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Abstract: A continuous-time switched linear system with deterministic disturbances is consid-
ered in this paper. The distinguishability of the linear systems used to model the switched system
is studied. Parity residuals of the linear systems are used to study this property. In this context,
a notion of strict residual distinguishability is introduced. The paper develops two mains results:
a necessary and sufficient condition for characterizing strict residual distinguishability and an
index for quantifying the degree of strict residual distinguishability of the linear systems.
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1. INTRODUCTION

A Switched Linear System (SLS) is an hybrid dynamical
system which can present different operating modes. Each
mode is modeled by a linear system and a switching signal
which indicates at each time the active mode.

This paper is concerned with the distinguishability of the
linear systems that describe the operating modes of a
SLS. This property is the ability to identify at each time
the operating mode, using the input/output data of the
SLS. Therefore, it plays a crucial role when studying the
observability of switched systems as underlined in Gómez-
Gutiérrez et al. (2010), Lou and Si (2009) and in Babaali
and Pappas (2004). Moreover, for switched systems with
healthy and faulty operating modes (Motchon et al., 2013),
the distinguishability between the healthy modes and the
faulty ones is necessary for the detectability of the faults
and the distinguishability between the faulty modes is
necessary for fault diagnosability.

In Cocquempot et al. (2004) and Motchon et al. (2013),
parity residual signals which constitute fault indicators
are used to study the property of distinguishability. The
determination of the condition for distinguish the linear
systems through their parity residuals is addressed in
these works. A necessary and sufficient algebraic condition
for distinguishability is established in Cocquempot et al.
(2004). In Motchon et al. (2013), it is shown that two con-
trollable and observable linear systems verify this algebraic
condition if and only if their state space representation are
not equivalent.
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However, it should be noted that the model of the SLS
considered in Cocquempot et al. (2004) and Motchon et al.
(2013) does not include disturbances and the notion of
distinguishability through parity residual introduced in
these works depends implicitly of the choice of the initial
state vectors of the linear systems used to model the SLS.

Therefore, this paper introduces the notion of strict resid-
ual distinguishability which takes into account the distur-
bances of the SLS and which is independent of the choice
of the initial state vectors of the linear systems describing
the modes of the SLS.

The characterization of the notion of strict residual dis-
tinguishability is the objective of this work. Our main
results are twofold. First, we establish a necessary and
sufficient condition for strict residual distinguishability.
Second, we define an index for quantifying the degree
of residual distinguishability of the linear systems of the
SLS. With this index, we have found an answer to the
problem posed in Motchon et al. (2013) concerning the
definition of a degree of distinguishability between the
linear systems. Furthermore, this index is used for studying
the effect of the disturbances on the property of strict
residual distinguishability. The outline of this paper is as
follows.

Section 2 gives the definition of strict residual distinguisha-
bility. Before introducing this notion, the model of the
SLS under consideration is first described and the method
for obtaining the parity residuals of the linear systems
which model the modes of the SLS is recalled. Section 3
gives a necessary and sufficient condition (NSC) for strict
residual distinguishability. From this NSC, the index of
strict residual distinguishability is defined. Section 4 in-
cludes the explicit formula of this index. An analysis of
the effects of deterministic disturbances on the property of



strict residual distinguishability is presented in Section 5.
Finally, conclusions and perspectives are highlighted in
Section 6.

2. STRICT RESIDUAL DISTINGUISHABILITY

This section aims to introduce the notion of strict residual
distinguishability of the linear systems of a continuous-
time SLS subject to disturbances.

