Michel Weber 
  
A Remark on Zeros of Brownian Motion

Let {W (t), t ≥ 0} be a standard Brownian motion. If I is a bounded interval on which W has no zero, an almost sure lower bound to inf{|W (t)|, t ∈ I} can be provided, when I is taken from a given countable family of intervals covering the positive half-line.

Main Result

Let {W (t), t ≥ 0} be a standard Brownian motion. Let I be some bounded interval of R + . Suppose W (t) = 0, for all t ∈ I. What can be said about the size of inf{|W (t)|, t ∈ I}? This one only depends on the location of I and of the size of I. The object of this note is to prove more precisely the following result. The proof relies upon several intermediate results on infima of |W |, which are also of independent interest.

Local infima of Brownian motion

In this section, we collect some properties of the infimum of W over bounded intervals. Precise estimates of the probability

P inf a≤t≤b |W (t) -M | ≥ c .
will be necessary. Notice preliminary, since -W and W have same law that

P inf a≤t≤b |W (t) + M | ≥ c = P inf a≤t≤b | -W (t) + M | ≥ c = P inf a≤t≤b |W (t) -M | ≥ c , so that it is enough to consider the case M ≥ 0. Put Ψ(x) = P{W (1) > x} = ∞ x e -u 2 /2 du √ 2π , x ∈ R.
The lemma below is certainly well-known, although we could not find a reference. We included a proof for the sake of completeness.

Lemma 2 Let 0 < a < b < ∞. Then for any c > 0 and any real M

P inf a≤t≤b |W (t) -M | ≥ c = |v|>c 1 -2Ψ( |v| -c √ b -a ) e -(M +v) 2 2a √ 2πa dv.
Proof. By symmetry of the law of W it suffices to consider the case M ≥ 0. By the intermediate values Theorem,

P inf a≤t≤b |W (t)-M | ≥ c = P inf a≤t≤b W (t) ≥ M +c +P sup a≤t≤b W (t) ≤ M -c . (1) Let x ≥ 0. Then P inf a≤t≤b |W (t) -M | ≥ c W (a) = M ± x = 0, if 0 ≤ x ≤ c; and if x > c, P inf a≤t≤b |W (t) -M | ≥ c W (a) = M + x = P sup a≤t≤b (W (a) -W (t)) ≤ x -c , P inf a≤t≤b |W (t) -M | ≥ c W (a) = M -x = P sup a≤t≤b (W (t) -W (a)) ≤ x -c .
As for y ≥ 0, ([1], Theorem 1.5.1)

P{ sup 0≤t≤T W (t) > y} = 2P{W (T ) > y}, we get if |x| > c, P inf a≤t≤b |W (t) -M | ≥ c W (a) = M + x = 1 -2Ψ( |x| -c √ b -a ). (2) 
Therefore

P inf a≤t≤b |W (t) -M | ≥ c = R P inf a≤t≤b |W (t) -M | ≥ c W (a) = u e -u 2 2a √ 2πa du = |u-M|>c P inf a≤t≤b |W (t) -M | ≥ c W (a) = u e -u 2 2a √ 2πa du = |u-M|>c 1 -2Ψ( |u -M | -c √ b -a ) e -u 2 2a √ 2πa du = |v|>c 1 -2Ψ( |v| -c √ b -a ) e -(M +v) 2 2a √ 2πa dv, (3) 
as claimed.

Remark 3 It follows from Lemma 2 that

P inf a≤t≤b |W (t) -M | > 0 = lim c↓0 P inf a≤t≤b |W (t) -M | ≥ c = R 1 -2Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv. (4) Thus P inf a≤t≤b |W (t) -M | ≥ 0 = 1 = R 1 -2Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv,
yielding a discontinuity at 0. Take for instance a = 1, b = 1 + µ 2 ; the integral above is

R 1 -2Ψ( |v| µ ) e -(M +v) 2 2 √ 2π dv → 0 µ → ∞.
And

P inf a≤t≤b |W (t) -M | = 0 = 2 R Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv.
(5)

We will also show

Lemma 4 There exists an absolute constant C, such that for every real M , and

0 < a < b < ∞, P inf a≤t≤b |W (t) -M | = 0 = 2 R Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv ≤ C min 1, b -a a e - M 2 8 max(a,b-a)
.

