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We extend our previous study [1] devoted to thin linearly piezoelectric junctions to the case when the elastic, piezoelectric 
and dielectric coefficients of the junction are not of the same order of magnitude.

r é s u m é

Nous étendons notre étude [1] consacrée aux jonctions minces linéairement piézoélec-triques au cas où les coefficients 
élastiques, piézoélectriques et diélectriques de la jonction ne sont pas du même ordre de grandeur.

1. Introduction

Due to the wide range of values taken by the elastic, piezoelectric and dielectric coefficients of various devices, it is
worthwhile to extend our previous study [1] devoted to thin linearly piezoelectric junctions to the case when the elastic, 
piezoelectric and dielectric coefficients of the junction are not of the same order of magnitude. Our various asymptotic models 
for a thin piezoelectric junction between two linearly piezoelectric or elastic bodies will be indexed by p = (p1, p2, p3) in 
{1,2,3,4 }3. Indices p1 and p2 are respectively relative to the magnitude of the elastic and dielectric coefficients of the 
adhesive with respect to that of the constant thickness 2ε of the layer containing the adhesive. More precisely, we assume 
that h := (ε, μ) = (ε, μmm, μee, μme) takes values in a countable set with a sole cluster point h̄ ∈ {0 } × [0, +∞]3, so that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p1 = 1 : μ̄1
mm := limh→h̄(2εμmm) ∈ (0,+∞)

p1 = 2 : μ̄1
mm := limh→h̄(2εμmm) = 0

μ̄2
mm := limh→h̄(μmm/2ε) = +∞

p1 = 3 : μ̄2
mm := limh→h̄(μmm/2ε) ∈ (0,+∞)

p1 = 4 : μ̄2
mm := limh→h̄(μmm/2ε) = 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p2 = 1 : μ̄1
ee := limh→h̄(2εμee) ∈ (0,+∞)

p2 = 2 : μ̄1
ee := limh→h̄(2εμee) = 0

μ̄2
ee := limh→h̄(μee/2ε) = +∞

p2 = 3 : μ̄2
ee := limh→h̄(μee/2ε) ∈ (0,+∞)

p2 = 4 : μ̄2
ee := limh→h̄(μee/2ε) = 0

(1)
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The parameters μmm , μee , μme respectively characterize the order of magnitude of the elastic, dielectric and piezoelectric 
coefficients of the adhesive. The case p1 = p2 being already treated in [1], in the following we assume p1 �= p2. As in [1], 
index p3 characterizes the status of the adherents but also that of the interfaces between adherents and adhesive:⎧⎪⎪⎪⎨⎪⎪⎪⎩

p3 = 1 : the two interfaces are electromechanically perfectly permeable

p3 = 2 : the two interfaces are electrically permeable

p3 = 3 : one interface is electrically permeable while the other one bears an electrode

p3 = 4 : the two interfaces bear an electrode

(2)

The physical situation is that of [1], which we recall as follows. Let � be a domain, with Lipschitz-continuous bound-
ary, of R3, assimilated with the physical Euclidean space with basis { e1, e2, e3 }, whose intersection S with { x3 = 0 } is 
a domain of R2 of positive two-dimensional Hausdorff measure H2(S). Let �± := � ∩ {±x3 > 0 } and ε be a small pos-
itive number, then adhesive and adherents occupy Bε := S × (−ε, ε), �ε± := �± ± εe3, respectively; let �ε = �ε+ ∪ �ε− , 
Sε± := S ± εe3, Oε := �ε ∪ Bε ∪± Sε± . Let (�mD, �eD), (�eD, �eN) be two partitions of ∂� with H2(�mD), H2(�eD) > 0 and 
0 < δ := dist(�eD, S). For all � in {�mD,�mN,�eD,�eN }, �± , �ε± , �ε denotes �∩{±x3 > 0 }, �± ±εe3, ∪±�ε± , respectively; if
(γD, γN) is a partition of γ := ∂ S , we denote 

{
γD, γN, γ

} × (−ε, ε) by 
{
�ε

DI,�
ε
NI,�

ε
lat

}
. The structure made of the adhesive

and the two adherents, perfectly stuck together along Sε± , is clamped on �ε
mD and subjected to body forces of density f ε

and to surface forces of density F ε on �ε
mD that vanishes on �ε

lat . Moreover, a given electric potential ϕh
p0

is applied on �ε
DI

(and also on �ε
eD when p3 = 1), while electric charges of density dε appear on �ε

NI (and also on �ε
eN when p3 = 1).