2.1 State equations of the switched linear system

The continuous-time switched linear system considered in
this paper is described by the following equations :

S

 ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) + w(t),
y(t) = Cσ(t) x(t) +Dσ(t) u(t),
x(0) = xo,

(1)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rl the
control input vector, y(t) ∈ Rm the output vector and
w(t) ∈ Rn the deterministic disturbance vector. The piece-
wise constant function σ : t 7→ σ (t) ∈ Q := {1, 2, · · · , N}
stands for the switched signal which indicates at each
instant the active operating mode of S. For every q ∈ Q,
Aq, Bq, Cq and Dq are four matrices with appropriate
dimensions. S is assumed to remain in only one of its
modes during the time interval [0 ;T ]. We denote by U ⊆
C∞

(
[0 ;T ] , Rl

)
the set of control input u of S and by

W ⊆ C∞ ([0 ;T ] , Rn) the domain of the deterministic dis-
turbances w of S. The linear systems Sq, q ∈ Q describing
the continuous dynamics of S have the following form:

Sq

 ẋq(t) = Aq xq(t) +Bq u(t) + w(t),
yq(t) = Cq xq(t) +Dq u(t),
xq(0) = xoq.

(2)

2.2 Parity residuals of the linear systems Sq

Parity residual signals have been originally designed as
faults indicators. For a given system Sq, the parity residual
reflects the consistency of its available data (measured
inputs and outputs) with the behaviour given by the model
in (2). The usual requirement that these signals must
satisfy (Frank, 1990; Chow and Willsky, 1984) is to be
zero-valued function in the operating conditions such that
the actual mode is q and w(t) = 0, for every t ≥ 0 and
not identically zero in the other cases. The method for
obtaining the parity residual of Sq is recalled as follows.

By successive derivations and substitutions of the equation
in (2), it is straightforward to verify by recurrence that

Y [s]
q (t)− T [s]

q U [s](t) = O [s]
q xq(t) + T [s]

q W [s] (t) (3)

where

Z [s] (t) =


z(t)

z(1)(t)
...

z(s)(t)

 , z ∈ {yq, u, w} ; O [s]
q =


Cq

Cq Aq
...

Cq A
s
q



T [s]
q =


Dq 0m×l · · · 0m×l 0m×l
Cq Bq Dq · · · 0m×l 0m×l

...
...

. . .
...

...
Cq A

s−2
q Bq Cq A

s−3
q Bq · · · Dq 0m×l

Cq A
s−1
q Bq Cq A

s−2
q Bq · · · Cq Bq Dq



T [s]

q =


0m×n 0m×n · · · 0m×n 0m×n
Cq 0m×n · · · 0m×n 0m×n
...

...
. . .

...
...

Cq A
s−2
q Cq A

s−3
q · · · 0m×n 0m×n

Cq A
s−1
q Cq A

s−2
q · · · Cq 0m×n

 .

For the purpose of designing parity residual of Sq, when
w(t) = 0, ∀t ≥ 0, the unknown variables xq are eliminated
in the relation (3), by multiplying this equation by a parity

matrix O [s]
q⊥ defined by:

O [s]
q⊥O [s]

q = 0rq×n,

Ker
(
O [s]
q⊥

)
= Im

(
O [s]
q

)
,

(4)

where

rq = m (s+ 1)− rank
(
O [s]
q

)
. (5)

Now, by left multiplying the equation in (3) by a parity

matrix O [s]
q⊥, one obtains:

O [s]
q⊥

[
Y [s]
q (t)− T [s]

q U [s] (t)
]

= O [s]
q⊥ T [s]

q W [s] (t) . (6)

The left member of the equality in (6),

R [s]
q (t, u, yq) := O [s]

q⊥

[
Y [s]
q (t)− T [s]

q U [s] (t)
]

(7)

is known as the computational form (Cocquempot et al.,
2004) of the parity residual signal. It is zero in the absence
of disturbances. The right member of the equality in (6),

R̄q (t, w) = O [s]
q⊥ T [s]

q W [s] (t) (8)

represents the evaluation form (Cocquempot et al., 2004)
of the parity residual signal.

When w(t) = 0 the value of the residual signal given

by (8) equals zero and then R
[s]
q matches the condition of

a residual signal. A more complete discussion concerning
the choice of the order s of derivation for designing the
parity residuals can be found in Ding (2008).

For simplicity, we assume that the residuals of all the
systems Sq, q ∈ Q are generated at a same order s.

