
HAL Id: hal-01279192
https://hal.science/hal-01279192v2

Submitted on 7 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local behavior of arithmetical functions with
applications to automorphic L-functions

Yuk-Kam Lau, Jianya Liu, Jie Wu

To cite this version:
Yuk-Kam Lau, Jianya Liu, Jie Wu. Local behavior of arithmetical functions with applica-
tions to automorphic L-functions. International Mathematics Research Notices, 2016, pp.rnw148.
�10.1093/imrn/rnw148�. �hal-01279192v2�

https://hal.science/hal-01279192v2
https://hal.archives-ouvertes.fr


LOCAL BEHAVIOR OF ARITHMETICAL FUNCTIONS WITH
APPLICATIONS TO AUTOMORPHIC L-FUNCTIONS

YUK-KAM LAU, JIANYA LIU & JIE WU

Dedicated to Kai-Man Tsang on the occasion of his 60th birthday

Abstract. We derive a Voronoi-type series approximation for the local weighted
mean of an arithmetical function that is associated to Dirichlet series satisfying
a functional equation with gamma factors. The series is exploited to study the
oscillation frequency with a method of Heath-Brown and Tsang [7]. A by-product
is another proof for the well-known result of no element in the Selberg class of
degree 0 < d < 1. Our major applications include the sign-change problem of the
coefficients of automorphic L-functions for GLm, which improves significantly some
results of Liu and Wu [14]. The cases of modular forms of half-integral weight and
Siegel eigenforms are also considered.

1. Introduction and main results

The functional equation satisfied by the Riemann zeta function is a prototype of the
salient features of many interesting Dirichlet series

∑
n anλ

−s
n , including the Selberg

class of L-functions whose theory were greatly advanced recently. This general class
were studied quite long time ago, for instance, Chandrasekharan and Narasimhan [3]
obtained nice Voronoi-type series approximation for the Riesz means of the coefficients
an. Often the Voronoi series are effective for the study of many interesting properties
such as the mean square formula, omega results and the occurrence of sign-changes in
[10] and [12] respectively. The Riesz mean carries a weight function whose smoothing
effect leads to permissible convergence of approximations. However this weight (of
the Riesz mean) is not suitable for localizing an within a narrow range and hence not
for local means. In practice the local mean can be applied to depict the oscillations.
The purpose of this paper is two-fold. Firstly we provide a Voronoi-type series to

the local weighted mean of an, which is novel, and deduce the occurrence of oscillations
over short intervals. A cute consequence is an alternative argument for the emptiness
of the Selberg class of degree 0 < d < 1. Secondly the oscillation result is applied to
the sign-change problem of the Dirichlet series coefficients of automorphic L-functions.
The sign problem drew good attentions (e.g. [11, 13, 14, 16, 17]) and the widely used
approach, especially for somewhat general situations, is based on the first and second
moments. This approach, however, may not be efficient for high rank groups due to
the poor order estimate for the Rankin-Selberg L-function which is the key ingredient
to evaluate the second moment. Here the oscillation is detected with the method in
Heath-Brown and Tsang [7]. Our application in Section 2 shows not only the utility
of the Voronoi series for local weighted means but also the effectiveness of the method
in [7]. Theorems 1-3 of this section are for the general context, and the specific results
for automorphic L-functions are in Section 2.
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1.1. Assumptions.
We are concerned with the class of arithmetical functions considered as in [3, 2, 6]

with a little variant. Let {an} and {bn} be two sequences in C, where a1 and b1
are nonzero, and {λn} and {µn} be two strictly increasing positive number sequences
tending to ∞. We assume the following conditions.

(A1) The two series

φ(s) :=
∑

n>1

anλ
−s
n and ψ(s) :=

∑

n>1

bnµ
−s
n

converges absolutely in some half-plane ℜe s > σ∗ for some constant σ∗ > 0.

(A2) Suppose αν > 0 and βν , β̃ν ∈ C for ν = 1, 2, . . . , d, and let

∆(s) :=
∏

16ν6d

Γ(ανs+ βν) and ∆̃(s) :=
∏

16ν6d

Γ(ανs + β̃ν).

Then φ(s) and ψ(s) satisfy the functional equation

∆(s)φ(s) = ω∆̃(1− s)ψ(1− s)

for some constant ω ∈ C of modulus 1.†

(A3) The function ∆(s)φ(s) (and hence ∆̃(s)ψ(s)) extends meromorphically to the
whole C. All singularities of ∆(s)φ(s) fall inside the disk D enclosed by the
anti-clockwise circle C: |z| = R for some R > 0. As ∆(s)−1 is entire, all poles
of φ(s) lie in D. Moreover, ∆(σ + it)φ(σ + it) tends to 0 uniformly in every
vertical strip b 6 σ 6 b′ as |t| → ∞.

Define

A := α1 + α2 + · · ·+ αd ,

B := β1 + β2 + · · ·+ βd ,

B̃ := β̃1 + β̃2 + · · ·+ β̃d ,

and

h :=
∏

16ν6d

(
2A

αν

)2αν

,

a :=
1

4A
−

1

2
−
B − B̃

2A
= −ϑ+ iξ ,

k :=
d

2
−

1

4
−
A+B + B̃

2
= κ + iη .

Thus A > 0, h > 0 while B, B̃, a, k ∈ C (with ϑ, ξ, κ, η ∈ R).

Remark 1. In [3, 2, 6], the gamma factors on both sides of the functional equation

are equal, i.e. ∆(s) = ∆̃(s). However ∆̃(s) := ∆(s) for the Selberg class.

†Here we allow different sets of the archimedean parameters βν on the two sides in order to cover
the Selberg class and to specialize to the case δ = 1 by replacing bn with bnµ

1−δ
n . So the generality

is not lost.
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1.2. Set-up and results.
We start with any fixed smooth function ϕ0 supported on [−1, 1] such that

(i) 0 6 ϕ0(u) 6 1 on [−1, 1], and

(ii) 1 6
∫
R
ϕ0(u) du 6 2.

