ∞, ∀ 0 ≤ k ≤ m -3.
Therefore lim r→+∞ ∆v(r) = -∞. Again, by integrations, we get lim r→+∞ v(r) = -∞, which contradicts ≥ 0, hence there holds < 0.

A useful consequence of Lemma 2.2 is the following continuity result.

Proposition 2.3. Let m ≥ 3 and Σ 0 := R m-2 × {0} × R. Then for any (a i ) 0≤i≤m-1 ∈ Σ 0 , i.e. a m-2 = 0, the radial solution u (a i ) to equation (2.1) satisfies

V (a i ) := R N e u (a i ) dx < ∞. Moreover, the function V is continuous in Σ 0 . Proof. Given (a i ) ∈ Σ 0 , lim r→+∞ ∆ m-1 u (a i ) (r) < 0 by Lemma 2.2, hence there is R > 0 large such that ∆ m-1 u (a i ) (R) < 0.
By ODE theory, the radial solution u (a i ) to equation (2.1) is continuous with respect to (a i ) in C k loc (R N ) for any k ∈ N, see for example the proof of Proposition A3 in [START_REF] Franchi | Existence and uniqueness of nonnegative solutions of quasilinear equations in R n[END_REF]. Consequently, there exists δ > 0 small such that for any

|(a i ) -(a i )| ≤ δ, there holds u (a i ) -u (a i ) C 2m (B R ) ≤ 1 and ∆ m-1 u (a i ) (R) ≤ ∆ m-1 u (a i ) (R) 2 =: -M < 0. As ∆ m-1 u is decreasing in r for any radial solution to ∆ m u = -e u , we have ∆ m-1 u (a i ) (r) ≤ -M if r ≥ R and |(a i ) -(a i )| ≤ δ. Therefore, for r ≥ R and |(a i ) -(a i )| ≤ δ, ∆ m-2 u (a i ) (r) = ∆ m-2 u (a i ) (R) + r R 1 ρ N -1 R N -1 ∆ m-2 u (a i ) (R) + ρ R s N -1 ∆ m-1 u (a i ) (s)ds dρ ≤ C 1 + r R - M N ρ + C 2 ρ 1-N dρ ≤ - M r 2 2N + M R 2 2N + C 1 + C 2 R 2-N N -2 = - M r 2 2N + C 3 .
Here C i are some constants independent of (a i ) verifying

|(a i ) -(a i )| ≤ δ. We get then M > 0 and R ≥ R such that ∆ m-2 u (a i ) (r) ≤ -M < 0, for all r ≥ R , |(a i ) -(a i )| ≤ δ.
By iterations, we can conclude that there exist M 0 > 0 and R 0 large such that

u (a i ) (r) ≤ -M 0 r 2m-4 , for all r ≥ R 0 , |(a i ) -(a i )| ≤ δ.
Clearly V (a i ) < ∞ by the above estimate. It's not difficult to deduce the continuity of V in (a i ) using the continuity of u (a i ) in C 0 loc (R N ) with respect to (a i ), and the uniform estimate out of a compact set, we omit the details.

If m = 2, we consider radial solutions to the following biharmonic equation

(2.2)      ∆ 2 u = -e u u (0) = u (0) = 0, ∆u(0) = a, u(0) = -b.
Corresponding to Lemma 2.2 for m ≥ 3, we have Lemma 2.4. For any a, b ∈ R, the radial solution to (2.2) satisfies lim r→+∞ ∆u(r) < 0.

Proof. Let v = ∆u, as ∆v = -e u < 0, v is decreasing in r ∈ (0, +∞). So lim r→+∞ v(r) = exists. If ≥ 0, we have v(r) > 0 in R + , then u is increasing in r and ∆v = -e u ≤ -e u(0

) = -e -b in R N . Then lim r→+∞ v(r) = -∞ since v(r) -a = r 0 1 ω N -1 ρ N -1 Bρ ∆vdxdρ ≤ -e -b r 2 2N .
This contradicts the assumption ≥ 0. So < 0.

Here and after, ω N -1 denotes the volume of the standard sphere S N -1 ⊂ R N . Denote u a,b the radial solution to (2.2) and

V (a, b) := R N e u a,b dx.
Using Lemma 2.4, we can prove the continuity of V very similarly as for Proposition 2.3, so we omit the proof.

