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ABSTRACT
Automatic software repair is the process of automatically fixing
bugs. The Nopol repair system [4] repairs Java code using code
synthesis. We have designed a new code synthesis engine for Nopol
based on dynamic exploration, it is called DynaMoth. The main de-
sign goal is to be able to generate patches with method calls. We
evaluate DynaMoth over 224 of the Defects4J dataset. The evalu-
ation shows that Nopol with DynaMoth is capable of synthesizing
patches and enables Nopol to repair new bugs of the dataset.

1. INTRODUCTION
Automatic software repair is the process of automatically fixing

bugs. Test-suite based repair, notably introduced by GenProg [8],
consists in synthesizing a patch that passes a given test suite with
at least one failing test case. Test-suite based repair may use or not
program synthesis to create parts of the patch. For instance, Semfix
[9] uses oracle-guided component-based program synthesis [6] to
synthesize patches . On the contrary, other techniques do not use
synthesis, as in the case of GenProg which repairs by moving and
copying existing code in the program to repair the bug, which is not
synthesis per se.

The Nopol repair system [4] repairs Java code using code syn-
thesis. It repairs bugs in conditionals: buggy if conditions and
missing preconditions. Nopol uses a synthesis technique based on
Satisfiability Modulo Theory (SMT), derived from oracle-guided
component-based program synthesis [6]. This synthesis technique
enables the system to generate patch that contains arithmetic and
first order logic operators, as well as simple unary method calls
(with no parameters). This is an important limitation for auto-
matic repair. Indeed, many real-world Java patches contain com-
plex method calls. The motivation of the work presented here is
to replace the SMT-based synthesis component of Nopol by a new
synthesizer that is able to generate richer patches.

We have designed a new code synthesis engine for Nopol based
on dynamic exploration. The main design goal is to be able to
generate patches with method calls. The engine is called DynaMoth
and works as follows. At runtime, the synthesis engine stops the
execution of the program under repair and explores the space of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AST’16, May 14-15 2016, Austin, TX, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4151-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896921.2896931

all possible expressions at a given suspicious statement. Since a
buggy statement can be executed by several different test cases, the
synthesis engine collects those expressions over many runs, and
then infers offline the valid boolean expressions.

We evaluate DynaMoth over 224 of the Defects4J dataset. The
evaluation shows that Nopol with DynaMoth is capable of repairing
27 bugs. DynaMoth is able to repair bugs that have never been
repaired so far. It is capable to synthesize patches with complex
operators and involving method calls with parameters.

To sum up, this paper makes the following contributions:

• DynaMoth, a dynamic synthesis algorithm for automatic re-
pair of conditional bugs

• a publicly available implementation in Java of DynaMoth

• an evaluation of DynaMoth of 224 real bugs of open-source
Java programs.

This paper is organized as follows. Section 2 discusses the con-
text of this work. Section 3 describes the main contribution of this
work: a dynamic code synthesis engine for repair. Section 4 con-
tains the evaluation of DynaMoth based on 224 real-world bugs
from Defects4J. We present our conclusions in Section 6.

2. BACKGROUND
We first briefly describe test-suite-based automatic software re-

pair and the two classes of bugs we address.

2.1 Test-suite-based Repair
Test suite based repair uses a test suite as the specification of

the correct behavior of the program. The test suite has to contain
at least one failing test case which characterizes the bug to be re-
paired. Test-suite-based repair aims at automatically generating a
patch that fixes it. Nopol [4] is an automatic repair system that is
able to repair two classes of bugs: buggy IF conditions and missing
preconditions.

2.2 Fault Classes

Buggy IF Conditions.
The first kind of bugs that Nopol targets are buggy conditions

in if-then-else statements. Figure 1) gives an example of such a
repair.

Missing Preconditions.
The second class of bugs addressed by Nopol are preconditions.