Let δ > 0 be any quantity and X a large number. Set

L := δ−1X1/(2A) and ϕ(u) := ϕ0((u− 1)L).

Then ϕ is smooth and compactly supported on (0,∞) with 0 6 ϕ(u) 6 1 on [1 −
L−1, 1 + L−1] and zero elsewhere. Its derivatives satisfy

(1.1) ‖ϕ(r)‖∞ ≪ϕ0,r L
r for r > 0

and, moreover,

(1.2) L−1 6

∫ ∞

0

ϕ(u) du 6 2L−1.

Denote by

ϕ̂(s) :=

∫ ∞

0

ϕ(u)us−1 du

its Mellin transform. Then ϕ̂ is entire and

(1.3) ϕ̂(s) ≪r L
r−1(1 + |s|)−r for all r > 0.

Let σ1 > max(σ∗, R). Then the disk D lies in the half-plane ℜe s < σ1. For
x ∈ [X, 4X ], we have

∑

n>1

anϕ

(
λn
x

)
=

1

2πi

∫

(σ1)

φ(s)ϕ̂(s)xs ds.

Take a constant σ2 such that

1− σ2 > max
{
σ∗, 1 +R,−α−1

1 β̃1, . . . ,−α
−1
d β̃d

}
.

Then D lies in the right side of ℜe s = σ2 and all poles of ∆̃(s) and ∆̃(s)ψ(s) lie in
ℜe s < 1 − σ2. We shift the line of integral to ℜe s = σ2 and apply the functional
equation with a change of variable s into 1− s, and thus infer

(1.4)

Sϕ(x) :=
∑

n>1

anϕ

(
λn
x

)
−Mϕ(x)

=
ω

2πi

∫

(1−σ2)

∆̃(s)

∆(1− s)
ψ(s)ϕ̂(1− s)x1−s ds

= ω
∑

n>1

bn
µn

I(µnx),

where

Mϕ(x) :=
1

2πi

∫

C

φ(s)ϕ̂(s)xs ds(1.5)

and

I(y) :=
1

2πi

∫

(1−σ2)

∆̃(s)

∆(1− s)
ϕ̂(1− s)y1−s ds.(1.6)
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Our first theorem is a Voronoi-type series approximation for the local weighted
mean of an.

Theorem 1. Let δ > 0 be fixed and X any sufficiently large number. Under the above
assumptions (A1)-(A3) and notation, the function Sϕ(x) defined in (1.4) satisfies the
asymptotic expansion

(1.7) Sϕ(x) =
ωe0
2Ah

(hx)1−ϑ+iξSϕ,0(x) +O
(
L−1x1−ϑ−1/(2A)

)

for any x ∈ [X, 4X ], where e0 ∈ C× is given by

(1.8) e0 :=

√
2

π

d∏

ν=1

(
2A

αν

)αν+βν−β̃ν

and

Sϕ,0(x) :=
∑

n>1

bn

µϑ−iξ
n

∫ ∞

0

ϕ(u)

uϑ
uiξ cos

(
(hµnxu)

1/(2A) + kπ
)
du.

Besides we have
Sϕ(x) ≪ x1−ϑL−1

for all x ∈ [X, 4X ]. The implied constants in the O-term and ≪-symbol depend only
on ϕ0, δ and the parameters in (A1) and (A2).

With the help of Heath-Brown and Tsang [7], we derive from Theorem 1 the fol-
lowing result concerning sign changes.

Theorem 2. Under the assumptions (A1)-(A3), there exist small δ > 0 and positive
constants c0, c+, c− which depend at most on the parameters in (A1) and (A2) such
that for all sufficiently large x > X0(δ), the two inequalities

±ℜe

(
ς−1 Sϕ(x±)

(µ1hx±)iξ

)
> c±x

1−ϑL−1

hold for some x+, x− ∈ [x− c0x
1−1/(2A), x+ c0x

1−1/(2A)], where ς := ωe0b1/|b1| and the
parameter L in the set-up for ϕ takes the value δ−1x1/(2A).

Remark 2. (i) If η 6= 0, we can get the same result for the imaginary part as well.
(ii) Obviously the two inequalities imply a sign-change of ℜe (ς−1Sϕ(t)/(µ1ht)

iξ) in
the short interval [x − c0x

1−1/(2A), x + c0x
1−1/(2A)]. When 0 < 2A < 1, the interval

shrinks as x→ ∞, implying a highly oscillatory x−iξSϕ(x). This is unlikely to happen
in many circumstances, see Theorem 3 below.
(iii) In case φ(s) has no pole in D (see (A3)), Mϕ(x) ≡ 0 and thus the positivity

(resp. negativity) of Sϕ(t) implies an > 0 (resp. an < 0) for some |λn−x| ≪ x1−1/(2A).

The next is a consequence echoing the empty Selberg class for small degree 0 <
d < 1 proved in [5]. Note d = 2A here.

Theorem 3. Suppose 0 < 2A < 1 and (A1)-(A3). If either of the following conditions:

(a) φ(s) is entire,
(b) ξ = 0 and all poles of φ(s) are real,
(c) all poles of φ(s) lie in the half-plane ℜe s < ϑ0 where ϑ0 := 1− ϑ+ 1/2A,

holds true, then for all large enough n, we have λn+1 − λn ≪ λ
1−1/(2A)
n , where the

implied ≪-constant is independent of n.



LOCAL BEHAVIOR OF ARITHMETICAL FUNCTIONS 5

Remark 3. Suppose F (s) is belonged to the Selberg class S(d) of degree 0 < d < 1.
Then λn = n for all n > 1, and the corresponding ϑ0 is 1/2 + 3/(2d) > 1. As F (s)
has at most one pole at s = 1, Condition (c) of Theorem 3 are fulfilled, implying
1 = λn+1−λn ≪ n−(1−d)/d for all large n, an absurdity. Hence S(d) = ∅ for 0 < d < 1,
cf. [5, 19].

2. Applications

We consider the respective L-functions arising from self-contragredient representa-
tions forGLm(AQ), modular forms of half-integral weight and Siegel Hecke eigenforms.
The latter two cases will be handled altogether.