If σ h
p , uh

p , e(uh
p), Dh

p , ϕh
p respectively stand for the fields of stress, displacement, strain, electric displacement and electric 

potential, the constitutive equations of the structure, for all p̂ := (p1, p2), read as:⎧⎪⎨⎪⎩
(σ h

p , Dh
p) = Mμ

I

(
e(uh

p),∇ϕh
p

)
in Bε ∀p3 ∈ {1,2,3,4 }{

(σ h
p , Dh

p) = Mε
E

(
e(uh

p),∇ϕh
p

)
in �ε if p3 = 1

σ h
p = aε

Ee(uh
p) in �ε if p3 > 1

(3)

where

(Mε
E,aε

E)(x) = (ME,aE)(x ∓ εe3) ∀x ∈ �ε± (4)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(MI, ME) ∈ L∞(
S × �; Lin(K)

)
such that

Mμ
I :=

[
μmmaI −μmebI

μmebT
I μeecI

]
, ME :=

[
aE −bE

bT
E cE

]

MP :=
[

aP −bP

bT
P cP

]
; ∃κ > 0 κ |k|2 ≤ MP(x)k · k ∀k ∈K := S3 ×R3 a.e. x ∈ �, ∀P ∈ { I,E }

(5)

and Lin(K) is the space of linear operators on K whose inner product and norm are noted · and | · | as in R3 (the same 
notations for the norm and inner product also stand for SN the space of N × N symmetric matrices).

Lastly we have to add the following conditions on Sε±:⎧⎪⎪⎨⎪⎪⎩
p3 = 2 Dh

p · e3 = 0 on Sε±
p3 = 3 Dh

p · e3 = 0 on Sε+, ϕh
p = ϕh

p0
on Sε−

p3 = 4 ϕh
p = ϕh

p0
on Sε±

(6)

the electric potential ϕh
p0

being given on Sε+ or Sε± .
It will be convenient to use the following notations:⎧⎪⎨⎪⎩

k̂ := (ê, ĝ) ê := eαβ, 1 ≤ α,β ≤ 2, ĝ := (g1, g2), ∀k = (e, g) ∈ K

k(r) = k(v,ψ) := (
e(v),∇ψ

) ∀r ∈ H1(O;R3 ×R)

e(v) ∈ D′(S;S2); (
e(v)

)
αβ

= 1
2 (∂α vβ + ∂β vα), 1 ≤ α,β ≤ 2, ∀ v ∈ D′(S;R3)

(7)

and the same symbol e(·) shall also stand for the symmetrized gradient in the sense of distributions of D′(O; R3), O ∈{
Oε,�,� \ S, Bε,�ε

}
or D′(S; R2). An electromechanical state with vanishing electric potential on �ε

DI and on �ε
eD when 

p3 = 1 will belong to V ε
p := H1

ε (Oε; R3) × �ε
p , with
�mD 3



⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�ε
1 = H1

�ε
DI∪�ε

eD
(Oε)

�ε
2 = H1

�ε
DI
(Bε) if H2(�

ε
DI) > 0, H1

m(Bε) if H2(�
ε
DI) = 0

�ε
3 = H1

�ε
DI∪Sε−

(Bε)

�ε
4 = H1

�ε
DI∪± Sε±

(Bε)

(8)

where, for any domain O of RN , N = 2, 3, H1
�(O; RM) denotes the subspace of H1(O; RM), M = 1 or 3, of all elements 

with vanishing traces on a part � of the boundary of O, while H1
m(O; RM) denotes the subspace of all elements with 

vanishing average.
We make the following assumptions on the data:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ( f , F ,dE,dI) in L2(�;R3) × L2(�mN;R3) × L2(�eN) × L2
(
γN × (−1,1)

)
with

∫
�lat

dI dH2 = 0 when p3 = 2 and H2
(
γD × (−1,1)