Proposition 2.5. For any (a, b) ∈ R 2 , V (a, b) < ∞. Moreover, V is continuous in R 2 .
2.2. Solutions with large volume for (1.4). Here we prove the existence of radial solutions to (1.4) with any large volume. As mentioned in Remark 2.1, the problem is relevant only in the conformal dimension. From now on, we fix N = 2m, even though similar result holds true for any N ≥ 3. The crucial point is to consider some special initial conditions. More precisely, for m ≥ 3 and N = 2m, let

c 0 := 4 m-1 × m-1 k=1 k(m -1 + k) (2.3)
and consider (2.1) with (a i ) = (-b, 0, . . . Similarly, let a = 8 in (2.2) for m = 2, there holds

0, c 0 ) ∈ Σ 0 = R m-2 × {0} × R. (2.4)          ∆ m u = -e u , u (2i+1) (0) = ∆ k u(0) = 0, ∀ i = 0 . . . m -1; k = 1, . . . m -2, ∆ m-1 u(0) = c 0 , u(0) = -b < 0.
(2.6) lim b→+∞ V (8, b) = +∞.
Proof. We handle the cases m ≥ 3 and m = 2 together. For simplicity and without confusion, we denote by u the solution to (2.4) or the solution to (2.2) with a = 8.

For any m ≥ 2, let Φ

(x) = Φ(r) = r 2m-2 -b. Hence ∆ m Φ = 0 in R 2m and ∆ i Φ(0) = ∆ i u(0) for any 0 ≤ i ≤ m -1. Set w = u -Φ, then ∆ m w = ∆ m u = -e u < 0 and ∆ i w(0) = 0 for 0 ≤ i ≤ m -1. By iterations, we deduce easily that ∆ i w ≤ 0 in R 2m for 0 ≤ i ≤ m -1. In particular, w ≤ 0 in R 2m , i.e. u ≤ Φ in R 2m . Let R 0 := b 1 2m-2
, the unique zero of Φ in (0, ∞). To prove (2.5) or (2.6), we proceed by three steps.

Step 1. Estimate of ∆ m-1 w(R 0 ).

As ∆ m w = -e u , we have, for any r > 0,

∆ m-1 w(r) = - r 0 1 ρ 2m-1 ρ 0 e u(s) s 2m-1 dsdρ ≥ - r 0 ρ 1-2m ρ 0 e Φ(s) s 2m-1 dsdρ = - r 0 e s 2m-2 -b s 2m-1 ds r s ρ 1-2m dρ = - 1 2m -2 r 0 e s 2m-2 -b s 1 - s r 2m-2 ds ≥ - r 0 e s 2m-2 -b 1 - s r sds = - r 2 2 1 0 e r 2m-2 t m-1 -b 1 - √ t dt.
For the second inequality, we used the convexity of the function h(x) = x 2m-2 in R + and we applied the change of variable t = r -2 s 2 for the last line. Therefore,

∆ m-1 w(R 0 ) ≥ - R 2 0 2 1 0 e b(t m-1 -1) 1 - √ t dt =: ξ(b).
Moreover, there exists λ > 0 depending on m such that λ(1

-t) ≤ 1 -t m-1 for any t ∈ [0, 1]. So we get 1 0 e b(t m-1 -1) (1 - √ t)dt ≤ 1 0 e λb(t-1) (1 -t)dt = 1 λ 2 b 2 - 1 λb + 1 λ 2 b 2 e -λb = O 1 b 2 as b → ∞.
As ∆ m-1 w(r) is decreasing in r, there holds

∆ m-1 w(r) ≥ ∆ m-1 w(R 0 ) ≥ ξ(b) = O b 1 m-1 -2 for r ≤ R 0 . (2.7)
Step 2. Estimates of ∆ i u(r), i = 0, ..., m -1 for r > R 0 . Define r 0 = inf {r > 0, u(r) = 0} ∈ (R 0 , +∞]. We claim that

lim b→+∞ (r 0 -R 0 ) = 0. (2.8) Remark that u ≤ 0 in [R 0 , r 0 ], so ∆ m w = -e u ≥ -1 if R 0 ≤ r ≤ r 0 . Therefore, if r ∈ [R 0 , r 0 ], ∆ m-1 w(r) ≥ ∆ m-1 w(R 0 ) - r R 0 1 ω 2m-1 ρ 2m-1 B R 0 e Φ dx + Bρ\B R 0 dx dρ, = ∆ m-1 w(R 0 ) - r R 0 ρ 1-2m R 0 0 e s 2m-2 -b s 2m-1 ds + ρ R 0 s 2m-1 ds dρ. When b → +∞, there holds η(b) := R 0 0 e s 2m-2 -b s 2m-1 ds = R 2m 0 1 0 e -b(1-t 2m-2 ) t 2m-1 dt = O R 2m 0 b .
We obtain that for r ∈ [R 0 , r 0 ],