2.1. Self-contragredient representations for GLm(AQ). Let m > 2 be an integer
and let π = ⊗πp be an irreducible unitary cuspidal representation of GLm(AQ). We
associate the local parameters {απ(p, j)}

m
j=1 ⊂ C and {µπ(j)}

m
j=1 ⊂ C respectively to

πp and π∞ by the Langlands correspondence. The automorphic L-function L(s, π)
attached to π is entire and expands into

L(s, π) =
∑

n>1

λπ(n)n
−s

for ℜe s > 1, where

λπ(n) :=
∏

pν‖n

∑

ν1+···+νm=ν

∏

16j6m

απ(p, j)
νj .

Set φ(s) = π−ms/2q
s/2
π L(s, π) and ψ(s) = π−ms/2q

s/2
π̃ L(s, π̃), where π̃ is the contra-

gredient of π with {µπ(j) : 1 6 j 6 m} as the set of parameters for π̃∞ and qπ is the
arithmetic conductor of π. The functional equation in (A2) is satisfied with ω = 1,

∆(s) =
∏

16j6m

Γ

(
s+ µπ(j)

2

)
and ∆̃(s) =

∏

16j6m

Γ

(
s+ µπ(j)

2

)
.

It is known that from Kim & Sarnak [9] (2 6 m 6 4) and Luo, Rudnick & Sarnak
[15] (m > 5) that

(2.1) |απ(p, j)| 6 pθm and |ℜe µπ(j)| 6 θm

for all primes p and 1 6 j 6 m, where

θ2 :=
7

64
, θ3 :=

5

14
, θ4 :=

9

22
, θm :=

1

2
−

1

m2 + 1
(m > 5).

The Generalized Ramanujan Conjecture (GRC) asserts that the inequalities in (2.1)
hold for all primes p and 1 6 j 6 m with

θm = 0.

Plainly (2.1) implies
|λπ(n)| 6 nθmdm(n)

for all n > 1, where dm(n) :=
∑

n1···nm=n 1.
When π is self-contragredient, we have

{µπ(j) : 1 6 j 6 m} = {µπ(j) : 1 6 j 6 m}.
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Thus ∆̃(s) = ∆(s) and λπ(n) is real for all n > 1. Further,

A = 1
2
m, B = B̃ ∈ R, ξ = η = 0, e0 = (2/π)1/2(2m)m/2.

Let

N
±

π (x) :=
∑

n6x
λπ(n)≷ 0

1.

Liu & Wu [14] proved that

(2.2) N
±

π (x) ≫π x
1−2θm(log x)2/m−2 (x > x0(π))

holds unconditionally for 2 6 m 6 4 and holds under Hypothesis H of Rudnick-
Sarnak [21] for m > 5. Moreover, this result was applied to evaluate the number of
sign changes N∗

π(x) of the sequence {λπ(n)}n>1 in the interval [1, x]. It is shown in
[14, Corollary 1] that

N
∗
π(x) ≫π log log x (x > x0(π))

unconditionally for 2 6 m 6 4 and under Hypothesis H for m > 5.
Now by Theorem 2 with A = m/2 (and Remark 2 (iii)), the sequence {λπ(n)} has a

sign-change over the short interval Ix := [x−cx1−1/m, x+cx1−1/m], i.e. λπ(n)λπ(n
′) < 0

where n, n′ ∈ Ix, for all sufficiently large x and for some absolute constant c > 0. Thus
we obtain readily the following.

Theorem 4. Let m > 2 and let π be a self-contragredient irreducible unitary cuspidal
representation for GLm(AQ). Then we have

N
∗
π(x) ≫π x

1/m

for x > x0(π). In particular we have

(2.3) N
±

π (x) ≫π x
1/m

for x > x0(π).

Remark 4. (i) Neither the Rankin-Selberg L-function nor the bound towards Ramanu-
jan conjecture were used, showing the robustness of the method in [7].
(ii) The inequality (2.3) improves Liu-Wu’s (2.2) in two directions: the former is

unconditional for all m > 5, and the exponent 1/m is better than 1− 2θm for m > 3.

2.2. Modular forms of half-integral weight and Siegel-Hecke eigenforms.
Let N be a positive integer and χ a Dirichlet character mod 4N . For any odd integer
k > 1, we define S∗

k/2(4N,χ) to be the space of holomorphic cusp forms of half-

integral weight k/2 and nebentypus χ for the congruence subgroup Γ0(4N) which are
orthogonal to Θ where Θ is the span of unary theta series. Note that the space Θ is
nonzero only when k = 3.
Let f ∈ S∗

k/2(4N,χ) and write f(z) =
∑

n>1 λ(n)n
(k−2)/4e(nz). Associated to f is

an L-function defined as L(s, f) =
∑

n>1 λ(n)n
−s, which is entire and satisfies the

functional equation

Φ(s)L(s, f) = ωΦ(1− s)L(1− s, g)
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where Φ(s) = π−sN s/2Γ(s + (k/2 − 1)/2) and g ∈ S
∗
k/2(4N,χ

(
4N
·

)
). The character(

4N
·

)
is defined as in [23, p.442]. We are interested in, for nonzero f ∈ S∗

k/2(4N,χ),

the sequence {λr(n)}n>1 defined by

L(s, f)r =
∑

n>1

λr(n)n
−s, where r ∈ N is arbitrary.(2.4)

Next we turn to Siegel eigenforms. Let 1 6 m 6 k be integers and Sp(m,Z) be
the symplectic group. Define Mk(Sp(m,Z)) (resp. Sk(Sp(m,Z))) to be the space of
holomorphic modular (resp. cusp) forms of weight k for Sp(m,Z). Hecke eigenforms
mean the nonzero common eigenfunctions of the Hecke algebra. Attached to each
Hecke eigenform F ∈ Mk(Sp(m,Z)), one defines, cf. [1], the standard L-function

L1(s, F ) := ζ(s)
∏

p

∏

16j6m

(1− αj(p)p
−s)−1(1− αj(p)

−1p−s)−1

where {αj(p)}16j6m are the Satake parameters of F , and the spinor L-function

L2(s, F ) :=
∏

p

∏

06k6m

∏

16j1<···<jk6m

(1− α0(p)αj1(p) · · ·αjk(p)p
−s)−1

where α0(p)
2α1(p) · · ·αm(p) = 1. Here ℜe s is taken to be sufficiently large.

