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INTRODUCTION

A Switched Linear System (SLS) is an hybrid dynamical system which can present different operating modes. Each mode is modeled by a linear system and a switching signal which indicates at each time the active mode.

This paper is concerned with the distinguishability of the linear systems that describe the operating modes of a SLS. This property is the ability to identify at each time the operating mode, using the input/output data of the SLS. Therefore, it plays a crucial role when studying the observability of switched systems as underlined in [START_REF] Gómez-Gutiérrez | Observability of switched linear systems[END_REF], [START_REF] Lou | The distinguishability of linear control systems[END_REF] and in [START_REF] Babaali | Observability of switched linear systems in continuous time[END_REF]. Moreover, for switched systems with healthy and faulty operating modes [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF], the distinguishability between the healthy modes and the faulty ones is necessary for the detectability of the faults and the distinguishability between the faulty modes is necessary for fault diagnosability.

In [START_REF] Cocquempot | Fault detection and isolation for hybrid systems using structured parity residuals[END_REF] and [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF], parity residual signals which constitute fault indicators are used to study the property of distinguishability. The determination of the condition for distinguish the linear systems through their parity residuals is addressed in these works. A necessary and sufficient algebraic condition for distinguishability is established in [START_REF] Cocquempot | Fault detection and isolation for hybrid systems using structured parity residuals[END_REF]. In [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF], it is shown that two controllable and observable linear systems verify this algebraic condition if and only if their state space representation are not equivalent. However, it should be noted that the model of the SLS considered in [START_REF] Cocquempot | Fault detection and isolation for hybrid systems using structured parity residuals[END_REF] and [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF] does not include disturbances and the notion of distinguishability through parity residual introduced in these works depends implicitly of the choice of the initial state vectors of the linear systems used to model the SLS.

Therefore, this paper introduces the notion of strict residual distinguishability which takes into account the disturbances of the SLS and which is independent of the choice of the initial state vectors of the linear systems describing the modes of the SLS.

The characterization of the notion of strict residual distinguishability is the objective of this work. Our main results are twofold. First, we establish a necessary and sufficient condition for strict residual distinguishability. Second, we define an index for quantifying the degree of residual distinguishability of the linear systems of the SLS. With this index, we have found an answer to the problem posed in [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF] concerning the definition of a degree of distinguishability between the linear systems. Furthermore, this index is used for studying the effect of the disturbances on the property of strict residual distinguishability. The outline of this paper is as follows.

Section 2 gives the definition of strict residual distinguishability. Before introducing this notion, the model of the SLS under consideration is first described and the method for obtaining the parity residuals of the linear systems which model the modes of the SLS is recalled. Section 3 gives a necessary and sufficient condition (NSC) for strict residual distinguishability. From this NSC, the index of strict residual distinguishability is defined. Section 4 includes the explicit formula of this index. An analysis of the effects of deterministic disturbances on the property of strict residual distinguishability is presented in Section 5. Finally, conclusions and perspectives are highlighted in Section 6.

STRICT RESIDUAL DISTINGUISHABILITY

This section aims to introduce the notion of strict residual distinguishability of the linear systems of a continuoustime SLS subject to disturbances.

State equations of the switched linear system

The continuous-time switched linear system considered in this paper is described by the following equations :

S    ẋ(t) = A σ(t) x(t) + B σ(t) u(t) + w(t), y(t) = C σ(t) x(t) + D σ(t) u(t), x(0) = x o , (1) 
where x(t) ∈ R n denotes the state vector, u(t) ∈ R l the control input vector, y(t) ∈ R m the output vector and w(t) ∈ R n the deterministic disturbance vector. The piecewise constant function σ : t → σ (t) ∈ Q := {1, 2, • • • , N } stands for the switched signal which indicates at each instant the active operating mode of S. For every q ∈ Q, A q , B q , C q and D q are four matrices with appropriate dimensions. S is assumed to remain in only one of its modes during the time interval [0 ; T ]. We denote by U ⊆ C ∞ [0 ; T ] , R l the set of control input u of S and by W ⊆ C ∞ ([0 ; T ] , R n ) the domain of the deterministic disturbances w of S. The linear systems S q , q ∈ Q describing the continuous dynamics of S have the following form:

S q    ẋq (t) = A q x q (t) + B q u(t) + w(t), y q (t) = C q x q (t) + D q u(t), x q (0) = x o q .
(2)

2.2 Parity residuals of the linear systems S q Parity residual signals have been originally designed as faults indicators. For a given system S q , the parity residual reflects the consistency of its available data (measured inputs and outputs) with the behaviour given by the model in (2). The usual requirement that these signals must satisfy [START_REF] Frank | Fault diagnosis in dynamic systems using analytical and knowledge based redundancy: A survey and some new results[END_REF][START_REF] Chow | Analytical redundancy and the design of robust failure detection systems[END_REF] is to be zero-valued function in the operating conditions such that the actual mode is q and w(t) = 0, for every t ≥ 0 and not identically zero in the other cases. The method for obtaining the parity residual of S q is recalled as follows.