(2.9)

∆ m-1 w(r) ≥ ∆ m-1 w(R 0 ) -η(b)R 1-2m 0 (r -R 0 ) - 1 2m r R 0 ρ 1 - R 0 ρ 2m dρ.
On the other hand, by the convexity of h

(x) = x 2m in R + , 1 2m r R 0 ρ 1 - R 0 ρ 2m dρ ≤ r R 0 ρ 1 - R 0 ρ dρ = (r -R 0 ) 2 2 , ∀ r ≥ R 0 .
Denote r 0 := min {r 0 , R 0 + 1}. Combining (2.7) and (2.9), for r ∈ [R 0 , r 0 ], we have (as m ≥ 2)

∆ m-1 w(r) ≥ O b 1 m-1 -2 -O R 0 b (r -R 0 ) - (r -R 0 ) 2 2 ≥ O(1). (2.10)
Using again (2.7), we obtain

∆ m-1 w(r) ≥ O b 1 m-1 -2 + O(1)χ [R 0 , r 0 ] , ∀ r ∈ [0, r 0 ].
Here and in the following, χ A denotes the characteristic function of a subset A and O(1) denotes a quantity uniformly bounded for b sufficiently large.

By iterations, for 0 ≤ j ≤ m -2 and r ∈ [0, r 0 ], we get

∆ j w(r) ≥ O b 1 m-1 -2 r 2(m-1-j) + O(1)χ [R 0 , r 0 ] . (2.11)
In particular, let j = 0, there holds

u(r) ≥ Φ(r) + O b 1 m-1 -2 r 2(m-1) + O(1)χ [R 0 , r 0 ] , ∀ r ∈ [0, r 0 ].
Using the convexity of Φ, we have then

u(r) ≥ (2m -2)R 2m-3 0 (r -R 0 ) + O b 1 m-1 -2 r 2(m-1) + O(1) in [R 0 , r 0 ]. Fix any ε ∈ (0, 1), suppose that r 0 > R 0 + ε. Then 0 > u(R 0 + ε) ≥ (2m -2)b 2m-3 2m-2 ε + O b 1 m-1 -1 + O(1), which is impossible for b large enough, since 2m -3 2m -2 - 1 m -1 + 1 = 4m -7 2(m -1) > 0, ∀ m ≥ 2.
In other words, when b is sufficiently large, we have r 0 ≤ R 0 + ε, so the claim (2.8) is proved. An immediate consequence of (2.8) is

(2.12) lim inf b→+∞ ∆ m-1 u(r 0 ) ≥ c 0 .
Indeed, applying the first inequality in (2.10),

∆ m-1 w(r 0 ) ≥ O b 1 m-1 -2 -O R 0 b (r 0 -R 0 ) - (r 0 -R 0 ) 2 2 ,
we get lim inf b→+∞ ∆ m-1 w(r 0 ) ≥ 0 by (2.8), hence (2.12) holds true as ∆ m-1 Φ ≡ c 0 .

Step 3. The proof of (2.5) and (2.6). Consider first m ≥ 3. Recall that we denote by u, the radial solution of (2.4). Let

V (b) := R 2m e u dx = ω 2m-1 ∞ 0 e u(s) s 2m-1 ds.
By equation ∆ m u = -e u , we get

r 2m-1 (∆ m-1 u) (r) = - r 0 e u(s) s 2m-1 ds ≥ - V (b) ω 2m-1 .
For any r > r 0 , using the above inequality on [r 0 , r], there holds

∆ m-1 u(r 0 ) ≤ ∆ m-1 u(r) + V (b) ω 2m-1 r r 0 s 1-2m ds ≤ ∆ m-1 u(r) + V (b) ω 2m-1 ∞ r 0 s 1-2m ds = ∆ m-1 u(r) + V (b)r 2-2m 0 (2m -2)ω 2m-1 .
Tending r to +∞, we conclude by Lemma 2.2 that

V (b) > (2m -2)ω 2m-1 r 2m-2 0 ∆ m-1 u(r 0 ).
Hence lim b→+∞ V (b) = +∞ by (2.12) and lim b→+∞ r 0 = +∞.

The proof of (2.6) is completely similar, so we omit it.