We know from [18] the following. When m ≡ 0 mod 4, the space Mk(Sp(m,Z))
may contain theta functions that are associated to symmetric positive definite even
integral unimodular m × m matrices and polynomials satisfying some conditions.
These theta functions generate a subspace Bk(Sp(m,Z)) in Mk(Sp(m,Z)) which is
invariant under the action of Hecke algebra. Set Bk(Sp(m,Z)) = {0} if no such
theta function exists. Define H∗

k(Sp(m,Z)) to be the set of Hecke eigenforms F in
Sk(Sp(m,Z))\Bk(Sp(m,Z)). The Euler product of L1(s, F ) converges absolutely and
uniformly for ℜe s > m+ 1. Besides, the complete L-function

Λ1(s, F ) := ΓR(s+ δ2∤m)
∏

16j6m

ΓC(s+ k − j)L1(s, F )

is holomorphic and satisfies the functional equation

Λ1(s, F ) = Λ1(1− s, F ).

Here δ∗ = 1 if the condition ∗ holds, and 0 otherwise, ΓR(s) = π−s/2Γ(s/2) and
ΓC(s) = 2(2π)−sΓ(s).
For F ∈ H∗

k(Sp(m,Z)), we define the sequence {λ1,F (n)}n>1 by

L1(s, F ) =
∑

n>1

λ1,F (n)n
−s and set r := m+ 1

2
.(2.5)

The case of spinor L-functions is less understood, but the recipe in automorphic
representation theory would suggest hypothetically a working ground, cf [22]. Let

Λ2(s, F ) = ΓC(s)
N/2

∏

ε∈{±1}m

α(ε)>0

ΓC

(
s+ 1

2
|kα(ε)− β(ε)|

) ∏

ε∈{±1}m

α(ε)=0, β(ε)>0

ΓC

(
s + 1

2
β(ε)

)

where N := #{ε = (ε1, . . . , εm) ∈ {±1}m : α(ε) = β(ε) = 0} with

α(ε) := ε1 + ε2 + · · ·+ εm and β(ε) := ε1 + 2ε2 + · · ·+mεm.
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We assume the eigenform F ∈ Hk(Sp(n,Z)) satisfies the following hypothesis.

(EF) Λ2(s, F ) extends to an entire function and satisfies the functional equation

Λ2(s, F ) = ωΛ2(1− s, F ) (|ω| = 1).

Now let us introduce the sequence {λ2,F (n)}n>1 for which

L2(s, F ) =
∑

n>1

λ2,F (n)n
−s and set r := 2m−1.(2.6)

Similarly to Theorem 4, we have the following result.

Theorem 5. Let r and {ar(n)}n>1 be the value and the sequence defined as in (2.4),
(2.5) and (2.6), where the case (2.6) is particularly conditional on Hypothesis (EF).
Suppose ar(n) ∈ R for all n, and x is any sufficiently large number. Then {ar(n)}
has a sign-change as n runs over the short interval [x − cx1−1/(2r), x + cx1−1/(2r)].
Moreover, the number of sign-changes in {ar(n)}16n6x is ≫ x1/(2r), so is the number
of the terms in {ar(n)}16n6x of the same sign.

Remark 5. This extends the study in [20] on the spinor L-functions of Siegel eigenforms
of genus 2, i.e. m = 2.

3. Preparation

In this section, we establish three preliminary lemmas for Theorems 1 and 2.

Lemma 3.1. Let J > 1 be an integer. We have

(3.1)
∆̃(s)

∆(1− s)
=

∑

06j6J−1

ejFj(s) + F0(s) ·OJ

(
|s|−J

)

as |s| → ∞, where ej ∈ C are constants with e0 given by (1.8) and

Fj(s) := h−sΓ
(
2A(s+ a)− j

)
cos

(
πA(s+ a) + kπ

)
.

The implied O-constant depends only on the parameters in (A2) and J .

Proof. This follows from the Stirling formula for log Γ(s): for any constant c ∈ C and
any J ∈ N,

log Γ(s+ c) = (s+ c− 1
2
) log s− s+ 1

2
log 2π +

∑

16j6J−1

cjs
−j +O

(
|s|−J

)

as |s| → ∞, uniformly for where |arg s| 6 π − ε < π, where the constants cj depend
on c. Here the empty sum means 0 and the empty product means 1.

As in the proof of [4, Lemma 1], we obtain, for α > 0, β and β̃ ∈ C,

log
Γ(αs+ β̃)

Γ(α(1− s) + β)
=

(
αs+ β̃ − 1

2

)
log s−

(
α(1− s) + β − 1

2

)
log(−s)

+ 2(α logα− α)s+ (β̃ − β − α) logα+
∑

16j6J−1

c′js
−j +O

(
|s|−J

)

for some constants c′j depending on α, β and β̃.
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Consequently,

(3.2)

log
∆̃(s)

∆(1 − s)
=

(
As+ B̃ − 1

2
d
)
log s−

(
A(1− s) +B − 1

2
d
)
log(−s)

+ 2
( ∑

16ν6d

αν logαν − A
)
s+ f +

∑

16j6J−1

d
(1)
j s−j +O

(
|s|−J

)

where and throughout this proof, d
(1)
j , d

(2)
j , . . . denote some constants, and

f :=
∑

16ν6d

(β̃ν − βν − αν) logαν .