) = 0

ϕoI in H3/2(R) vanishing in { |x3| > 1 + δ/2 }, and ϕoE in H1(�) vanishing on S , then:

f ε(x) = f (x ∓ εe3) a.e. x ∈ �ε±, f ε(x) = 0 a.e. x ∈ Bε

F ε(x) = F (x ∓ εe3) a.e. x ∈ �ε
mN±

dε(x) = (2μee)
1/2dI(x̂, x3/ε) a.e. x ∈ �ε

NI

dε(x) = dE(x ∓ εe3) a.e. x ∈ �ε
eN± if p3 = 1

ϕh
po

(x) =
{
ϕoE(x ∓ εe3) + εpDIϕoI(x ± (1 − ε)e3) a.e. x ∈ �ε±
εpDIϕoI(x̂, x3/ε) a.e. x ∈ Bε

(9)

where pDI is such that pDI = 0 if ∂3ϕoI = 0 in S × (−1, 1), pDI = 1 if ∂3ϕoI �= 0 in S × (−1, 1). We also introduce the element 
ϕo of H1,1(�, S) := {

ψ ∈ H1(�) whose trace γo(ψ) on S belongs to H1(S)
}

defined by ϕo(x) = ϕoE(x) + (1 − pDI)ϕoI(x ±
e3) a.e. x ∈ �± . We note ϕo the trace on γD of ϕo and set �ϕoI = 1

2

(
ϕoI(·, 1) − ϕoI(·, −1)

)
.

Then, if Mp and Lp are defined by:⎧⎪⎪⎨⎪⎪⎩
Mp(s, r) :=

{∫
�ε Mε

E k(s) · k(r)dx + ∫
Bε Mμ

I k(s) · k(r)dx, if p3 = 1∫
�ε aε

E e(u) · e(v)dx + ∫
Bε Mμ

I k(s) · k(r)dx, if p3 > 1

Lp(r) := ∫
�

f ε · v dx + ∫
�ε

mN
F ε · v dH2 + ∫

�ε
N I ∪�ε dεψ dH2 �ε = �ε

eN if p3 = 1,�ε = ∅ if p3 > 1

(10)

seeking an equilibrium state leads to the problem

(Ph
p) : Find sh

p in (0,ϕh
p0

) + V ε
p such that Mp(sh

p, r) = Lp(r), ∀ r ∈ V ε
p

which, by Stampacchia’s theorem, has a unique solution.

2. The asymptotic models

By proceeding as in [1], we will determine the asymptotic behavior of the structure when h goes to h̄ under the following
assumption on the behavior of μme , whose rationale will clearly appear in Step 3 below.

(H p)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exists μ̄me in [0,+∞) such that μ̄me = lim
h→h̄

μme, with

lim
h→h̄

μ2
me

μee

1

ε
= 0 when p = (4,1,4) or p = (3,2, p3), (3,4, p3), (4,2, p3),1 ≤ p3 ≤ 4

lim
h→h̄

μ2
me

μee
ε = 0 when p = (2,1,4) or p = (1,2, p3), (1,4, p3), (2,4, p3),1 ≤ p3 ≤ 4

lim
h→h̄

μ2
me

μmm

1

ε
= 0 when p = (2,3, p3), (2,4, p3), (4,3, p3),1 ≤ p3 ≤ 4

lim
h→h̄

μ2
me

μmm
ε = 0 when p = (4,2,1) or p = (2,1, p3), (4,1, p3),1 ≤ p3 ≤ 4

lim
h→h̄

μme

ε
= 0 when p = (4,3,4)

lim
h→h̄

μme = 0 when p = (1,3,4) or p = (2,3,4)

lim¯ μme = μ̄me when p = (1,3, p3),1 ≤ p3 ≤ 3, or p = (3,1, p3),1 ≤ p3 ≤ 4

h→h



In the following, C will denote various constants independent of h which may vary from line to line. It will be convenient 
in the cases p3 > 1 to use the same symbol sh

p for (uh
p, ϕ̃h

p) where ϕ̃h
p denotes the extension into �ε of ϕh

p by 0. Without 
loss of generality, we suppose H2(�mD+) > 0; moreover, we assume H2(�mD−) > 0 when p1 = 4, and H2(�eD±) > 0 when 
p2 = 4.