2.3 Strict residual distinguishability

Suppose the mode q is active during the time inter-

val [0 ;T ]. Then for every t ∈ [0 ;T ], R
[s]
q (t, u, y) =

R
[s]
q (t, u, yq). Thus a necessary and sufficient condition for

identifying the active operating mode from the data y and

u, and the residual signal R
[s]
q is that for every p 6= q, the



effect of all the admissible output signals yp of Sp on R
[s]
q

must be different from that of yq on R
[s]
q . In other words,

this condition is equivalent to

R [s]
q (·, u, yp)−R [s]

q (·, u, yq) 6= 0 (9)

on [0 ;T ] where R
[s]
q (·, u, yp) is obtained by substituting

yq by yp in (7). Consequently, we are interested with the
following problem:

Problem 1. For a control input u, in what situation does
the condition (9) holds for every admissible output signal
yp of Sp.

The expression of R
[s]
q (·, u, yp) is obtained by writing (3)

for q = p and substituting in the formula (7), Y
[s]
q (t) by

Y
[s]
p (t). Then the left hand side of (9) can be written as

follows:

R [s]
q (t, u, yp)−R [s]

q (t, u, y) = Ψ [s]
q p

[
xop, u, w

]
(t) (10)

where the function Ψ
[s]
q p

[
xop, u, w

]
is defined on R+ by :

Ψ [s]
q p

[
xop, u, w

]
(t) = O [s]

q⊥

[
O [s]
p xp(t) + T [s]

p q U
[s](t)

]
+O [s]

q⊥ T [s]

p qW
[s] (t)

(11)
with

T [s]
p q = T [s]

p − T [s]
q ; T [s]

p q = T [s]

p − T [s]

q .

Consequently, Problem 1 is equivalent to determine when

for a control input u, the function Ψ
[s]
q p

[
xop, u, w

]
is not

identically zero on [0 ;T ] for every xop ∈ Rn and for every
w ∈ W . Notice that if (9) holds for every xop and for every
w ∈ W , then one can distinguish Sq from Sp regardless of
the system’s initial state vector and the system’s distur-

bances by using the residual function R
[s]
q . Thus to best

focus on this problem of distinguishability, we introduce
the following notion of “strict residual distinguishability”.

Definition 1. (Strict residual distinguishability). Let a con-
trol input u ∈ U be fixed.

(i) The system Sp is said to be strictly residual (u,W )-
distinguishable from Sq on the time interval [0 ;T ]
if for every

(
xop, w

)
∈ Rn × W , the function

Ψ
[s]
q p

[
xop, u, w

]
is non-zero on [0 ;T ].

(ii) The systems Sp and Sq are said to be strictly residual
(u,W )-distinguishable on the time interval [0 ;T ] if Sp
is strictly residual (u,W )-distinguishable from Sq on
[0 ;T ] or vice versa. If not, Sp and Sq are said to be
not strictly residual (u,W )-distinguishable on [0 ;T ].

The definition of residual-distinguishability (Motchon
et al., 2013) does not take into account the disturbances
(W is restricted to {0}). It states that the disturbance-
free models of Sp and Sq are residual-distinguishable if

there exists a couple
(
u, xop

)
such that Ψ

[s]
q p

[
xop, u, 0

]
is

not identically zero or if there exists a couple
(
u, xoq

)
such

that Ψ
[s]
p p

[
xoq, u, 0

]
is not identically zero. Consequently,

the notion of strict residual distinguishabillity given by
Definition 1 is stronger than the notion of residual-
distinguishability.

In the next section, we give a necessary and sufficient
condition for strict residual distinguishability.

3. A NECESSARY AND SUFFICIENT CONDITION
FOR STRICT RESIDUAL DISTINGUISHABILITY

Throughout the remainder of the paper, we adopt the
following notation :

Notation 1.