On the other hand, we have

Γ(2A(s+ a)) cos(πA(s+ a) + kπ) =
πΓ(2A(s+ a))

Γ(1
2
− A(s+ a)− k)Γ(1

2
+ A(s+ a) + k)

and thus

(3.3)

log
(
Γ(2A(s+ a)) cos(πA(s+ a) + kπ)

)

=
(
A(s+ a)− k − 1

2

)
log s+

(
A(s+ a) + k

)
log(−s)

+ 2
(
A log(2A)−A

)
s+ f ′ +

∑

16j6J−1

d
(2)
j s−j +O

(
|s|−J

)
,

where

f ′ :=
(
2Aa− 1

2

)
log(2A) + 1

2
log π

2
= (B̃ −B − A) log(2A) + 1

2
log π

2
.

In view of the values of a, h and k, the difference between (3.2) and (3.3) equals

f − f ′ − s log h +
∑

16j6J−1

d
(3)
j s−j +O

(
|s|−J

)
.

Clearly for some constants d
(4)
j , we can write

exp
(
f − f ′ − s log h+

∑

16j6J−1

d
(3)
j s−j +O

(
|s|−J

))

= e0h
−s
(
1 +

∑

16j6J−1

d
(4)
j s−j +O

(
|s|−J

))

with e0 = ef−f ′

(as given by (1.8)) and the empty sum means 0.
Besides, for each 1 6 j 6 J − 1, we have

1

sj
−

(2A)j∏j
ℓ=1(2A(s+ a)− ℓ)

=
∑

j+16j′6J−1

d
(5)
j′ s

−j +O
(
|s|−J

)
.
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Consequently, a successive application of this formula gives

∑

16j6J−1

d
(4)
j s−j =

d
(5)
1

(2A(s+ a)− 1)
+

∑

26j6J−1

d
(5)
j s−j +O

(
|s|−J

)

=
∑

16j62

d
(6)
j∏j

ℓ=1(2A(s+ a)− ℓ)
+

∑

36j6J−1

d
(6)
j s−j +O

(
|s|−J

)

· · ·

=
∑

16j6J−1

d
(J+3)
j∏j

ℓ=1(2A(s+ a)− ℓ)
+O

(
|s|−J

)
.

For the difference between (3.2) and (3.3), the left-hand side is

log
∆̃(s)

∆(1− s)
− log

(
Γ(2A(s+ a)) cos(πA(s+ a) + kπ)

)
,

and the right-hand side is

log
(
h−s

∑

06j6J−1

ej∏j
ℓ=1(2A(s+ a)− ℓ)

+ h−sO
(
|s|−J

))
.

Thus,

∆̃(s)

∆(1− s)
=

cos(πA(s+ a) + kπ)

hs

∑

06j6J−1

ejΓ(2A(s+ a))∏j
ℓ=1(2A(s+ a)− ℓ)

+ F0(s)O
(
|s|−J

)
.

Using the formula Γ(s+ 1) = sΓ(s), it is easy to see that

Γ(2A(s+ a))
∏j

ℓ=1(2A(s+ a)− ℓ)
=

Γ(2A(s+ a)− 1)
∏j

ℓ=2(2A(s+ a)− ℓ)
= · · · = Γ(2A(s+ a)− j).

Inserting into the preceding formula, we obtain the required (3.1). �

Lemma 3.2. Let ε > 0 be arbitrarily small. There exists J ′ ∈ N such that for all
J > J ′,

I(y) =
y

2A

∑

06j6J−1

ej

∫ ∞

0

(hyu)a−j/(2A)ϕ(u) cos
(
(hyu)1/(2A) + (k + 1

2
j)π

)
du

+Oε,J

(
L−1y1−ϑ−(J− 1

2
)/(2A)+ε

)
,

where the implied O-constant depends only on ε, J , ϕ0 and the parameters in (A1)
and (A2).

Proof. Let 0 < ε < 1/(4A) and write θJ(ε) := ϑ − ε + (J − 1
2
)/(2A). Choose J ′ ∈ N

such that θJ ′(ε) > 1 − σ2 and consider J > J ′. As ϕ̂(s) decays rapidly (thanks to
(1.3)), we can move the line of integration of I(y) in (1.6) from ℜe s = 1− σ2 to the
right line ℜe s = θJ(ε). Then we insert (3.1) into (1.6) and integrate term by term.
Let s = σ + it. We have F0(s) ≪ |t|2A(σ−ϑ)−1/2, as |t| → ∞, in any vertical

strip b < σ < b′. By (1.3) with r = 1, the rightmost term F0(s)OJ(|s|
−J) of (3.1)

contributes at most Oε(y
1−θJ(ε)) to the integral I(y).



LOCAL BEHAVIOR OF ARITHMETICAL FUNCTIONS 11

Next we evaluate the integral of every summand in the sum
∑J−1

j=0 , which can be
expressed as ejyIj where

Ij :=
1

2πi

∫

(θJ (ε))

Γ(2A(s+ a)− j) cos(πA(s+ a) + kπ)ϕ̂(1− s)(hy)−s ds.

Note that ℜe (2A(s+a)− j) > 0 on ℜe s = θJ (ε) for 1 6 j 6 J −1. After a change of
variable z = 2A(s+ a)− j and moving the line of integration to ℜe z = 1

4
, we derive

that

Ij =
1

2A
·

1

2πi

∫

( 1
4
)

Γ(z) cos
(
1
2
πz + (k + 1

2
j)π

)
ϕ̂
(
1 + a−

z + j

2A

)
(hy)a−(z+j)/(2A) dz.

In virtue of the formula: for 0 < c < 1
2
and α ∈ C,

1

2πi

∫

(c)

Γ(s) cos
(
1
2
πs+ α

)
y−s ds = cos(y + α),

we replace ϕ̂ with its inverse Mellin transform and interchange the integrals, and
consequently obtain

Ij =
1

2A

∫ ∞

0

(hyu)a−j/(2A)ϕ(u) cos
(
(hyu)1/(2A) + (k + 1

2
j)π

)
du.

This completes the proof. �

Lemma 3.3. Let τ, ρ, θ ∈ R, and

Kτ,ρ(t) = (1− |t|)(1 + τ cos(2ρt+ θ)), ∀ t ∈ [−1, 1].