Step 1 (a priori estimates): By taking r = sh
p − (0, ϕh

p0
) in the variational formulation of (Ph

p), one has:

μmm|e(uh
p)|2L2(Bε;S3)

+ μee|∇ϕh
p |2L2(Bε;R3)

+ |k(sh
p)|2L2(�ε;K)

≤ C (11)

Step 2 (convergence of (sh
p)): As in [1], the two following tools are suitable to describe the asymptotic behavior of the 

electromechanical state in the adherents and adhesive, respectively. First, let T ε be the mapping from H1(�ε; R3 ×R) into 
H1(� \ S; R3 ×R) defined by:

(T εr)(x) = (
T ε(v,ψ)

)
(x) = (T ε

1 v, T ε
2ψ)(x) := (v,ψ)(x ± εe3) ∀x ∈ �± (12)

Note that T εsh
p = (T1uh

p, 0) if p3 > 1! For any w in H1(� \ S; RN ), N ∈ {1,3 }, if γ ±
o (w±) denotes the trace on S of its 

restriction w± to �± , � w � stands for γ +
o (w+) − γ −

o (w−).
Next for all r = (v, ψ) in H1(Bε; R3 ×R), we set the following element of L2(S; K):

kp(ε, r) = (
ep(ε, v), gp(ε,ψ)

) :=
(

1

(2ε)q1

ε∫
−ε

e(v)(·, x3)dx3,
1

(2ε)q2

ε∫
−ε

∇ψ(·, x3)dx3

)
qi = max(2 − pi,0), i = 1,2 (13)

and there holds

̂kp(ε, r) = (e(Û p),∇�p), (U h
p,�h

p) :=
(

1

(2ε)q1

ε∫
−ε

uh
p(·, x3)dx3,

1

(2ε)q2

ε∫
−ε

ϕh
p(·, x3)dx3

)
(14)

So (11) and standard estimates in Sobolev spaces (see [1]) imply:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|k(T εsh
p)|L2(�\S;K) ≤ C, |�T εsh

p �|2L2(S;R3×R)
≤ Cε

(
1 + 1

μmm
+ 1

μee

)
|ep(ε, uh

p)|2L2(S;S3)
≤ Cε−2q1

ε

μmm
, |gp(ε,ϕh

p)|2L2(S;R3)
≤ Cε−2q2

ε

μee

|U h
p|2L2(S;R3)

≤ Cε2(1−q1)
(

1 + ε

μmm

)
ε2(q2−1)|�h

p|2L2(S)
≤ Cc∗(h), c∗(h) =

(
1 + ε

μee

)
if p3 = 1,

1

εμee
if p3 = 2, ε2 + ε

μee
if p3 > 2

|e(Û h
p)|2L2(S;S2)

≤ C
1

ε2q1
· ε

μmm
, |∇�h

p|2L2(S;R2)
≤ C

1

ε2q2
· ε

μee

|U h
p − γ ±

o ((T ε
1 uh

p)±)|2L2(S;R3)
≤ C

(
ε + ε

μmm

)
if p1 = 1

|�h
p − γ ±

o ((T ε
2ϕh

p)±)|2L2(S)
≤ C

(
ε + ε

μee

)
if p2 = 1

(15)

Thus, if a ⊗S b denotes the symmetrized tensor product of a and b in R3, we deduce:

Proposition 2.1.

1. There exists s̄p = (ūp, ϕ̄p) in H1
�mD

(� \ S; R3) × H1
�eD

(� \ S) such that T εsh
p weakly converges in H1(� \ S; R3 × R) toward

some s̄p = (ū, ϕ̄p) ; ϕ̄p = 0 when p3 > 1, and ūp belongs to H1(�; R3) when p1 ≤ 2, ϕ̄p belongs to H1(�) when p2 ≤ 2 and
p3 = 1.

2. When p1 �= 4, ep(ε, uh
p) weakly converges in L2(S; S3) toward some ēp , and there exists U p in H1(S; R3) such that Û h

p weakly

converges in H1(S; R2) toward Û p , (U h
p)3 strongly converges in L2(S) toward (U p)3 , moreover

i) when p1 = 1, U p = γ0(ūp), ̂̄ep = ê(ūp);
ii) when p1 > 1, U p = 0, and ēp = �up � ⊗S e3 .