A precondition is a check consisting in the evaluation of a boolean
predicate guarding the execution of a statement or a block: Figure 2
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− if (u * v == 0) {
+ if (u == 0 || v == 0) {

return (Math.abs(u) + Math.abs(v));
}

Figure 1: Patch example for a buggy IF condition. The original
condition with a comparison operator == is replaced by a dis-
junction between two comparisons. An overflow could thus be
avoided.

+ if (specific != null) {
sb.append(": "); //sb is a string builder in Java

+ }

Figure 2: Patch example: a missing precondition is added to
avoid a null reference. The patch is specific to the object-
orientation of Java.

gives an example of bug fixed by adding a precondition. Precondi-
tions are commonly used to avoid ‘null-pointer’ or ‘out-of-bound’
exceptions when accessing array elements.

2.3 Overview of Nopol
Figure 3 describes the general algorithm of Nopol. This algo-

rithm is composed of four main steps. The first step is the localiza-
tion of suspicious statements. It uses standard spectrum based fault
localization using Ochia [1]. The second step is angelic value min-
ing, that consists in trying to identify an arbitrary value required
somewhere during the execution to pass the failing test(s). As third
step, input-output based code synthesis is used to generate a new
Java expression which is the patch. Since Nopol repairs condi-
tions, the synthesized expressions are boolean expressions. Finally,
for patch validation, Nopol re-executes the whole test suite on the
patched program.

2.4 Angelic Value Mining
The angelic value mining step determines the required value of

the buggy boolean expression to make the failing test cases to pass.
For buggy if-conditions, angelic value mining is done by forcing at
runtime the branch of the suspicious IF statement. The condition
expression is arbitrarily substituted for either true or false: the
state of the program is artificially modified during its execution as
it would have been by an omniscient oracle or angel. If all failing
tests pass with the modified execution, the used value is called the
angelic value and is stored for use in synthesis later.

For missing preconditions, suspicious statements are forcefully
skipped at runtime. When this makes the previously failing tests
pass, a precondition has to to be synthesize that returns with angelic
value false for the failing test cases. For example, in Figure 2, let
us assume that the code is specified by two tests. The first test
checks the normal case when specific != null. The second test
case, which fails, executes the buggy statement with specific ==

null. In this case, the angelic value of the precondition will be
false for the second test case. That is the boolean expression to be
synthesized as precondition should return true when specific !=

null and false otherwise.
Once an angelic value is known for all test cases, we obtain an

input-output synthesis problem. The input is the context of the
statement under repair (all variables in the scope), the output is the
angelic value. By default, Nopol uses an SMT-based code synthe-
sis engine implementing oracle-based component guided synthesis,
this engine is called SMTSynth. This paper presents a new engine

Figure 3: Overview of the Nopol repair system.

for this input-output synthesis problem.

3. DYNAMIC CODE SYNTHESIS FOR AU-
TOMATIC REPAIR

We now present DynaMoth, a new code synthesis engine for
Nopol, that is based on dynamic exploration of tentative expres-
sions.

3.1 Code Synthesis
Thanks to angelic value mining, we know that for a set of loca-

tions and point in time during execution, a particular boolean value
is expected. This boolean value is the expected result of the boolean
condition to be synthesized.

As shown in Algorithm 1, the code synthesis of DynaMoth is
composed of three steps: first, the collection of the runtime con-
texts c of the suspicious condition (see Section 3.1.1) for which it
exists an angelic value. The runtime context includes parameters,
variables, fields and return values of method calls; second, the gen-
eration of new boolean expressions (see Section 3.1.2); third, the
comparison of each new EEXP to the expected values (see Sec-
tion 3.1.3).

We now introduce two definitions, for runtime context and EEXP;
Definition (Runtime context) The runtime context of a state-

ment is made of the values of all local variables, static variables,
parameters, fields and method calls available in the scope of the
statement. A runtime context also contains a reference to a test and
an integer value representing the n-th times that the statement has
been executed by the test.