Then for any real υ,
∫ 1

−1

Kτ,ρ(t)e
i2υt dt =

(
sin υ

υ

)2

+
τeiθ

2

(
sin(υ + ρ)

υ + ρ

)2

+
τe−iθ

2

(
sin(υ − ρ)

υ − ρ

)2

.

This follows from ∫ 1

−1

(1− |t|)ei2υt dt =

(
sin υ

υ

)2

.

4. Proof of Theorem 1

Here and in the sequel, for all the implied constants in the O- or ≪-symbols, we
shall not indicate their dependence on the parameters in (A1) and (A2) for simplicity.
For x ∈ R, we denote by the symbol ⌈x⌉+ the smallest positive integer greater than
x.
Let J ′ be defined as in Lemma 3.2 and set

J0 = J ′ + ⌈2A(σ∗ − ϑ) + 1
2
⌉+ > 2.

Write

ϑ(j) := ϑ+
j

2A
(thus

j

2A
− a = ϑ(j)− iξ)

and

Sϕ,j(x) :=
∑

n>1

bn

µ
ϑ(j)−iξ
n

∫ ∞

0

ϕ(u)

uϑ(j)
uiξ cos

(
(hµnxu)

1/(2A) + (k + 1
2
j)π

)
du.
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We apply Lemma 3.2 to (1.4) with J0 in place of J , so together with (A1),

(4.1) Sϕ(x) =
ω

2Ah

∑

06j6J0

ej(hx)
1−ϑ(j)+iξSϕ,j(x) +Oε

(
L−1x1−ϑ−1/(2A)

)

for any x ∈ [X/2, X ].
It remains to estimate Sϕ,j(x) in (4.1) for 1 6 j 6 J0 . Replacing u1/(2A) by w, the

integral in Sϕ,j(x) equals the real part of a scalar multiple of

∫ ∞

0

ϕ(w2A)

w2Aϑ(j)
w2A−1+i2Aξei(hµnx)1/(2A)w dw =

∫ ∞

0

F (w)eiY w dw (say).

Clearly, for all r > 0 the support of F (r)(w) is contained in the interval |w−1| ≪ L−1

due to the support of ϕ, and F (r)(w) ≪r

∑r
j=0 ‖ϕ

(j)‖∞ ≪r Lr, thanks to (1.1).
Thus a successive integration by parts shows that for any r > 0, the right-side is
≪ Y −r

∫∞

0
|F (r)(w)| dw ≪r Y

−rLr−1 ≪ L−1(L/Y )r, that is,

(4.2)

∫ ∞

0

ϕ(u)

uϑ(j)
uiξ cos

(
(hµnxu)

1/(2A) + (k + 1
2
j)π

)
du≪ L−1

(
L

(µnx)1/(2A)

)r

≪r L
−1δ−rµ−r/(2A)

n .

Choose r(j) = ⌈2A(σ∗ − ϑ(j))⌉+. It follows immediately that for j 6 J0,

Sϕ,j(x) ≪ L−1δ−r(j)
∑

n>1

|bn|

µ
ϑ(j)+r(j)/(2A)
n

≪δ L
−1.

Inserting into (4.1), we get immediately the desired results.

5. Proof of Theorem 2

Let τ = ±1 be selected up to our disposal. In view of (1.7), we are led to consider

τ
|b1|

b1µ
iξ
1

Sϕ,0(x) +O
(
L−1X−1/(2A)

)
(5.1)

and find x such that its real part is bounded below by cL−1 for some constant c > 0.
We divide Sϕ,0 into two subsums over 1 6 n 6 N and n > N respectively,

Sϕ,0 = S6N
ϕ,0 + S>N

ϕ,0 .(5.2)

For S>N
ϕ,0 , we repeat the above argument with (4.2) and a choice of r = ⌈2A(σ∗ − ϑ)⌉+

in order that

S>N
ϕ,0 (x) ≪ L−1δ−r

∑

n>N

|bn|

µ
ϑ+r/(2A)
n

6 δL−1(5.3)

for some suitably large N = N(δ).
Now we apply the method in [7]. Recall k = κ+ iη and put

Kτ,ρ(t) = (1− |t|)
{
1 + τ cos

(
2ρt+ κπ

)}
, ∀ t ∈ [−1, 1],
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where ρ := (hµ1)
1/(2A)α and the parameter α will be specified later. Then Kτ,ρ(t) > 0

for all t ∈ [−1, 1] and
∫ 1

−1

Kτ,ρ(t) dt 6 2.

Consider any T ∈ [(2X)1/(2A), (3X)1/(2A)]. We have

(5.4)

∫ 1

−1

Sϕ,0

(
(T + 2αt)2A

)
Kτ,ρ(t) dt =

∫ 1

−1

S6N
ϕ,0

(
(T + 2αt)2A

)
Kτ,ρ(t) dt+ RT,

where the remainder term RT satisfies |RT| 6 2δL−1. Besides,

(5.5)

∫ 1

−1

S6N
ϕ,0

(
(T + 2αt)2A

)
Kτ,ρ(t) dt =

∑

16n6N

bn

µϑ−iξ
n

In

where

In :=

∫ ∞

0

ϕ(u)

uϑ
uiξ

∫ 1

−1

Kτ,ρ(t) cos
(
(hµnu)

1/(2A)(T + 2αt) + kπ
)
dt du.

The inner integral inside In equals

1

2

(
ei((hµnu)1/(2A)T+kπ)

I
+
n (u) + e−i((hµnu)1/(2A)T+kπ)

I
−
n (u)

)

with

I
±
n (u) :=

∫ 1

−1

Kτ,ρ(t)e
±i2υt dt

where υ = (hµnu)
1/(2A)α. Let ̟±

n (u) := α
(
(hµnu)

1/(2A) ± (hµ1)
1/(2A)

)
= υ ± ρ and

recall δ∗ = 1 if ∗ holds and 0 otherwise. By Lemma 3.3, we have

I
±
n (u) =

(
sin υ

υ

)2

+
τeiκπ

2

(
sin̟±

n (u)

̟±
n (u)

)2

+
τe−iκπ

2

(
sin̟∓

n (u)

̟∓
n (u)

)2

= δn=1
τ

2

(
sin̟−

1 (u)

̟−
1 (u)

)2

e∓iκπ +O

(
1

α2µ
1/A
n

)

where we have tacitly used
∣∣(µ1u)

1/(2A)−µ
1/(2A)
n

∣∣ ≫ µ
1/(2A)
n for n > 2 and |u− 1| ≪ L−1

whenever X is sufficiently large, leading to |̟±
n (u)| ≫ |α|µ1/(2A)

n for all n > 2 and

|̟+
1 (u)| ≫ |α|µ

1/(2A)
1 . Thus the inner integral inside In equals

δn=1
τ

2

(
sin̟−

1 (u)

̟−
1 (u)

)2

cos
(
(hµnu)

1/(2A)T + iηπ
)
+O

(
1

α2µ
1/A
n

)
.