3. When p2 �= 4, gp(ε, ϕh
p) weakly converges in L2(S; R3) toward some ḡp and there exists �p in H1(S) such that �h

p weakly

converges in H1(S) toward �p ; moreover,



i) when p2 = 1, �p is equal to γo(ϕ̄p) when p3 = 1 or to γo(ϕo) when p3 ≥ 3, furthermore the trace on γD of �p is equal to
ϕ̄o while ̂ḡp = ∇�p and (ḡp)3 = �ϕoI when p3 = 4;

ii) when p2 = 2, �p = 0 and ḡp = 0;
iii) when p2 = 3, �p and ̂ḡp vanish only when p3 �= 2, while (ḡp)3 = �ϕp � when p3 = 1, (ḡp)3 = 0 when p3 = 3.

As in the next step, we will show that (ūp, ϕ̄p) is the unique solution of a variational problem, note that the whole 
sequences converge. When both ēp and ḡp are defined we set k̄p = (ēp, ̄gp).

Step 3 (identification of (s̄p, ēp, ḡp)): We proceed in two different ways depending on whether k̄p does not exist, k̄p is 
fully or partially identified.

When p = (3, 1, 4) or 1 < p1, p2 ≤ 4, p1 �= p2, 1 ≤ p3 ≤ 4, it suffices to go to the limit in the variational formulation 
of (Ph

p) by using the following test functions rε
p = (vε

p, ψε
p ) and taking duly account of the estimates (15), Proposition 2.1, 

Cauchy Schwarz inequality and (H p) which are constructed in order that

lim
h→h̄

∫
Bε

bI∇ϕh
p · e(vε

p)dx = lim
h→h̄

∫
Bε

bT
I e(uh

p) · ∇ψε
p dx = 0

The test functions rε
p reads as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vε
p = wmin (p1−1,2),ε, 1 ≤ p3 ≤ 4

ψε
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ min (p2−1,2),ε p3 = 1

(θ1 + x3θ2)/ε, θ1, θ2 ∈ C∞
0 (S) p2 = 3,4, p3 = 2

(1 + x3/ε)θ, θ ∈ C∞
0 (S) p2 = 3,4, p3 = 3

0 if (2 ≤ p2 ≤ 4, p3 = 4) or (p2 = 2, p3 = 2,3)

where for all w1 in H1
�mD

(�; R3) and all ζ 1 in H1
�eD

(�) vanishing in a neighborhood of γD, let (w1,ε, ζ 1,ε) be defined by

(
w1,ε, ζ 1,ε

)
(x) =

{
(w1, ζ 1)(x ∓ εe3) a.e. x ∈ �ε±
(w1, ζ 1)(x̂,0) a.e. x ∈ Bε

For all w2 in H1
�mD

(� \ S; R3) and all ζ 2 in H1
�eD

(� \ S) vanishing in a neighborhood of γD, let (w2,ε, ζ 2,ε) be defined by

(w2,ε, ζ 2,ε)(x) =
{

(w2, ζ 2)(x ∓ εe3) a.e. x ∈ �ε±
(wa, ζ a)(x̂, x3/ε) + |x3|

ε (ws, ζ s)(x̂, x3/ε) a.e. x ∈ Bε

with

(wa, ζ a)(x) = 1

2
[(w2, ζ 2)(x̂, x3) − (w2, ζ 2)(x̂,−x3)]

(ws, ζ s)(x) = 1

2
[(w2, ζ 2)(x̂, x3) + (w2, ζ 2)(x̂,−x3)]

When p̂ = (1, 3) or (3, 1), with 1 ≤ p3 ≤ 3, let

M Ip :=
[

μ̄
L1
mmaI −μ̄mebI

μ̄mebT
I μ̄

L2
ee cI

]
, Li = 1 + �pi/2�, i = 1,2 (16)

with �·� the floor function. We first prove

(M Ipk̄p)2
p = 0 (17)

where ki
p denotes the projection on Ki

p of any element k of K with

K =K1
p ⊕K2

p ⊕K3
p (18)

K1
p being made of the elements k = (e, g) whose nonvanishing components ei j , gl are the nonvanishing components (ēp)i j , 

(ḡp)l of k̄p which are identified by Proposition 2.1 in terms of ūp , �p or ϕo , K2
p is made of the elements whose nonvanishing 

components are the components of k̄p that are not identified by Proposition 2.1, and K3
p is made of the elements whose 

nonvanishing components are the vanishing components of k̄p identified by Proposition 2.1. By using suitable test functions 
ρε

p , we may deduce (see [2,3]):