In particular

P inf a≤t≤b |W (t) -M | = 0 ≤ C min 1, b -a a .
Proof. By (2.6)

P inf a≤t≤b |W (t) -M | = 0 = 2 R Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv = 2 |v|≤ M 2 + |v|> M 2 Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv ≤ 2 πa e -M 2 8a R Ψ( |v| √ b -a )dv + |v|> M 2 Ψ( |v| √ b -a )dv = 2 πa e -M 2 8a √ b -a R Ψ(|w|)dw + |v|> M 2 Ψ( |v| √ b -a )dv . (6) 
Recall that the Mills' ratio R

(x) = e x 2 /2 ∞ x e -t 2 /2 dt = ( √ 2π)e x 2 /2 Ψ(x) veri- fies for all x ≥ 0 R(x) ≤ π/2. Thus |v|> M 2 Ψ( |v| √ b -a )dv = √ b -a |w|> M 2 √ b-a Ψ(|w|)dw ≤ C √ b -a |w|> M 2 √ b-a e -w 2 /2 dw ≤ C √ b -ae -M 2 8(b-a) . (7) 
Therefore

P inf a≤t≤b |W (t) -M | = 0 ≤ C b -a a e -M 2 8a + e -M 2 8(b-a) ≤ C b -a a e - M 2 8 max(a,b-a) . (8) 
One can recover as a special case that (see [START_REF] Durrett | Stochastic calculus: A practical introduction[END_REF] p.248)

P inf a≤t≤b |W (t)| = 0 = 1 - 2 π arctan a b -a ,
or, equivalently P W (t) has no zero in (a, b) = (2/π) arcsin a/b. It is possible to also give an exact expression of the probability P inf a≤t≤b |W (t) -M | = 0 , although for M = 0 this one is relatively more complicated. This is indicated in the Lemma below.

Lemma 5 Let 0 < a ≤ b < ∞. We have

P inf a≤t≤b |W (t)-M | = 0 = - 2 π M √ a 1 √ b-a b ue -(M u) 2 2a |x|≤M 1-u 2 a e -x 2 2 dx √ 2π du + 1 - 2 π e -M 2 2a arctan a b -a .
In particular

P inf a≤t≤b |W (t)| = 0 = 1 -2 π arctan a/(b -a).
And for every positive real c

P 0 < inf a≤t≤b |W (t)| < c = 2 c/ √ a 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du +4 ∞ c/ √ a Ψ( u √ a -c √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du. Proof. Let M 1 = M/ √ a, and put F (s) = R 2Ψ |w|s e -(M 1 +w) 2 2 dw √
2π . We have

P inf a≤t≤b |W (t) -M | = 0 = R 2Ψ( |v| √ b -a ) e -(M +v) 2 2a √ 2πa dv = R 2Ψ |w| a b -a e -(M 1 +w) 2 2 √ 2π dw = F a b -a . ( 9 
)
As ∂ ∂s Ψ(|w|s) = |w|Ψ ′ (|w|s) = -|w| √ 2π e -(|w|s) 2 /2 , we have ∂ ∂s F (s) = R 2 ∂ ∂s Ψ (|w|s e -(M 1 +w) 2 2 √ 2π dw = - 2 π R |w|e -1 2 [(ws) 2 +(M1+w) 2 ] dw √ 2π . But [(ws) 2 + (M 1 + w) 2 ] = [w √ s 2 + 1 + M1 √ s 2 +1 ] 2 + M 2 1 s 2 s 2 +1 , hence ∂ ∂s F (s) = - 2 π e - M 2 1 s 2 2(s 2 +1) R |w|e -1 2 [w √ s 2 +1+ M 1 √ s 2 +1 ] 2 dw √ 2π = - 2 π e - M 2 1 s 2 2(s 2 +1) s 2 + 1 R |z|e -1 2 [z+ M 1 √ s 2 +1 ] 2 dz √ 2π = - 2 π e - M 2 1 s 2 2(s 2 +1) s 2 + 1 E g - M 1 √ s 2 + 1 , (10) 
where g denotes a Gaussian standard random variable. But for any real a