Definition (EEXP) A Evaluated-Expression, denoted EEXP (c),
is a pair e,v where e is a valid Java expression and v the value of
the Java expression in a specific runtime context c.

An example of EEXP is ”e.size()”,4 which means that for a
given context, the result of the evaluation of "e.size()" is 4.

3.1.1 Runtime Context Collection
Algorithm 2 presents our technique to collect the runtime con-

text. It is achieved by stopping the execution of the program under
repair at a specific location. In our case, we stop the execution
only at the locations for which we have identified an angelic value



Algorithm 1 Top-level algorithm of DynaMoth
Input: A: a set of angelic values for specific statements
Output: P: a set of patches

1: P← /0
2: for all angelic value at statement s in A do
3: collect simple EEXP at runtime at s (Algorithm 2)
4: combine simple EEXP as compound EEXP (Algorithm 3)
5: compare all EEXP against the expected angelic value (Algo-

rithm 4)
6: if valid EEXP found then
7: add patch to P
8: end if
9: end for

10: return P

Algorithm 2 Collecting the set of runtime contexts for a statement
S during test execution. Legend: ← means “add to set”
Input: Statement S, T: set of tests
Output: R: set of runtime contexts

1: add breakpoint at S
2: for all t in T do
3: run t
4: if is stopped at breakpoint then
5: eExpList = /0
6: eExpList← variables ∪ fields
7: eExpList← (all method calls on this)
8: for 1 to max_depth do
9: for all eExp in eExpList do

10: eExpList← (fields eExp)
11: eExpList← (all method calls on eExp)
12: end for
13: end for
14: i← iteration number for this test
15: Rt,i← eExpList
16: proceed test execution
17: end if
18: end for
19: return R

(the angelic value mining technique is described in Section 2.4.)
The execution of the program is stopped using debugging technol-
ogy (see Section 3.3). Once the execution is stopped, DynaMoth
collects the runtime context of the statement by inspecting the vari-
ables in the scope. Then, DynaMoth collects the field values and
calls the methods on each Java object in the runtime context. This
step is executed recursively on the fields or the returned values
that have just been collected. For example this recursion allows
the synthesis of chained expressions such as variable.method(p1,
p2).getter(). We limit the number of recursion to a constant
(max_depth in Algorithm 2) in order to limit the size of the search
space. For sake of performance, we do not consider possible side
effects of method calls, which results in potentially corrupted col-
lected values. This hinders completeness (some patches may not be
found because of this) but not soundness because DynaMoth vali-
dates the generated patch candidate at the end of the execution as
described in Section 3.1.3.

DynaMoth also collects all literals present in the method where
the breakpoint is added and four literals frequently present in patches:
-1, 1, 0, null. DynaMoth accesses all static variables and calls
all static methods that are used in the scope of the suspicious state-
ment.

Algorithm 3 Combining EEXP’s with a operators.
Input: eExpList: a list of EEXP, O: a set of operators
Output: eExpList: EExp enriched with coumpound EEXP

1: for 1 to max_depth do
2: for all operator o in O do
3: n← number of required operators for o
4: for all t: tuple of size n in eExpList do
5: if types of t values compatible with o then
6: eExpList← combine(t, operator)
7: end if
8: end for
9: end for

10: end for

For each execution of a suspicious statement, DynaMoth collects
a set of simple EEXP representing an expression and the result of
its evaluation in the current runtime context. Those basic EEXP
will be used to form the actual patch.

3.1.2 Compound EEXP Synthesis
After the collection of simple EEXP (described in Section 3.1.1),

DynaMoth combines them with operators.
The first kind of compound EEXP are expression containing null

checks. For example, let us consider two runtime contexts: the
first contains a variable v which is an array and the second runtime
context contains the same variable v but this time equal to null.
With the first context, DynaMoth can access the field: length of
the array but in the second context, v does not have fields. In this
case, DynaMoth can generates compound EEXP of the form : v !=

null && v.length == 0 evaluating to true in the first context and
false in the second.