• ‖ξ‖2 = ξT ξ : 2-norm of the vector ξ

• ‖ψ‖RMS =

√
1

T

∫ T

0

‖ψ (τ)‖22 dτ : root mean square

of the signal ψ

The main result of this section (Theorem 1) gives a
necessary and a sufficient condition for strict residual
(u,W )-distinguishability of Sp and Sq. This condition is
based on checking the strict positivity of the real-valued

function ∆ [s]
p q [u] defined on W by

∆ [s]
p q [u] (w) = min

{
∆

[s]
p/q [u] (w) , ∆

[s]
q/p [u] (w)

}
(12)

where

∆
[s]
p/q [u] (w) = min

xo
p∈Rn

∥∥∥Ψ [s]
q p

[
xop, u, w

]∥∥∥2
RMS

(13)

and ∆
[s]
q/p [u] (w) is obtained by reverse p and q in

the formula (13). The function ∆ [s]
p q [u] represents the

gap between the zero valued-function and the func-

tions Ψ
[s]
q p

[
u, xop, w

]
of residuals differenciation. To char-

acterize the strict residual distinguishability with the

function ∆ [s]
p q [u], we need to prove that the function

xop 7−→
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

admits a minimum on Rn.

In Lemma 1 we establish that the existence of the mini-
mum (13) is entirely controlled by the matrices O [s]

q⊥O [s]
p

and Ap. The proof of this lemma uses the formula (14) of

the quadratic term
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

and the Propo-

sition 2 which gives three fundamental properties of

the matrix H
[s]
q p that appears in the formula (14) of∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

.

Proposition 1. Let
(
u, xop, w

)
∈ U × Rn ×W . Then∥∥∥Ψ [s]

q p

[
xop, u, w

]∥∥∥2
RMS

=
(
xop
)>
H [s]
q p x

o
p + 2L [s]

q p (u,w) xop+

K [s]
q p (u,w)

(14)

where H
[s]
q p ∈ Rn×n, L

[s]
q p (u,w) ∈ R1×n and K

[s]
q p (u,w) ∈

R+ are defined by :

H [s]
q p =

1

T

∫ T

0

eτ A
>
p

(
Λ [s]
q p

)>
Λ [s]
q p eτ Ap d τ, (15)

L [s]
q p (u,w) =

1

T

∫ T

0

(
Ψ̂ [s]
q p [u,w] (τ)

)>
Λ [s]
q p eτ Apd τ, (16)

and

K [s]
q p (u,w) =

∥∥∥Ψ̂ [s]
q p [u,w]

∥∥∥2
RMS

(17)



with
Λ [s]
q p := O [s]

q⊥O [s] (18)

and

Ψ̂ [s]
q p [u,w] (t) = Λ [s]

q p

∫ t

0

e(t−τ)Ap [Bp u (τ) + w (τ)] d τ+

O [s]
q⊥ T [s]

p q U
[s] (t) + O [s]

q⊥ T [s]

p qW
[s] (t) .

(19)

Proof. In the expression (11) of Ψ
[s]
q p

[
xop, u, w

]
, by substi-

tuting xp (t) by

xp (t) = et Ap xop +

∫ t

0

e(t−τ)Ap [Bp u (τ) + w (τ)] dτ,

one obtains

Ψ [s]
q p

[
xop, u, w

]
(t) = Λ [s]

q p et Ap xop + Ψ̂ [s]
q p [u,w] (t) .

Thus, for every τ ∈ [0 ;T ],∥∥∥Ψ [s]
q p

[
xop, u, w

]
(τ)
∥∥∥2
2

=
∥∥∥Λ [s]

q p eτ Ap xop

∥∥∥2
2

+
∥∥∥Ψ̂ [s]

q p [u,w] (τ)
∥∥∥2
2

2
(

Ψ̂ [s]
q p [u,w] (τ)

)>
Λ [s]
q p eτ Ap xop.

Finally, one obtains the formula (14) by integrating the
previous equality.

Proposition 2. The matrix H
[s]
q p defined by (15) has the

following properties :

(i) H
[s]
q p is symmetric and positive semidefinite.

(ii) H
[s]
q p is positive definite if and only if the pair(
Λ

[s]
q p, Ap

)
is observable i.e.

rank




Λ [s]
q p

Λ [s]
q p Ap

...

Λ [s]
q p A

n−1
p


 = n. (20)

(iii) If the matrix Λ
[s]
q p defined by (18) is full column rank

then H
[s]
q p is positive definite.

Proof.