With (1.2), it follows that

In = δn=1
τ

2
I∗1 +O

(
1

α2Lµ
1/A
n

)
(n > 1),

where

I∗1 :=

∫ ∞

0

ϕ(u)

uϑ

(
sin̟−

1 (u)

̟−
1 (u)

)2

uiξ cos
(
(hµ1u)

1/(2A)T + iηπ
)
du.
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Thus for (5.5), we obtain with τ 2 = 1 that

(5.6) τ
|b1|

b1µ
iξ
1

∫ 1

−1

S6N
ϕ,0

(
(T + 2αt)2A

)
Kτ,ρ(t) dt =

|b1|

2µϑ
1

I∗1 +O

(
1

α2L

N∑

n=1

|bn|

µ
ϑ+1/A
n

)
.

Again using the fact that ϕ is supported on [1 − 1/L, 1 + 1/L] and L = δ−1X1/(2A),
we easily infer ̟−

1 (u) ≪ αL−1 and u1/(2A)T = T +O(δ), and hence

(5.7) I∗1 =
{
cos

(
(hµ1)

1/(2A)T + iηπ
)
+ O

(
δ + αL−1

)}∫ ∞

0

ϕ(u) du.

RecallN = N(δ) is determined in (5.3). Next we choose a sufficiently large α = α(δ)
so that the O-term in (5.6) is ≪ δL−1, and then αL−1 6 δ for X > α(δ)2A. Let
X0(δ) > α(δ)2A be specified later. Following from (5.2)–(5.7) (and (1.2)), we obtain

(5.8)

τ
|b1|

b1µ
iξ
1

∫ 1

−1

Sϕ,0

(
(T + 2αt)2A

)
Kτ,ρ(t) dt

=
|b1|

2µϑ
1

cos
(
(hµ1)

1/(2A)T + iηπ
) ∫ ∞

0

ϕ(u) du+O(δL−1)

provided X > X0(δ).
We choose δ small enough so that the O-term in (5.8) is less than 1

4
|b1|µ

−ϑ
1 L−1 in

size. When T = 2nπ/(hµ1)
1/(2A) with n ∈ N, the main term in (5.8) is equal to

|b1|

2µϑ
1

cosh(ηπ)

∫ ∞

0

ϕ(u) du >
|b1|

2µϑ
1

L−1,

by the first inequality of (1.2). Thus for all X > X0(δ) and any T = 2nπ/(hµ1)
1/(2A) ∈

[(2X)1/(2A), (3X)1/(2A)] (n ∈ N), there exists Tτ ∈ [T − 2α, T + 2α] such that

ℜe

(
τ
2|b1|

b1µ
iξ
1

Sϕ,0(T
2A
τ )

)
>

∫ 1

−1

ℜe

(
τ
|b1|

b1µ
iξ
1

Sϕ,0

(
(T + 2αt)2A

))
Kτ,ρ(t) dt

>
1

4

|b1|

µϑ
1

L−1

To its end, we further enlarge X0(δ) such that the O-term in (5.1) does not exceed
1
6
|b1|µ

−ϑ
1 L−1 for X > X0(δ), and X0(δ) > (2α(δ))2A (so that T > 2α). A little

manipulation gives the desired inequalities, completing the proof.

6. Proof of Theorem 3

Let us begin with an evaluation for Mϕ(x) defined in (1.5).

Lemma 6.1. Let Υ be the set of all poles of φ(s), so Υ ⊂ D is finite. With the notation
in Theorem 2, there exists a positive integer M such that for any large x > X0(δ) and
any y with |y − x| 6 c0x

1−1/(2A), we have

y−iξMϕ(y) =
∑

υ∈Υ

∑

06j<ordυ

∑

16m6M

cj,m(υ)y
υ−iξ(log y)jL−m +O

(
y1−ϑL−2

)
,

where ordυ is the order of φ at the pole υ, the coefficients cj,m(υ) ∈ C are independent
of x and y, and L := δ−1x1/(2A).



LOCAL BEHAVIOR OF ARITHMETICAL FUNCTIONS 15

Proof. Applying the residue theorem to the integral in (1.5), we obtain

Mϕ(y) =
∑

υ∈Υ

∑

i>0, j>0
i+j<ordυ

di,j(υ)y
υϕ̂(i)(υ)(log y)j

for some coefficients di,j(υ) ∈ C. By Taylor’s theorem, we have the expansion

(6.1)

ϕ̂(i)(υ) =
1

L

∫ 1

−1

ϕ0(u)(1 + uL−1)υ−1 logi(1 + uL−1) du

=
∑

16m6M

d′i,m(υ)L
−m +Oυ,i,M(L−M−1).

Since L ≍ x1/(2A) ≍ y1/(2A), we take M sufficiently large in (6.1) and insert into the
preceding formula. The lemma follows. �

Next we prove the claim: Either condition of (a)-(c) in Theorem 3 implies that

λn+1 − λn > (4δ + 2c0)λ
1−1/(2A)
n(6.2)

holds only for finitely many n’s, where δ and c0 are the constants in Theorem 2.
Consider any sufficiently large λn > X0(δ) and take x = (λn + λn+1)/2, the mid-

point of λn and λn+1. Since λn < x and 0 < 2A < 1, λ
1−1/(2A)
n > x1−1/(2A). If (6.2)

holds, then

λn < x− (2δ + c0)x
1−1/(2A) < x+ (2δ + c0)x

1−1/(2A) < λn+1.