The second phase consist of generating compound expressions
with binary logic and arithmetic operators. This is done by gen-
erating new expressions combining all EEXP collected so far with
compatible logic/arithmetic operators: +, -, *, /, ||, &&, ==,

!=, <, <=.1 A combination creates a new EEXP and its value is
compared to the expected value (this comparison is described in
Section 3.1.3). This phase is executed recursively to create more
and more complex expressions until the configuration parameter
depth is reached. For example, DynaMoth can produce this type of
expression: (matrix != null &&

0 == matrix.multiply(this).getReal()) && (array == null ||

list.getSize() < array.length).

3.1.3 EEXP Validation
Each time a boolean EEXP is created, DynaMoth verifies that

the EEXP returns the expected value predicted by angelic value.
If this is the case, it means that the EEXP fixes the bug locally,
for this particular runtime context. When this happens, DynaMoth
validates the patch for all other runtime contexts. For example,
we have the EEXParray == null || array.length == 0 and two
runtime contexts: array = null and array = [42],array.length

= 1. The evaluation of the EEXP with the first runtime context
is equal to true because array = null and false with the sec-
ond runtime context because array = null and array.length =

1. If those are the two expected angelic values for a precondition,
it means that a patch has been found.

3.2 Optimization Techniques
The search space of the synthesis is composed of all expressions

1The operators > and >= are obtained by symmetry of <= and <.



Algorithm 4 Assessing whether a valid patch exists at a given state-
ment S.
Input: eExp: a set of valued EEXP for all tests at statement s, A a

set of angelic values for all tests, T a set of tests
Output: true if eExp is a valid patch

1: for all t in T do
2: for all iteration i of S in t do
3: eExpValue← eExpt,i
4: angelic← At,i
5: if eExpValue 6= angelic then
6: return false
7: end if
8: end for
9: end for

10: return true

that can be generated from basic EEXP initially collected. In many
cases, the search space is too large to be completely covered. Con-
sequently, we have designed and implemented several optimiza-
tions that either reduce the size of search space or accelerate the
discovery of a patch.

3.2.1 Exploration of Compound EEXP

During the synthesis of compound EEXP for a given runtime
context, we only consider EEXP that have different values. For ex-
ample, let us consider that DynaMoth is creating a binary expres-
sion and is looking for a boolean expression for the right operand.
Furthermore, in the scope under consideration, there are two com-
patible variables that are both equal to true. In this case, Dy-
naMoth wills only consider the first variable because the value of
the new EEXP will be exactly if it had considered the second vari-
able. This greatly prunes the search space for a single runtime
context. This optimization of the search space is similar to that
of J. Galenson et al. in CodeHint [5]. This does not decrease the
synthesis power: if two EEXP may evaluate to the same value in
one runtime context c1 but to different value in another one c2, the
synthesis of a patch using EEXP 1 would be discarded in c1 but
explored in c2. If it works on c2 it would be validated on c1 after-
wards.

3.2.2 Number of Collected Runtime Contexts
We need a threshold on the number of collected runtime contexts.

We have found that a good threshold is that DynaMoth stop collect-
ing after 100 runtime contexts of a given suspicious statement for
a given test case. For instance, if the suspicious statement is in a
loop, the runtime collection will start at each loop iteration. In order
to limit the execution time of the collection, DynaMoth considers
only the 100 first iterations and ignores the others. This optimiza-
tion is sound because the synthesized patch is still validated on the
real bug with all executions of the suspicious statement.

3.2.3 Method Calls Used in Synthesized Patch
The number of possible method calls yields of huge search space.

Patches are unlikely to call methods that have never been used in
the program. Consequently, DynaMoth only collects method calls
which are used elsewhere in the program.

3.2.4 Ignore equivalent expressions
DynaMoth ignores equivalent expressions such as binary expres-

sions with a commutative operator (example: x + y and y + x).
DynaMoth ignores binary expressions which contain a neutral operand
(example: 0 + x or multiplication by 0). DynaMoth also ignores

all trivially incorrect patches such as the comparison of two literals
(example: 1 == 2).