(i) As the matrix eτ A
>
p

(
Λ

[s]
q p

)>
Λ

[s]
q p eτ Ap is symmet-

ric for all τ ∈ [0 ;T ], from (15) one obtains(
H

[s]
q p

)>
= H

[s]
q p . Hence H

[s]
q p is symmetric. Now we

will prove that H
[s]
q p is positive semidefinite. For every

ξ ∈ Rn, one has

ξT H [s]
q p ξ =

1

T

∫ T

0

∥∥∥Λ [s]
q p eτ Ap ξ

∥∥∥2
2

dτ ≥ 0. (21)

Hence the matrix H
[s]
q p is positive semidefinite.

(ii) Let ξ ∈ Rn. Since the function τ 7−→
∥∥∥Λ

[s]
q p eτ Ap ξ

∥∥∥2
2

is

continuous and positive on [0 ;T ], it follows from (21)

that ξT H
[s]
q p ξ = 0 if and only if Λ

[s]
q p eτ Ap ξ = 0rq×n

for every τ ∈ [0 ;T ]. Moreover, as the function τ 7−→
Λ

[s]
q p eτ Ap ξ is identically zero on [0 ;T ] if and only if

Λ [s]
q p A

k
pξ = 0rq×n, k = 0, 1, . . . , n− 1,

we conclude that H
[s]
q p is positive definite if and only

if

Λ [s]
q p A

k
pξ = 0rq×n, k = 0, 1, . . . , n− 1, =⇒ ξ = 0n.

This conclude the proof of (ii).

(iii) Suppose Λ
[s]
q p is full column rank. Then the pair(

Λ
[s]
q p, Ap

)
is observable and we conclude from state-

ment (ii) that H
[s]
q p is positive definite.

Lemma 1. Let (u,w) ∈ U × W . If the pair
(

Λ
[s]
q p, Ap

)
is

observable or if the matrix Λ
[s]
q p is full column rank then

min
xo
p∈Rn

∥∥∥Ψ
[s]
q p

[
xop, u, w

]∥∥∥2
RMS

exists.

Proof. Suppose the pair
(

Λ
[s]
q p, Ap

)
is observable or the

matrix Λ
[s]
q p is full column rank. The matrix H

[s]
q p is sym-

metric and positive definite and we derive from the for-

mula (14) that the function xop 7−→
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

is coercive and strictly convex. Consequently, its admits a
minimum on Rn.

Example 1. Consider the systems Sp and Sq described as
follows :

Ap =

[
−2 2
2 −2.5

]
; Bp =

[
1
0

]
; Cp = [0 1] ; Dp = 0

Aq =

[
−1 1
1 4

]
; Bq = Bp ; Cq = Cp ; Dq = Dp

The systems Sp and Sq represent two operating modes
of an hydraulic two-tank system linearized around an
equilibrium point. By a simple computation, it is easy to
verify that

O [2]
p =

[
0 1
2 −2.5
−9 10.25

]
; O [2]

q =

[
0 1
1 4
3 17

]
;
(
O [2]
q⊥

)>
=

[−5
−3
1

]

T [2]
p q =

[
0 0 0
0 0 0
1 0 0

]
; T [2]

p q =

[
0 0 0 0 0 0
0 0 0 0 0 0
1 −6.5 0 0 0 0

]
.

Thus, the matrix Λ
[2]
q p = [−15.0 12.75] is not of full column

rank and the pair
(

Λ
[2]
q p , Ap

)
is observable because

rank

([
Λ [2]
q p

Λ [2]
q p A1

])
= rank

([
−15.0 12.75
55.5 −61.87

])
= 2.

Consequently, min
xo
p∈Rn

∥∥∥Ψ
[s]
q p

[
xop, u, w

]∥∥∥2
RMS

exists. The for-

mula of the function Ψ
[2]
q p

[
xop, u, w

]
is

Ψ [2]
q p

[
xop, u, w

]
(t) = u (t) + w1 (t)− 6.5w2 (t) +

−15xp 1
(
t, xop, u, w

)
+

12.75xp 2
(
t, xop, u, w

)
.