(M Ipk̄p)1 = M̃Ip(k̄p)1; M̃Ip := (M Ip)11 − (M Ip)11(M Ip)12((M Ip)22)−1
(M Ip)21 (19)

with (M Ip)i j , 1 ≤ i, j ≤ 3, being the decomposition of M Ip in linear operators mapping Ki
p into K j

p . That is obtained by 
using (H p) and ρε

p defined by:

ρε
p(x) =

{
(x3 + ε)(I p1 w, I p2 p3ψ(x̂)) a.e. x ∈ Bε

2ε(I p1 w+, I p2 p3ψ
+)(x − εe3) in �ε+, 0 in �ε−

(20)

where, given (w, ψ) in C∞
o (S; R3 × R), (w+, ψ+) is an extension into H1

�mD+ (�+; R3) × H1
�eD+ (�+), and I p1 =

max(0, 2 − p1), I1p3 = 1 if p3 ≤ 2, I1p3 = 0 if p3 > 2, I3p3 = 0 if p3 = 1, I3p3 = 1 if p3 > 1.
Second, given (v, ψ) in 

(
H1

�mD
(�; R3) × H1

�eD
(�)

) ∩ H2(�; R3 × R), ψ vanishing in a neighborhood of γD, we define 
rε

p = (vε
p, ψε

p ) by:

when p1 = 1:

{
v̂ε

p(x) = v̂(x̂,0) − x3∇v3(x̂,0),
(

vε
3(x) = v3(x̂,0)

)
a.e. x ∈ Bε

vε
p(x) = v(x ∓ εe3) ∓ εR±(∇v3(·,0),0

)
(x ∓ εe3) a.e. x ∈ �ε±

, when p1 = 3: vε
p = w2,ε

when p2 = 1:

⎧⎪⎨⎪⎩
ψε

p (x) = ψ(x ∓ εe3) in �ε±, ψ(x̂,0) in Bε if p3 = 1

ψε
p (x) = ψ(x̂,0) in Bε if p3 = 2

ψε
p (x) = 0 in Bε if p3 ≥ 3

, when p2 = 3 : ψε
p =

⎧⎪⎨⎪⎩
ζ 2,ε if p3 = 1

ψ(x̂,0) if p3 = 2

0 if p3 = 3

(21)

where R± is a continuous lifting operator from H1/2(S; R3) into H1
�mD± (�±; R3). Hence (H p) and (19) yield:

lim
h→h̄

∫
Bε

Mμ
I k(sh

p) · k(rε
p)dx =

∫
S

M̃Ip(k̄p)1 · (e′, g′)dx̂ (22)

where:{
when p̂ = (1,3) : e′ = e(v̂), g′ = �ζ �e3 if p3 = 1, g′ = ∇ψ if p3 = 2, g′ = 0 if p3 = 3

when p̂ = (3,1) : e′ = � w2 � ⊗S e3, g′ = ∇ψ for 1 ≤ p3 ≤ 3
(23)

In the remaining cases, as, respectively, ḡp = 0 or does not exist, or ēp = 0 or does not exist, we proceed in the same way, 
but with a suitable decomposition of S3 or R3, respectively, and M̃Ip replaced by μ̄1

mmãI or μ̄1
eec̃I , respectively, ãI and c̃I

being defined in a similar way as M̃Ip .
Lastly, Jensen inequality and the previously established weak convergences achieve the proof of the following conver-

gence result, which supports our asymptotic models in the form of variational problems 
(
P p

)
.

Theorem 2.1.

• If p3 = 1, when h goes to h̄, T εsh
p strongly converges in H1(� \ S; R3 ×R) toward s̄p the unique solution to

(
P(p̂,1)

)
:

{
Find s = (u,ϕ) in (0,ϕo) + V p1 × �p21 such that

M(p̂,1)(s, r) = L(p̂,1)(r) ∀r = (v,ψ) ∈ V p1 × �p21

where

M(p̂,1)(s, r) =
∫
�

MEk(s) · k(r)dx +MI(p̂,1)(s, r)