E |g + a| = |a| |a| -|a| e -x 2 /2 dx √ 2π + 2 π e -a 2 /2 . ( 11 
)
Hence

∂ ∂s F (s) = - 2 π e - M 2 1 s 2 2(s 2 +1) s 2 + 1 M 1 √ s 2 + 1 |x|≤ M 1 √ s 2 +1 e -x 2 /2 dx √ 2π + 2 π e - M 2 1 2(s 2 +1) = - 2 π M 1 e - M 2 1 s 2 2(s 2 +1) (s 2 + 1) 3/2 |x|≤ M 1 √ s 2 +1 e -x 2 /2 dx √ 2π - 2 π e -M 2 1 /2 s 2 + 1 . (12) 
If M = 0, this takes a much simplified form

∂ ∂s F (s) = - 2 π 1 s 2 + 1 . Further F (0) = R e -(M 1 +w) 2 2 dw √ 2π = 1. Therefore F (s) -1 = - 2 π M 1 s 0 e - M 2 1 t 2 2(t 2 +1) |x|≤ M 1 √ t 2 +1 e -x 2 /2 dx √ 2π dt (t 2 + 1) 3/2 - 2 π e -M 2 1 /2 s 0 dt t 2 + 1 = -e -M 2 1 /2 2 π M 1 s 0 |x|≤ M 1 √ t 2 +1 e -x 2 /2 dx √ 2π e M 2 1 2(t 2 +1) dt (t 2 + 1) 3/2 - 2 π arctan s . (13) 
Consequently,

P inf a≤t≤b |W (t) -M | = 0 = F a b -a = - 2 π M √ a 1 √ b-a b ue -(M u) 2 2a |x|≤M 1-u 2 a e -x 2 2 dx √ 2π du + 1 - 2 π e -M 2 2a arctan a b -a . ( 14 
)
If M = 0, this is simplified into

P inf a≤t≤b |W (t)| = 0 = 1 -2 π arctan a b-a . ( 15 
)
As concerning the second formula, it suffices to write

P 0 < inf a≤t≤b |W (t)| ≤ c = P inf a≤t≤b |W (t)| ≤ c -P inf a≤t≤b |W (t)| = 0 = 1 -2 ∞ c √ a 1 -2Ψ( u √ a -c √ b -a ) e -u 2 2 √ 2π du -1 -2 ∞ 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du = -2 ∞ c √ a 1 -2Ψ( u √ a -c √ b -a ) e -u 2 2 √ 2π du +2 ∞ 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du = 2 c √ a 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du +4 ∞ c √ a Ψ( u √ a -c √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 du √ 2π . Notice that π 2 = ∞ 0 dt (1+t 2 )
, and so

1 - 2 π arctan s = 2 π ∞ 0 dt (1 + t 2 ) - s 0 dt (1 + t 2 ) = 2 π ∞ s dt (1 + t 2 ) ≤ C min(1, s -1 ).
We deduce the bound obtained in Lemma 2.2

P inf a≤t≤b |W (t)| = 0 ≤ C min 1, b -a a .
In what follows we shall be interested in finding estimates of the delicate random variable

β -α [a,b] • χ {β [a,b] >0} , 0 ≤ α < 1, where we set β [a,b] := inf a≤t≤b |W (t)|.
Proposition 6 Let b > a > 0, and η > 0. Then,

P 0 < β [a,b] ≤ η ≤ 16η √ 2π min 1 √ b -a , 1 √ a .
Further, for any real α, 0 ≤ α < 1

E 1 β α [a,b] • χ{β [a,b] > 0} ≤ 47 1 -α min 1 √ b -a , 1 √ a + 1.
The result gives a control which is uniform in b-a. We have β . By using the second formula in Lemma 5

P 0 < β ≤ η = 4 η/ √ a 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du +4 ∞ η/ √ a Ψ( u √ a -η √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du. (16) As 1 -2Ψ(x) = x -x e -u 2 /2 du √ 2π ≤ min((2/π) 1/2 x, 1), x ≥ 0 η/ √ a 0 1 -2Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du ≤ η/ √ a 0 min 2 π 1/2 u √ a √ b -a , 1 e -u 2 2 √ 2π du ≤ min 2 π 1/2 √ a √ b -a η/ √ a 0 u e -u 2 2 √ 2π du , η √ 2πa ≤ min η max u≥0 ue -u 2 2 π √ b -a , η √ 2πa = η min 1 π √ b -a , 1 √ 2πa . (17) Furthermore Ψ( u √ a -η √ b -a ) -Ψ( u √ a √ b -a ) = u √ a √ b-a u √ a-η √ b-a e -u 2 2 du √ 2π ≤ η 2π(b -a) , (18) 
which implies