Remark 2.7. The formula (2.6) gives a positive answer to a question in [START_REF] Martinazzi | Conformal metrics on R 2m with constant Q-curvature and large volume[END_REF], page 981. Assume that u solves (2.2) with a = 8 in 

R 4 . Let v(x) = u(λx) + 4 ln λ with λ = e b/4 , then ∆ 2 v = -e v , v (0) 
≤ Ψ(r) := -r 2m-2 -b in R 2m . Hence lim b→+∞ R 2m e u b dx ≤ lim b→+∞ R 2m e Ψ dx = lim b→+∞ R 2m e -|x| 2m-2 -b dx = 0.
By Proposition 2.3, Theorem 2.6 and the above estimate, we get readily that V (Σ 0 ) = (0, ∞), so we are done.

The argument for m = 2 is completely similar. Considering the radial solution u b to (2.2) with a = -8, we prove easily that inf R 2 V (a, b) = 0. Using (2.6) and Proposition 2.5, there holds V (R 2 ) = (0, ∞).

Proof of Theorem 1.4

For (1.5), we use a different approach, which is based on the following well-known comparison result (see for instance Proposition A.2 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF])

Lemma 3.1. Let u, v ∈ C 2m ([0, R)) be two radial functions such that ∆ m u -e u ≥ ∆ m v -e v in [0, R) and ∆ k u(0) ≥ ∆ k v(0), (∆ k u) (0) ≥ (∆ k v) (0), ∀ 0 ≤ k ≤ m -1. (3.1)
Then we have u ≥ v in [0, R).

Let u 0 be an entire radial solution of (1.5) with V 0 := e u 0 L 1 (R 2m ) ∈ (0, ∞], consider u α the solution to the following initial value problem

(3.2)            ∆ m u = e u , u (2i+1) (0) = 0, ∀ 0 ≤ i ≤ m -1, ∆ i u(0) = ∆ i u 0 (0), ∀ 0 ≤ i ≤ m -2, ∆ m-1 u(0) = ∆ m-1 u 0 (0) -α, α > 0.
For any α > 0, by Lemma 3.1, we have u α ≤ u 0 whenever it exists. On the other hand, we have

u α ≥ Φ α = 0≤j≤m-1 α j r 2j with α j ∈ R verifying ∆ i Φ α (0) = ∆ i u α (0) for i = 0, . . . , m -1.
Then no blow-up will occur for u α in any compact set, which means that u α is globally defined and α → u α is a decreasing family of functions in R 2m by Lemma 3.1. We claim that lim α→∞ u α (r) = -∞, for any r ≥ 0.

(3.3) Let v α = ∆ m-1 u α , as 0 ≤ ∆v α = e uα ≤ e u 0 and v α (r) = ∆ m-1 u 0 (0) -α + 1 2m -2 r 0 ∆v α (s)s 1 - s r 2m-2 ds,
we get readily that v α tends uniformly to -∞ in any compact set of R + as α → ∞. By iterations, we obtain that ∆ m-2 u α , . . . ∆u α tend to -∞ uniformly in any compact set of R + , hence (3.3) is satisfied.

Moreover, by Lemmas 7.6 and 7.8 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF], for any α > 0, there holds lim r→∞ ∆ m-1 u α (r) < 0 hence u α (r) ≤ -C α r 2m-2 for r large enough with some C α > 0. Therefore e uα ∈ L 1 (R 2m ) for any α > 0, and α → e uα L 1 (R 2m ) is continuous in (0, ∞), combining with the monotonicity w.r.t. α. Furthermore, the claim (3.3) implies then lim α→∞ R 2m e uα dx = 0.

As the monotonicity of u α gives also lim

α→0 + R 2m e uα dx = R 2m e u 0 dx = V 0 ,
the proof is completed.

Further remarks and open questions

By the proof of Proposition 2.3, for m ≥ 3 and (a i ) ∈ R m , if the solution of (2.1) verifies lim r→+∞ ∆ m-1 u (a i ) (r) < 0, then vol(g u ) is finite and the function V with the initial data as variables is continuous at the point (a i ). However we have no answer for the following question.