By Theorem 2 with this choice of x and observing

λn < x± − 2δx1−1/(2A) < x± + 2δx1−1/(2A) < λn+1,

we infer that Sϕ(x±) = −Mϕ(x±) because ϕ(λm/x±) = 0 for all m, and that

∓ℜe

(
ς−1 Mϕ(x±)

(µ1hx±)iξ

)
> c1x

1−ϑL−1(6.3)

for some constant c1 > 0.
Now let us invoke individually the conditions in Theorem 3.
(a) Assume φ(s) has no pole. Then Mϕ(x) ≡ 0 and thus (6.3) cannot happen.
(b) Suppose ξ = 0 and Υ ⊂ R. Lemma 6.1 gives

ℜe

(
ς−1Mϕ(y)

(µ1hy)iξ

)
=

∑

υ∈Υ

∑

06j<ordυ

∑

16m6M

c′j,m(υ) y
υ(log y)jL−m +O

(
y1−ϑL−2

)
,

where c′j,m(υ) ∈ R, L = δ−1x1/(2A) and |y − x| ≪ x1−1/(2A). For such y and large x,
the multiple sum on the right can be expressed as

Q(x) :=
{
1 +O

(
x−1/(2A)

)}∑

υ∈Υ

∑

06j<ordυ

∑

16m6M

c′j,m(υ) x
υ(log x)jL−m.

As y1−ϑL−2 = o(x1−ϑL−1), we infer by (6.3) that ∓Q(x) > 1
2
c1x

1−ϑL−1 occurs simul-
taneously for the same x, which is impossible.
(c) Suppose ℜe υ < ϑ0 = 1 − ϑ + 1/(2A) for all υ ∈ Υ. In this case, Lemma 6.1

implies

ℜe

(
ς−1Mϕ(y)

(µ1hy)iξ

)
= Q̃(y) +O

(
y1−ϑL−2

)
,
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where

Q̃(y) =
∑

υ∈Υ

∑

06j<ordυ

∑

16m6M

c′′j,m(υ) y
ℜeυ(log y)jL−m cos

(
(ℑmυ − ξ) log y + θj,m(υ)

)

for some real constants c′′j,m(υ) and θj,m(υ). As |y − x| ≪ x1−1/(2A), it follows that

Q̃(y) = Q̃(x) +O
(
xυ∗−1/(2A)(log x)ML−1

)

where υ∗ := max{ℜe υ : υ ∈ Υ} < ϑ0. As υ∗ − 1/(2A) < 1− ϑ, from (6.3) we deduce

concurrently the two inequalities ∓Q̃(x) > 1
2
c1x

1−ϑL−1 once x is large enough, a
contradiction.
In summary, we have shown that (6.2) cannot hold for any sufficiently large λn; in

other words, for some n0 and for all n > n0,

λn+1 − λn ≪ λ1−1/(2A)
n

with the implied constant independent of n.

Acknowledgements. Lau is supported by GRF 17302514 of the Research Grants
Council of Hong Kong. Liu is supported in part by NSFC grant 11531008, and Liu
and Wu are supported in part by IRT1264 from the Ministry of Education.

References

[1] M. Asgari and R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104
(2001), 173–200.

[2] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. V, Trans. Amer.
Math. Soc. 160 (1971), 139–156

[3] K. Chandrasekharan & R. Narasimhan, Functional equation with multiple gamma factors and

the average order of arithmetical functions, Ann. Math. 76 (1962), 93–136.
[4] K. Chandrasekharan & R. Narasimhan, The approximate functional equation for a class of zeta-

functions, Math. Ann. 152 (1963), 30–64.
[5] J. B. Conrey & A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J.

72 (1993), 673–693.
[6] J. L. Hafner, On the representation of the summatory functions of a class of arithmetical func-

tions, Analytic number theory (Philadelphia, Pa., 1980), Lecture Notes in Math., 899, Springer,
Berlin-New York, 1981, pp. 148–165.

[7] D. R. Heath-Brown & K.-M. Tsang, Sign changes of E(T ), ∆(x), and P (x), J. Number Theory
49 (1994), 73–83.

[8] H. H. Kim, Functoriality for the exterior square of GL4 and symmetric fourth of GL2, With
appendix 1 by D. Ramakrishnan and appendix 2 by H. Kim & P. Sarnak, J. Amer. Math. Soc.
16 (2003), 139–183.

[9] H. H. Kim & P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, J.
Amer. Math. Soc. 16 (2003), no. 1, 175–183. Appendix 2 to [8].

[10] Y.-K. Lau, On the mean square formula of the error term for a class of arithmetical functions,
Monatsh. Math. 128 (1999), 111–129.

[11] Y.-K. Lau, J.-Y. Liu & J. Wu, Sign changes of the coefficients of automorphic L-functions,
Number Theory: Arithmetic In Shangri-La (Hackensack, NJ) (Shigeru Kanemitsu, Hongze Li,
and Jianya Liu, eds.), World Scientific Publishing Co. Pte. Ltd., 2013, pp. 141–181.

[12] Y.-K. Lau & K.-M. Tsang, Large values of error terms of a class of arithmetical functions, J.
Reine Angew. Math. 544 (2002), 25–38.

[13] J.-Y. Liu, Y. Qu & J. Wu, Two Linnik-type problems for automorphic L-functions, Math. Proc.
Camb. Phil. Soc. 151 (2011), 219–227.



LOCAL BEHAVIOR OF ARITHMETICAL FUNCTIONS 17

[14] J.-Y. Liu & J. Wu, The number of coefficients of automorphic L-functions for GLm of the same

signs, J. Number Theory 148 (2015), 429–450.
[15] W.-Z. Luo, Z. Rudnick & P. Sarnak, On the generalized Ramanujan conjecture for GLm, Pro-

ceedings of Symposia In Pure Mathematics, vol. 66, part 2, 1999, 301–310.
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