where xp k and wk, k = 1, 2 denote respectively the kth
component of the state variable xp and the disturbance
w. The existence of the minimum of the root mean square
of this function is illustrated by Figure 1. This numerical
result is obtained for the control input u (t) = sin (0.5 t)

and for the disturbance w (t) =

[
cos (−0.25 t)

0

]



Fig. 1. Function xop 7−→
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

for u (t) =

sin (0.5 t), w1 (t) = cos (−0.25 ∗ t) and w2 (t) = 0

Proposition 3. Let u ∈ U be fixed. If the pair
(

Λ
[s]
q p, Ap

)
is observable or if the matrix Λ

[s]
q p is full column rank then

the following statements are equivalent :

(i) Sp is strictly residual (u,W )-distinguishable from Sq
on the time interval [0 ;T ].

(ii) for every w ∈ W , ∆
[s]
p/q [u] (w) > 0, where the function

∆
[s]
p/q [u] is defined by the relation (13).

Proof.

(i) =⇒ (ii) : Let w ∈ W . There exists xop such that

∆
[s]
p/q [u] (w) =

∥∥∥Ψ [s]
q p

[
xop, u, w

]∥∥∥2
RMS

.

Moreover, as Sp is strictly residual (u,W )-distinguishable

from Sq on the time interval [0 ;T ],
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

6= 0.

Consequently, ∆
[s]
p/q [u] (w) > 0.

(ii) =⇒ (i) : The proof of this implication follows from
the fact that for every

(
xop, w

)
∈ Rn ×W ,∥∥∥Ψ [s]

q p

[
xop, u, w

]∥∥∥2
RMS

≥∆
[s]
p/q [u] (w) .

Thus, the strict residual distinguishability of Sp and Sq
can be characterized as follows:

Theorem 1. Let u ∈ U be fixed. If the pair
(

Λ
[s]
q p, Ap

)
is

observable or if the matrix Λ
[s]
q p is full column rank then

the following statements are equivalent :

(i) Sp and Sq are strictly residual (u,W )-distinguishable
on Rn ×W during the interval times [0 ;T ].

(ii) The function ∆ [s]
p q [u] defined by equation (12) is

strictly positive on W i.e

∆ [s]
p q [u] (W ) ⊆ R∗+ (22)

where ∆ [s]
p q [u] (W ) denotes the image of W under

∆ [s]
p q [u].

Proof. The proof is an immediate consequence of Propo-
sition 3.

The function ∆ [s]
p q [u] is identically zero on W when Sp and

Sq are not strictly residual (u,W )-input distinguishable

and ∆ [s]
p q [u] is different from zero otherwise. Thus, this

function constitutes an index for quantifying the degree of
strict residual distinguishability of Sp and Sq. Therefore,
we introduce the following definition.

Definition 2. (index of distinguishability). The index of
strict residual distinguishability of Sp with respect to Sq is

the function ∆
[s]
p/q [u] defined in (13) and ∆ [s]

p q [u] defined

in (12) is the index of strict residual distinguishability of
Sp and Sq.

It should be noted that the condition (22) is not easy to
verify in practice. Indeed, for any w ∈ W , the relation (12)

does not provide an expression of ∆ [s]
p q [u] that depends

explicitly of u and w. Thus, the next section is devoted to

establish the explicit formula of ∆ [s]
p q [u].

4. AN EXPLICIT FORMULA OF THE INDEX OF
STRICT RESIDUAL DISTINGUISHABILITY

From the formula (14) of
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

, it is easy

to see that

∂
∥∥∥Ψ

[s]
q p

[
xop, u, w

]∥∥∥2
RMS

∂xop
= 2H [s]

q p x
o
p + 2

(
L [s]
q p (u,w)

)>
.