MI(p̂,1)(s, r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p̂ = (2,4) or (4,2)∫
S μ̄1

mmãIe(û) · e(v̂)dx̂ if p̂ = (1,2) or (1,4)∫
S μ̄1

eec̃I∇̂ϕ · ∇̂ψ dx̂ if p̂ = (2,1) or (4,1)∫
S μ̄2

eecI �ϕ�e3 · �ψ �e3 dx̂ if p̂ = (2,3) or (1,3)∫
S μ̄2

mmaI �u� ⊗S e3 · �v � ⊗S e3 dx̂ if p̂ = (3,2) or (3,4)∫
S M̃Ip(e(û), �ϕ�e3) · (e(v̂), �ψ �e3)dx̂ if p̂ = (1,3)∫

M̃
(

�u� ⊗ e ,∇γ (ϕ)
) · (�v � ⊗ e ,∇γ (ψ)

)
dx̂ if p̂ = (3,1)
S Ip S 3 o S 3 o



Lp(r) :=
⎧⎨⎩

∫
�

f · v dx + ∫
�mN

F · v dH2 + ∫
�eN

dE ψ dH2 + (μ̄1
ee)

1/2
∫
γN

(∫ 1
−1 dI(·, x3)dx3

)
ψ dl if p2 = 1∫

�
f · v dx + ∫

�mN
F · v dH2 + ∫

�eN
dE ψ dH2 if p2 ≥ 2

V 1 :=
{

v ∈ H1
�mD

(�;R3); v̂ ∈ H1(S;R2)
}

, V 2 := H1
�mD

(�;R3), V 3 = V 4 := H1
�mD

(� \ S;R3)

�11 :=
{

ψ ∈ H1
�eD

(�); γo(ψ) ∈ H1
γD

(S)
}

, �21 := H1
�eD

(�), �31 = �34 := H1
�eD

(� \ S)

• If p3 > 1, when h goes to h̄, T ε
1 uh

p strongly converges in H1(� \ S; R3) toward ūp while �h
p converges, strongly in H1(S) if p2 ≤ 3

and strongly in L2(S) if p3 = 4 and limh→h̄ ε3/μee = 0, toward �p the unique solution to

(
P p

)
:

{
Find s = (u, φ) in

(
0,q2 γo(ϕo)

) + V p1 × �p2 p3 such that

Mp
(
s, r

) = Lp(r) ∀r = (v,ψ) ∈ V p1 × �p2 p3

where

Mp
(
s, r

) :=
∫
�

a e(u) · e(v)dx +MIp(s, r)

• p3 = 2

MIp(s, r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p̂ = (2,4) or (4,2)∫
S μ̄2

mmaI �u� ⊗S e3 · �v � ⊗S e3 dx̂ if p̂ = (3,2)∫
S μ̄2

eecI∇φ · ∇ψ dx̂ if p̂ = (2,3)∫
S μ̄1

mmãIe(û) · e(v̂)dx̂ if p̂ = (1,2) or (1,4)∫
S μ̄1

eec̃I∇φ · ∇ψ dx̂ if p̂ = (2,1) or (4,1)∫
S M̃Ip(e(û),∇φ) · (e(v̂),∇ψ)dx̂ if p̂ = (1,3)∫
S M̃Ip

(
�u� ⊗S e3,∇φ

) · (�v � ⊗S e3,∇ψ
)

dx̂ if p̂ = (3,1)

• p3 = 3

MIp(s, r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p̂ ∈ {2,4 } × {1,3,4 }∫
S M̃Ip(�u� ⊗S e3,∇γo(ϕo),�ϕoI) · (�v � ⊗S e3,0)dx̂ if p̂ = (3,1)∫
S μ̄2

mmaI �u� ⊗S e3 · �v � ⊗S e3 dx̂ if p̂ = (3,2) or (3,4)∫
S μ̄1

mmãIe(û) · e(v̂)dx̂ if p̂ = (1,2) or (1,4)∫
S M̃Ipe(û) · e(v̂)dx̂ if p̂ = (1,3)

• p3 = 4

MIp(s, r) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if p̂ ∈ {2,4 } × {1,3,4 }∫
S M̃Ip(�u� ⊗S e3,∇γo(ϕo),�ϕoI) · (�v � ⊗S e3,0)dx̂ if p̂ = (3,1)∫
S μ̄2

mmaI �u� ⊗S e3 · �v � ⊗S e3 dx̂ if p̂ = (3,2) or (3,4)∫
S μ̄1

mmãIe(û) · e(v̂)dx̂ if p̂ ∈ {1 } × {2,3,4 }

Lp(r) :=
⎧⎨⎩

∫
�

f · v dx + ∫
�mN

F · v dH2 + (μ̄1
ee)