∞ η/ √ a Ψ( u √ a -η √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du ≤ η 2π(b -a) ∞ η/ √ a e -u 2 2 √ 2π du ≤ η 2π(b -a) . (19) 
Besides, with the variable change u

= v (b-a) a , letting v η = η √ b-a . ∞ η/ √ a Ψ( u √ a -η √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du = b -a a ∞ vη Ψ(v -v η ) -Ψ(v) e -v 2 (b-a) 2a √ 2π dv.
We have b -a a

2vη vη Ψ(v -v η ) -Ψ(v) e -v 2 (b-a) 2a √ 2π dv ≤ b -a a v η √ 2π = η √ 2πa . Now if v ≥ 2v η , then v -v η ≥ v -v/2 = v/2. Consequently b -a a ∞ 2vη Ψ(v -v η ) -Ψ(v) e -v 2 (b-a) 2a √ 2π dv = b -a a ∞ 2vη v v-vη e -x 2 2 √ 2π dx e -v 2 (b-a) 2a √ 2π dv ≤ b -a a v η ∞ 2vη e -v 2 /8 √ 2π e -v 2 (b-a) 2a √ 2π dv ≤ b -a a v η ∞ 0 e -v 2 /8 dv 2π = η √ 2πa . It follows that ∞ η/ √ a Ψ( u √ a -η √ b -a ) -Ψ( u √ a √ b -a ) e -u 2 2 √ 2π du ≤ min 2η √ 2πa , η √ 2π(b-a) ≤ 2η √ 2π min 1 √ a , 1 √ b-a . ( 20 
)
By reporting

P 0 < β ≤ η ≤ 4η min 1 π √ b-a , 1 √ 2πa + 8η √ 2π min 1 √ a , 1 √ b-a ≤ 16η √ 2π min 1 √ b-a , 1 √ a . (21) 
Now let X be a random variable such that X ≥ 0 a.s. As χ{]0

, 1]} = ∞ n=0 χ{] 1 2 n+1 , 1 2 n ]}, we have by the Beppo-Levi Theorem E 1 X α •χ{X > 0} = ∞ n=0 E 1 X α •χ{ 1 2 n+1 < X ≤ 1 2 n } +E 1 X α •χ{X > 1}, ( 22 
)
where "=" means that both expresions are simultaneously finite or infinite. And

∞ n=0 E 1 X α • χ{ 1 2 n+1 < X ≤ 1 2 n } + E 1 X α • χ{X > 1} ≤ ∞ n=0 2 α(n+1) P 0 < X ≤ 1 2 n + 1. ( 23 
)
Apply this with X = β. Then E β -α • χ{β > 0} will be finite once we prove that the series ∞ n=0 2 α(n+1) P 0 < β ≤ 1 2 n is convergent. By using (2.13) with η = 2 -n , we get

∞ n=0 2 α(n+1) P 0 < β ≤ 1 2 n ≤ 2 α+4 √ 2π min 1 √ b -a , 1 √ a ∞ n=0 2 -n(1-α) ≤ 32 2 1-α -1 min 1 √ b -a , 1 √ a ≤ 47 (1 -α) min 1 √ b -a , 1 √ a . ( 24 
)
And we conclude that

E 1 β α • χ{β > 0} ≤ 47 1 -α min 1 √ b -a , 1 √ a + 1,
as claimed.

3 Proof of Theorem 

Theorem 1

 1 Let ϑ k ≥ 0 be such that T N = k≤N ϑ k ↑ ∞ and denoteI N = [T N , T N +1 ]. Let η k ≥ 0 be such that )| ≥ η N or W (t) = 0 f or some t ∈ I N , N ultimately = 1.

  [a,b] → 0 as b-a → ∞, but in the same time the constraint β [a,b] > 0 becomes also stronger, making the probability of the set {β [a,b] > 0} small. When b -a → 0, β [a,b] → |W (a)|, and this is reflected by the term 1/ √ a in our estimate. Proof. Write β = β [a,b]

  Recall thatI N = [T N , T N +1 ]. It is now easy. As N ≥1 P 0 < β IN ≤ η N ≤ C Borel-Cantelli Lemma that P inf t∈IN |W (t)| ≥ η N or W (t) = 0 for some t ∈ I N , N ultimately = 1.
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