3.2.5 Method Invocation Time Timeout
During runtime context collection, we set a threshold on the ex-

ecution time of method calls (2 seconds per default). This timeout
creates an upper bound on the execution time of runtime context
collection, and mitigates the problem of infinite loops caused by
invalid method parameters.

3.2.6 Ordering of Runtime Contexts
All runtime contexts do not contains the same number of sim-

ple EEXP, before the combination step, as shown in Section 3.1.2.
Consequently, the runtime context that contains more EEXP has
more chance to produce a patch because more combinations of
EEXP is possible. By considering first the runtime contexts that
have more EEXP, we reduce the time spent searching the patch in
a runtime context that cannot produce it.

3.2.7 Estimation of Usage Likelihood of Operators
and Operands

DynaMoth collects the usage statistics of variables, operators
and methods in the class that contains the suspicious statement. For
instance, if we are repairing a statement in class Foo, DynaMoth ex-
tracts the information that operator “+” is used 10x in Foo, method
“substring’ is used 4x in Foo, etc. This usage statistics is used to
drive the synthesis of compound EEXP: the composition operators
that are most frequently used are prioritized during synthesis. This
optimization is based on our intuition that patches are more likely
to contain operators and methods that have previously been used in
the class under consideration.

3.3 Implementation Details
DynaMoth uses the Java Debugging Interface as to set break-

points and collect the runtime contexts. The Java Debugging Inter-
face (JDI) is an API of the virtual machine that provides informa-
tion for debuggers and systems needing access to the running state
of a virtual machine.2

For collecting the usages statistics (see Section 3.2.3 and Sec-
tion 3.2.7) DynaMoth uses a library for analyzing Java source code:
Spoon [10]. Spoon is also used during the angelic value mining
(Section 2.4) and during the final patch validation. The localization
of suspicious statement is delegated to the library: GZoltar [3].

The source code of DynaMoth is part of the Nopol project [4] and
is publicly available on GitHub at https://github.com/SpoonLabs/
nopol

4. EVALUATION
In order to evaluate the effectiveness of DynaMoth, we execute

it on the Defects4J [7] dataset of 224 real-world bugs. The method-
ology of this evaluation is composed of the following dimensions:
the bug-fixing ability, the patch readability and the execution per-
formance. First, our evaluation protocol is described in Section 4.1.
Second, our three research questions (RQ’s) are detailed in Sec-
tion 4.2, and finally the responses to our research questions given
in Section 4.3.

4.1 Protocol
We run DynaMoth to repair the bugs of the Defects4J dataset.

Defects4J by Just et al. [7] is a database of 357 reproducible real

2See https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/. Last
accessed January 2016.
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Table 1: Results on the Fixability of 224 Bugs in Defects4J with Four Repair Approaches. DynaMoth repairs 27 bugs (12%).
Project Bug Id SMTSynth DynaMoth

JF
re

eC
ha

rt

C3 Fixed –
C5 Fixed Fixed
C6 – Fixed
C9 – Fixed
C13 Fixed –
C17 – Fixed
C21 – Fixed
C25 Fixed Fixed
C26 Fixed Fixed

C
om

m
on

s
L

an
g L39 Fixed Fixed

L44 Fixed –
L46 Fixed –
L51 Fixed –
L53 Fixed –
L55 Fixed –
L58 Fixed –

C
om

m
on

s
Ti

m
e

T7 – Fixed
T11 Fixed Fixed

Total 43 (19.2%) 35 (15.6%) 27 (12%)