Question 1: For any (a i ) ∈ R m with m ≥ 3, let u be the solution of (2.1), is the total volume vol(g u ) finite? If the answer is yes, is the volume function V continuous in whole R m ? Another natural question comes from Theorem 1.2. Our approach is to study radial solutions of (1.5). By Hyder & Martinazzi's result in [START_REF] Hyder | Conformal metrics on R 2m with constant Q-curvature, prescribed volume and asymptotic behavior[END_REF] on the negative constant Q-curvature situation, for m ≥ 3 odd, the radial solutions of (1.5) can provide arbitrary volume. However, this is not always true for m even, since when m = 2, V = (0, vol(S 4 )] by [START_REF] Lin | A classification of soluions of conformally invariant fourth order equations in R n[END_REF][START_REF] Chang | A note on a class of higher order conformally covariant equations[END_REF][START_REF] Wei | Nonradial solutions for a conformally invariant fourth order equation in R 4[END_REF].

Question 2: Let m be even and m ≥ 4, do we have V = (0, ∞) for radial solutions of (1.5)?

Consider the radial solutions to (1.5) as a initial value problem with u(0) = 0, ∆ k u(0) = β k , 1 ≤ k ≤ m -1. By Theorem 2.2 in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF], there exists a function Φ : R m-2 → (-∞, 0) such that the solution u is globally defined in R 2m if and only if β m-1 ≤ Φ(β 1 , . . . β m-2 ). On the other hand, for given β 1 , . . . β m-2 , the solution u (β i ) is increasing w.r.t. β m-1 by Lemma 3.1, so sup

V = sup R 2m e 2mu dx, u = u (β i ) with β m-1 = Φ(β 1 , . . . β m-2 ). .
Therefore, to answer the above question, we need just to understand the radial solutions with (β i ) on the boundary hypersurface for the global existence. Unfortunately we have few information for these borderline entire radial solutions. For instance, we don't know the asymptotic decay of such solutions as r → ∞, see Theorem 2.5 and Problem 2.1 (ii) in [START_REF] Farina | Existence and stability properties of entire solutions to the polyharmonic equation (-∆) m u = e u for any m ≥ 1, to appear in Ann. I[END_REF]. For m ≥ 2, of course we can use entire radial solutions v of (-∆) m v = e 2mv in R N with 3 ≤ N ≤ 2m -1 to construct constant Q-curvature conformal metrics in R 2m with infinite volume, for example by considering u(x) := v(x 1 , . . . x N ). However, we wonder if other examples exist.

Question 3: For m ≥ 2, are there entire solutions of (-∆) m u = e 2mu in R 2m such that u does not allow any symmetry and e 2mu ∈ L 1 (R 2m )?

It is worthy to mention that similar problem was studied also in odd space dimensions, with fractional Laplacian. Let n ≥ 3 be odd, consider (-∆) [START_REF] Jin | Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three[END_REF] that for n = 3, (4.4) has a solution if and only if V ∈ (0, vol(S 3 )]. This is similar to Lin's result in R 4 with m = 2 in (1.3). Moreover, for arbitrary n ≥ 5 odd, Hyder proved in [START_REF] Hyder | Existence of entire solutions to a fractional Liouville equation in R n[END_REF] the existence of solution to (4.4) with any V ∈ (0, vol(S n )], without excluding the possibility that V > vol(S n ). This would be an interesting problem to understand if similar phenomenon to [START_REF] Martinazzi | Conformal metrics on R 2m with constant Q-curvature and large volume[END_REF] or Theorem 1.1 here exists.

Question 4: For n ≥ 5 odd, are there solutions of (4.4) such that V > vol(S n )?

Theorem 2 . 6 .

 26 Let m ≥ 3, denote by u b the radial solution to equation (2.4). Then (2.5) lim b→+∞ R 2m e u b dx = +∞.

2 . 3 .

 23 = 0 and v (0) = e b/2 u (0) = 2e b/2 . Hence v (0) → +∞ is equivalent to b → +∞. Proof of Theorem 1.3 completed. Let m ≥ 3 and u b be the radial solution to equation (2.1) with (a i ) = (-b, 0, ...0, -c 0 ) ∈ Σ 0 . As above, there holds u b

A

  last question concerns the infinite volume entire solutions. When m = 1, Liouville proved that given a holomorphic function h in Ω ⊂ C, the function u(z) := ln 2|h (z)| 1 + |h(z)| 2 satisfies -∆u = e 2u in Ω\{z ∈ Ω, h (z) = 0}. The conformal metrics in R 2 with vol(g u ) < ∞, i.e. the solutions to (1.2) correspond to h(z) = az + b with a, b ∈ C. So we can describe many entire solutions of -∆u = e 2u in R 2 with infinite volume.

n 2 u

 2 = (n -1)!e nu in R n , V := R n e nu dx < ∞.(4.4) Recently, Jin et al. proved in
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