1/2
∫
γN

(∫ 1
−1 dI(·, x3)dx3

)
ψ dl if p2 = 1∫

�
f · v dx + ∫

�mN
F · v dH2 if p2 ≥ 2

�(p2,2) := H1
γD

(S) or H1
m(S) according to the positivity of the length of γD

�(p2,3) = �(p2,4) := {0 } , p2 �= 2

�(2,p3) := {0 } ,2 ≤ p3 ≤ 4



3. Concluding remarks

For piezoelectric adhesive and adherents, when the elastic and dielectric coefficients of the adhesive are not of the same
order, the piezoelectric coupling remains in the asymptotic model only when p̂ = (1, 3) or (3, 1). More generally, when 
(necessarily only) one index p1 or p2 is equal to 1, the status of the limit model for the adhesive is hybrid. When p1 = 1, the 
adhesive is replaced by both a material surface perfectly bonded to the adherents, from the mechanical point of view, and a 
constraint, from the electrical point view. On the contrary, when p2 = 1, a mechanical constraint appears with an electrical 
material surface perfectly permeable. The mechanical material surface is an elastic membrane with a possible nonvanishing 
(only when p̂ = (1, 3)) residual stress stemming from the possible discontinuity of the electrical potential induced by the limit 
electrical constraint, which is perfect permeability, electric pull-back or impermeability, according to the magnitude of the 
dielectric coefficients. The electrical material surface is of linear conductor type with a possible nonvanishing (only when 
p̂ = (3, 1)) residual term stemming from the possible nonvanishing relative displacement induced by the mechanical constraint, 
which is perfect adhesion, elastic pull-back or free separation according to the magnitude of the stiffness of the adhesive. 
When both p1 and p2 are greater than 1, the adhesive is replaced by an electromechanical constraint. As the orders of 
magnitude of the elastic and dielectric coefficients differ, this electromechanical constraint reduces to two independent
mechanical and electrical constraints of the types previously evocated according to the values of p1 and p2, respectively.

For a thin piezoelectric layer embedded between two purely elastic adherents through two electrically impermeable 
interfaces, the piezoelectric coupling remains in the asymptotic model only when p̂ = (1, 3) or (3, 1). When p̂ = (1, 3), 
the adhesive layer is replaced by a piezoelectric material surface; when p̂ = (3, 1), it is replaced by a material conductive 
surface and a mechanical constraint. This constraint is of elastic pull-back type with a residual term stemming from the 
electrical potential in the conductive surface. Actually, when p1 = 1, the adhesive layer is replaced by a material elastic surface 
perfectly bonded to the adherents. When p2 = 3, the material surface has a non-local elastic behavior since the electrical 
potential can be eliminated; in the other cases, the material’s surface is a standard elastic membrane. When p1 ranges 
from 2 to 4, the adhesive layer is replaced by a mechanical constraint, which is perfect adhesion, elastic pull-back or free 
separation. The elastic pull-back is nonlocal when p2 = 1. When p2 = 2, the electric potential vanishes, in the remaining 
cases the limit surface is a linear elastic conductor.

The limit models for a thin piezoelectric layer embedded between two elastic adherents, through either two electroded 
interfaces or one electroded and the other being impermeable, only differ when p̂ = (1, 3). In all cases, there is a perfect 
decoupling between Electricity and Mechanics. When the magnitude of the stiffness is of the order of the inverse of the 
thickness, the adhesive is replaced by an elastic material membrane perfectly bonded to the adherents; when it is lesser, 
the adhesive is replaced by a mechanical constraint, which is perfect adhesion, elastic pull-back, free separation according to 
the magnitude of the stiffness. The limit surface is at a given potential ϕo when p̂ ∈ {3,4 } × {1 }, at a vanishing one in the 
other cases. Actually, when p = (1, 3, 3), the memory of Electricity remains because piezoelectric and dielectric coefficients 
enter the constitutive equations of the elastic membrane the adhesive layer reduces to.

Eventually, the previous method may work when the elastic and dielectric coefficients of the junction are of the same 
order of magnitude with piezoelectric coefficients of lesser order. Obviously the conclusions of [1] remain but with bI

replaced by 0, so that piezoelectric coupling disappears in the asymptotic models.
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