Project Bug Id SMTSynth DynaMoth

C
om

m
on

s
M

at
h

M32 Fixed Fixed
M33 Fixed Fixed
M40 Fixed –
M41 – Fixed
M42 Fixed Fixed
M46 – Fixed
M49 Fixed Fixed
M50 Fixed Fixed
M57 Fixed –
M58 Fixed Fixed
M69 Fixed –
M71 Fixed Fixed
M73 Fixed –
M78 Fixed Fixed
M80 Fixed –
M81 Fixed –
M82 Fixed –
M85 Fixed Fixed
M87 Fixed Fixed
M88 Fixed Fixed
M96 – Fixed
M97 Fixed Fixed
M99 Fixed Fixed
M104 Fixed –
M105 Fixed Fixed

Total 43 (19.2%) 35 (15.6%) 27 (12%)

software bugs from 5 open-source Java projects. Defects4J pro-
vides a framework which abstracts over compilation and test exe-
cution.

Defects4J is the largest open and structured database of real-
world Java bugs. We use four out of five projects currently available
in the Defects4J dataset, i.e., Commons Lang,3 JFreeChart,4 Com-
mons Math,5 and Joda-Time.6 We do not use the Closure Com-
piler7 project because the test suite used in this project is incom-
patible with our implementation.

The evaluation of DynaMoth on the 224 of Defects4J takes days
to be completed and require a large amount of computer power.
To overcome this problem, we use Grid5000, a grid for high per-
formance computing [2]. We define a timeout of 1 hour and 30
minutes for each repair execution.

4.2 Research Questions

1. RQ1. Bug fixing ability: Which bugs of Defects4J can au-
tomatically be repaired with DynaMoth? In canonical test-
suite based repair, a bug is considered as fixed when the
whole test suite passes with the patched program. To answer
this quantitative question, we run DynaMoth on each bug of
the Defects4J dataset and count the number of fixed bugs.

2. RQ2. Patches Readability: Are the synthesized patches sim-
pler than those generated by SMTSynth? The readability of
the generated patches is an important factor when developers

3Apache Commons Lang, http://commons.apache.org/lang.
4JFreeChart, http://jfree.org/jfreechart/
5Apache Commons Math, http://commons.apache.org/math.
6Joda-Time, http://joda.org/joda-time/
7Google Closure Compiler, http://code.google.com/closure/
compiler/

comprehend and validate them before including them in the
code base. To answer this question, we look at the number of
expressions (variable, literals, parameters), method calls and
operators in each patch.

3. RQ3. Performance: How long is the execution of DynaMoth?
For automatic repair to be applied in practice, it is important
that it does not run too long. For instance, requiring one week
to find a patch is not acceptable for developers. To answer
this question, we analyze the execution time of DynaMoth
when it finds a patch.

4.3 Empirical Results
We perform the experiment described in Section 4.1. The total

execution time of this experiment is more than 11 days.

4.3.1 Bug fixing Ability
RQ1. Which bugs of Defects4J can automatically be repaired

with DynaMoth?
Table 1 presents the bugs of the Defects4J dataset that are fixed

either by SMTSynth or DynaMoth. Each line presents a bug of the
dataset Defects4J and each column contains the patching result of
each approach. DynaMoth is able to fix 27 (12% of 224 bugs) bugs,
SMTSynth 35 (15.6%) bugs. This shows that the new synthesis en-
gine based on dynamic synthesis is not as good as the original one
of Nopol based on constraint based synthesis. In theory, DynaMoth
should be able to generate all patches produced by SMTSynth, but
due to the complexity of the DynaMoth implementation, there re-
mains bugs for specific complex cases.

However, there are 8 of them are only fixed by DynaMoth. This
is explained that the synthesis spaces of Nopol and DynaMoth do
not completely overlap. We analytically know that some patches
can be synthesized and not by SMTSynth. For instance, those con-
taining method calls with parameters. This empirical result con-
firms this analysis, and is a piece of evidence of the correctness of

http://commons.apache.org/lang.
http://jfree.org/jfreechart/
http://commons.apache.org/math.
http://joda.org/joda-time/
http://code.google.com/closure/compiler/
http://code.google.com/closure/compiler/


Figure 4: The figure illustrates the bugs commonly fixed by
DynaMoth and SMTSynth.

our implementation. Figure 4 presents the decomposition of the 43
bugs fixed by DynaMoth and SMTSynth. And, 19 of them are fixed
by both techniques.