Consequently, for fixed values of u and w, the function

xop 7−→ Ψ
[s]
q p

[
xop, u, w

]
attains its minimum at the point xop

solution of the following linear equation

H [s]
q p x

o
p = −

(
L [s]
q p (u,w)

)>
Thus, if the pair

(
Λ

[s]
q p, Ap

)
is observable or if Λ

[s]
q p is full

column rank then

xop = −
(
H [s]
q p

)−1 (
L [s]
q p (u,w)

)>
(23)

and one obtains finally the following formula of the index

∆
[s]
p/q [u]:

Theorem 2. Let u ∈ U be fixed. If the pair
(

Λ
[s]
q p, Ap

)
is

observable or if the matrix Λ
[s]
q p is full column rank then

for every w ∈ W ,

∆
[s]
p/q [u] (w) = −L [s]

q p (u,w)
(
H [s]
q p

)−1 (
L [s]
q p (u,w)

)>
+

K [s]
q p (u,w)

(24)

where H
[s]
q p , L

[s]
q p (u,w) and K

[s]
q p (u,w) are defined respec-

tively by equations (15), (16) and (17).

Proof. The proof follows from the fact that

∆
[s]
p/q [u] (w) =

∥∥∥Ψ [s]
q p

[
xop, u, w

]∥∥∥2
RMS

where the explicit formula of xop is given by the rela-
tion (23).

It should be noted that for the disturbance-free models
of Sp and Sq, the formula of the index given by the



relation (24) depends only on the known control input
and some known matrices. Consequently, this index can
be computed easily.

Example 2. Consider the systems Sp and Sq of Example 1.
The two systems are observed during the time interval
[0 ; 10] i.e T = 10. For this value of T , it is easy to verify
that

H [s]
q p =

[
4.1 −1.5
−1.5 2.0

]
.

For the control input u (t) = sin (0.5 t), one has

L [2]
q p (u, 0) = [2.4 2.0] ; K [s]

q p (u, 0) = 16.0

Thus the value of the index ∆
[s]
p/q [u] (0) that allows to

quantify the degree of residual distinguishability of Sp with
respect to Sq is

∆
[s]
p/q [u] (0) = 9.0 > 0.

Consequently, Sp and Sq are strictly residual (u, {0})-
distinguishable on [0 ;T ]. Consider the following domain
of deterministic disturbances :

W =

{[
γ cos (−0.25 t)

0

]
, γ ∈ R

}
. (25)

For every w ∈ W , one has

L [2]
q p (u,w) = [3.4 γ + 2.4 2.4 γ + 2.0]

and
K [s]
q p (u,w) = 16.0 γ2 + 30.0 γ + 16.0.

Consequently, the value of ∆
[s]
p/q [u] (w) is

∆
[s]
p/q [u] (w) = 3.7 γ2 + 11.0 γ + 9.0. (26)

Thus, it is easy to verify that ∆
[s]
p/q [u] (W ) ⊆ R?+. We con-

clude that for the control input u (t) = sin (0.5 t), the sys-
tems Sp and Sq are strictly residual (u,W )-distinguishable
on the time interval [0 ; 10].

5. SOME EFFECTS OF DISTURBANCES ON
STRICT RESIDUAL DISTINGUISHABILITY

In this part, we are interested by the following problem :

Problem 2. Given a control input u, characterize the do-
mains W −

u and W +
u defined by :

W −
u =

{
w ∈ W : ∆

[s]
p/q [u] (w) ≤∆

[s]
p/q [u] (0)

}
(27)

and

W +
u =

{
w ∈ W : ∆

[s]
p/q [u] (w) > ∆

[s]
p/q [u] (0)

}
. (28)

The domain W −
u corresponds to the class of deterministic

disturbances for which Sp is close to Sq (in terms of resid-
ual distinguishability) comparatively to their disturbance-
free models. The space W +

u represents the class of deter-
ministic disturbances for which Sp is far from Sq compar-
atively to their disturbance-free models.

As illustrative example of domains W −
u and W +

u , we
consider again the systems Sp and Sq of Example 2.

Example 3. For T = 10, u (t) = sin (0.5 t) and for W
defined by the relation (25), it follows from (26) that for
every w ∈ W ,

∆
[s]
p/q [u] (w)−∆

[s]
p/q [u] (0) = γ (3.7 γ + 11.0) .

Consequently, for the systems Sp and Sq of Example 2,
one has

W −
u =

{[
γ cos (−0.25 t)

0

]
, γ ∈ [−11.0

3.7
; 0]

}
and

W +
u =

{[
γ cos (−0.25 t)

0

]
, γ ∈ ]−∞ ;−11.0

3.7
[
⋃

R∗+
}
.