The results of this experimentation is publicly available on GitHub.8

Answer to RQ1. 27 bugs of the Defects4J dataset are fixed by
DynaMoth. This shows it applicability on real bugs. Among them,
8 are only fixed by DynaMoth and not by SMTSynth. This shows
that SMTSynth and DynaMoth are complementary, one can try
both in conjunction for repairing bugs in practice.

4.3.2 Patch readability
RQ2. Are the synthesized patches simpler than those generated

by SMTSynth?
We compare the readability of patches generated by SMTSynth

and DynaMoth. Table 2 shows the number of expressions (E)
which are variables and constants, method calls (M) and opera-
tors (O) in each patch. In 9/19 cases, DynaMoth generates patches
that contain less elements, hence that are easier to read. In 7/19
cases, DynaMoth generates patches that contain equals number of
elements. In 3/19 cases, DynaMoth generates patches that contain
more elements. In average DynaMoth contains less expressions
(2.26 vs 2.94), less operators (0.85 vs 2) but more method calls
(0.44 vs 0.28).

This quantitative result is confirmed by the manual analysis. The
manual analysis shows that 22/27 patches synthesized by DynaMoth
are easy to read and 5/27 to medium. As expected, there is a clear
relation between the small amount of expressions and method calls
in the patches and the readability.
Answer to RQ2. DynaMoth synthesizes patches that are simpler
and easier to read compared to SMTSynth.

4.3.3 Performance
RQ3. How long is the execution of DynaMoth on one bug?
The experiment in this paper is run on a grid where the nodes

are machines such as Intel Xeon X3440 Quad-core processor and
15GB of RAM.

Table 3 shows the total execution time of Nopol and DynaMoth
for all bugs. Table 4 shows the execution time for the bugs which
are repaired. The average execution time of all bugs are similar
for DynaMoth and SMTSynth. For the repaired bugs (Table 4),
DynaMoth is slower than the SMT-based synthesis of Nopol.

8The GitHub repository of the experimental data of DynaMoth:
https://github.com/tdurieux/defects4j-repair/

Table 2: Results on the Readability of 58 Bugs in Defects4J
for the four repair approaches. Legends: E # expressions, M #
method calls and O # operators

Project Bug Id SMTSynth DynaMoth

JFreeChart

C3 E: 2 M: 0 O: 1 –
C5 E: 2 M: 0 O: 1 E: 1 M: 1 O: 0
C6 – E: 4 M: 0 O: 3
C9 – E: 2 M: 0 O: 1
C13 E: 2 M: 0 O: 1 –
C17 – E: 2 M: 1 O: 0
C21 – E: 1 M: 2 O: 2
C25 E: 2 M: 0 O: 1 E: 1 M: 1 O: 0
C26 E: 2 M: 0 O: 1 E: 1 M: 0 O: 0

Lang

L39 E: 1 M: 0 O: 0 E: 1 M: 0 O: 0
L44 E: 2 M: 1 O: 1 –
L46 E: 1 M: 0 O: 0 –
L51 E: 2 M: 0 O: 1 –
L53 E: 5 M: 0 O: 5 –
L55 E: 2 M: 0 O: 1 –
L58 E: 2 M: 0 O: 1 –

Time T7 – E: 1 M: 0 O: 0
T11 E: 5 M: 0 O: 5 E: 2 M: 0 O: 1

Math

M32 E: 8 M: 6 O: 8 E: 0 M: 1 O: 0
M33 E: 2 M: 1 O: 1 E: 1 M: 1 O: 1
M40 E: 6 M: 0 O: 5 –
M41 – E: 2 M: 0 O: 1
M42 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M46 – E: 2 M: 2 O: 1
M49 E: 2 M: 0 O: 1 E: 3 M: 1 O: 1
M50 E: 2 M: 0 O: 1 E: 2 M: 1 O: 0
M57 E: 3 M: 0 O: 1 –
M58 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M69 E: 3 M: 0 O: 2 –
M71 E: 4 M: 1 O: 3 E: 2 M: 0 O: 1
M73 E: 6 M: 0 O: 6 –
M78 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M80 E: 2 M: 0 O: 1 –
M81 E: 2 M: 0 O: 1 –
M82 E: 2 M: 0 O: 1 –
M85 E: 3 M: 0 O: 2 E: 2 M: 0 O: 1
M87 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M88 E: 2 M: 1 O: 1 E: 2 M: 0 O: 1
M96 – E: 3 M: 0 O: 2
M97 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M99 E: 2 M: 0 O: 1 E: 2 M: 0 O: 1
M104 E: 8 M: 0 O: 6 –
M105 E: 6 M: 0 O: 5 E: 3 M: 1 O: 1

Total E: 103 M: 10 O: 70 E: 61 M: 12 O: 23
Avg. E: 2.94 M: 0.28 O: 2 E: 2.26 M: 0.44 O: 0.85

Answer to RQ3. The execution time of DynaMoth is compara-
ble to that of SMTSynth for all bugs but slower when we only
consider the fixed bugs. However the average repair time remains
acceptable for classical repair scenarios.

5. RELATED WORK
Test-suite-based repair approaches (described in Section 2.1) use

a test suite as program specification to generate and validate a patch.
We discuss them with respect to code synthesis.

Le Goues et al. [8] proposed GenProg, a test-suite-based repair
approach using genetic programming in the C language. GenProg
does no do any synthesis, it moves and copies existing code in the
program. SemFix by Nguyen et al. [9] uses symbolic execution
for fixing assignments and conditions, the synthesis engine is the

https://github.com/tdurieux/defects4j-repair/


Table 3: The Execution time of all Defects4J bugs.
Average Median Min Max

SMTSynth 0:37:47 0:36:49 0:00:36 1:23:34
DynaMoth 0:38:01 0:36:31 0:01:34 1:28:05

Table 4: The Execution time of patched Defects4J bugs.
Average Median Min Max

SMTSynth 0:05:53 0:01:02 0:00:36 0:44:53
DynaMoth 0:08:31 0:03:05 0:01:34 0:53:44

same algorithm as SMTSynth, but DynaMoth is another completely
different implementation.

The closest synthesis engine is CodeHint [5]. CodeHint [5] syn-
thesizes Java code from runtime data inside the development en-
vironment. It uses the Java runtime Debug Interface to collect the
runtime data and call methods. CodeHint uses optimizations in or-
der to reduce the search space by ignoring expression that have a
low score according to classical usage. The score of an expression
is computed using with the type of operators in the expression, and
the usage frequency of each method call in the expression. The
goal of CodeHint (helping developers) is completely different from
automatic repair. This implies a key technical difference: CodeHint
has to synthesize an expression for a single runtime contexts, while
DynaMoth has to generate an expression that is valid for a many
different runtime contexts at the same time (the number of execu-
tions of the statement under repair summed over all test cases).

6. CONCLUSION
We have presented DynaMoth, a new patch synthesizer for Java,

integrated into the Nopol toolchain. The synthesis algorithm starts
by collecting the execution context of suspicious statements. The
DynaMoth explores a rich search space of the combination of exist-
ing values. Several optimizations are necessary to tackle the large
size of the search space.

The system has been evaluated on 224 bugs from the Defects4J
dataset. DynaMoth synthesizes patches for 27 of them, incl. 8
which have never been repaired before. In total, DynaMoth fixes
27 bugs from the dataset. We consider those results are encourag-
ing. In the future, we plan to implement additional optimizations,
in particular to address the combinatorial explosion of the search
space caused by methods accepting many arguments and the pres-
ence of many candidate EEXP to be used as parameters.
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