−6 −4 −2 0 2 4 6
0

4
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12

γ
∆

[s
]

p
/
q

[u
](
w

)

∆
[s]
p/q [u] (0)

Fig. 2. Comparison of the index ∆
[s]
p/q [u] (0) and

∆
[s]
p/q [u] (w) for systems Sp and Sq of Example 2

In order to characterize the domains W −
u and W +

u ,
we consider the following decomposition of the function

Ψ̂
[s]
q p [u,w] :

Ψ̂ [s]
q p [u,w] (t) = Ψ̂ [s]

q p [u, 0] (t) + F [s]
q p [w] (t) (29)

where the function F
[s]
q p [w] is defined on R+ by

F [s]
q p [w] (t) = Λ [s]

q p

∫ t

0

e(t−τ)Ap w (τ) dτ+O [s]
q⊥ T [s]

p qW
[s] (t) .

From (29) and (16), we can rewrite L
[s]
q p [u,w] as follows :

L [s]
q p [u,w] = L [s]

q p [u, 0]+
1

T

∫ T

0

(
F [s]
q p [w] (τ)

)>
Λ [s]
q p eτ Ap dτ.

(30)

By combining (29) and (17), we can rewrite K
[s]
q p [u,w] as

follows

K [s]
q p [u,w] =

∥∥∥Ψ̂ [s]
q p [u, 0]

∥∥∥2
RMS

+
∥∥∥F [s]

q p [w]
∥∥∥2
RMS

+

2

T

∫ T

0

(
F [s]
q p [w] (τ)

)>
Ψ̂ [s]
q p [u, 0] (τ) dτ.

(31)
Now, from (31), (30) and (24), it is easy to verify that one

can rewrite the index ∆
[s]
p/q [u] (w) as follows :

∆
[s]
p/q [u] (w) = ∆

[s]
p/q [u] (0) +G [s]

q p [u,w] (32)

with



G [s]
q p [u,w] =

∥∥∥F [s]
q p [w]

∥∥∥2
RMS

+

2

T

∫ T

0

(
F [s]
q p [w] (τ)

)>
Ψ̂ [s]
q p [u, 0] (τ) dτ−

2

T
L [s]
q p [u, 0]

(
H [s]
q p

)−1 ∫ T

0

eτ A
>
p

(
Λ [s]
q p

)>
F [s]
q p [w] (τ) dτ−

1

T 2

∥∥∥∥∥(H [s]
q p

)−1/2 ∫ T

0

eτ A
>
p

(
Λ [s]
q p

)>
F [s]
q p [w] (τ) dτ

∥∥∥∥∥
2

2
(33)

where
(
H

[s]
q p

)−1/2
denotes the square root of the matrix(

H
[s]
q p

)−1
.

Finally, we obtain the following characterization of W −
u

and W +
u :

Proposition 4. Let u ∈ U be fixed. If the pair
(

Λ
[s]
q p, Ap

)
is observable or if the matrix Λ

[s]
q p is full column rank then

W −
u =

{
w ∈ W : G [s]

q p [u,w] ≤ 0
}

(34)

and

W +
u =

{
w ∈ W : G [s]

q p [u,w] > 0
}

(35)

where G
[s]
q p [u,w] is defined by the relation (33).

Proof. The proof follows from (27), (28) and (32).

6. CONCLUSION

This paper deals with the distinguishability of the linear
systems describing the operating modes of a continuous-
time switched linear system subject to disturbances. Parity
residuals of the linear systems are used to study this
property. A notion of strict residual distinguishability
of the linear systems is introduced. A necessary and
sufficient condition is given for testing the strict residual
distinguishability of the systems. An index for quantifying
the degree of strict residual distinguishability of two linear
system is defined. The explicit formula of this index is
calculated and this allowed a geometric characterization
of the strict residual distinguishability.
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S., and Cocquempot, V. (2013). Operating modes
distinguishability condition in switching systems. In
Proceedings of the 52nd IEEE Conference on Decision
and Control, 79–84. Florence, Italy.