By successive derivations and substitutions of the equation in (2), it is straightforward to verify by recurrence that

Y [s] q (t) -T [s] q U [s] (t) = O [s] q x q (t) + T [s] q W [s] (t) (3) where Z [s] (t) =      z(t) z (1) (t) . . . z (s) (t)      , z ∈ {y q , u, w} ; O [s] q =     C q C q A q . . . C q A s q     T [s] q =        D q 0 m×l • • • 0 m×l 0 m×l C q B q D q • • • 0 m×l 0 m×l . . . . . . . . . . . . . . . C q A s-2 q B q C q A s-3 q B q • • • D q 0 m×l C q A s-1 q B q C q A s-2 q B q • • • C q B q D q        T [s] q =        0 m×n 0 m×n • • • 0 m×n 0 m×n C q 0 m×n • • • 0 m×n 0 m×n . . . . . . . . . . . . . . . C q A s-2 q C q A s-3 q • • • 0 m×n 0 m×n C q A s-1 q C q A s-2 q • • • C q 0 m×n        .
For the purpose of designing parity residual of S q , when w(t) = 0, ∀t ≥ 0, the unknown variables x q are eliminated in the relation (3), by multiplying this equation by a parity matrix O

[s]

q ⊥ defined by:

     O [s] q ⊥ O [s] q = 0 rq×n , Ker O [s] q ⊥ = Im O [s] q , (4) 
where

r q = m (s + 1) -rank O [s] q . (5) 
Now, by left multiplying the equation in ( 3) by a parity matrix O

[s]

q ⊥ , one obtains:

O [s] q ⊥ Y [s] q (t) -T [s] q U [s] (t) = O [s] q ⊥ T [s] q W [s] (t) . (6)
The left member of the equality in (6), R [s] q (t, u, y q ) := O

[s] q ⊥ Y [s] q (t) -T [s] q U [s] (t) (7)
is known as the computational form [START_REF] Cocquempot | Fault detection and isolation for hybrid systems using structured parity residuals[END_REF] of the parity residual signal. It is zero in the absence of disturbances. The right member of the equality in (6),

Rq (t, w) = O [s] q ⊥ T [s] q W [s] (t) (8) 
represents the evaluation form [START_REF] Cocquempot | Fault detection and isolation for hybrid systems using structured parity residuals[END_REF] of the parity residual signal.

When w(t) = 0 the value of the residual signal given by ( 8) equals zero and then R

[s]

q matches the condition of a residual signal. A more complete discussion concerning the choice of the order s of derivation for designing the parity residuals can be found in [START_REF] Ding | Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools[END_REF].

For simplicity, we assume that the residuals of all the systems S q , q ∈ Q are generated at a same order s.

Strict residual distinguishability

Suppose the mode q is active during the time interval [0 ; T ]. Then for every t ∈

[0 ; T ], R [s] q (t, u, y) = R [s]
q (t, u, y q ). Thus a necessary and sufficient condition for identifying the active operating mode from the data y and u, and the residual signal R

[s]

q is that for every p = q, the effect of all the admissible output signals y p of S p on R

[s] q must be different from that of y q on R [s] q . In other words, this condition is equivalent to

R [s] q (•, u, y p ) -R [s] q (•, u, y q ) = 0 (9) on [0 ; T ] where R [s]
q (•, u, y p ) is obtained by substituting y q by y p in (7). Consequently, we are interested with the following problem: Problem 1. For a control input u, in what situation does the condition (9) holds for every admissible output signal y p of S p .

The expression of R

[s] q (•, u, y p ) is obtained by writing (3) for q = p and substituting in the formula (7),

Y [s] q (t) by Y [s]
p (t). Then the left hand side of ( 9) can be written as follows:

R [s] q (t, u, y p ) -R [s] q (t, u, y) = Ψ [s] q p x o p , u, w (t) (10)
where the function Ψ

[s] q p x o p , u, w is defined on R + by :

Ψ [s] q p x o p , u, w (t) = O [s] q ⊥ O [s] p x p (t) + T [s] p q U [s] (t) +O [s] q ⊥ T [s] p q W [s] (t) (11) with T [s] p q = T [s] p -T [s] q ; T [s] p q = T [s] p -T [s]
q . Consequently, Problem 1 is equivalent to determine when for a control input u, the function Ψ

[s] q p x o p , u, w is not identically zero on [0 ; T ] for every x o p ∈ R n and for every w ∈ W . Notice that if (9) holds for every x o p and for every w ∈ W , then one can distinguish S q from S p regardless of the system's initial state vector and the system's disturbances by using the residual function R q . Thus to best focus on this problem of distinguishability, we introduce the following notion of "strict residual distinguishability". Definition 1. (Strict residual distinguishability). Let a control input u ∈ U be fixed.

(i) The system S p is said to be strictly residual (u, W )distinguishable from S q on the time interval [0 ; T ] if for every

x o p , w ∈ R n × W , the function Ψ [s] q p x o p , u, w is non-zero on [0 ; T ]. (ii)
The systems S p and S q are said to be strictly residual (u, W )-distinguishable on the time interval [0 ; T ] if S p is strictly residual (u, W )-distinguishable from S q on [0 ; T ] or vice versa. If not, S p and S q are said to be not strictly residual (u, W )-distinguishable on [0 ; T ].

The definition of residual-distinguishability [START_REF] Motchon | Operating modes distinguishability condition in switching systems[END_REF] does not take into account the disturbances (W is restricted to {0}). It states that the disturbancefree models of S p and S q are residual-distinguishable if there exists a couple u, x o p such that Ψ

[s] q p x o p , u, 0 is not identically zero or if there exists a couple u, x o q such that Ψ

[s] p p x o q , u, 0 is not identically zero. Consequently, the notion of strict residual distinguishabillity given by Definition 1 is stronger than the notion of residualdistinguishability.

In the next section, we give a necessary and sufficient condition for strict residual distinguishability.

A NECESSARY AND SUFFICIENT CONDITION FOR STRICT RESIDUAL DISTINGUISHABILITY

Throughout the remainder of the paper, we adopt the following notation : Notation 1.

• ξ 2 = ξ T ξ : 2-norm of the vector ξ

• ψ RM S = 1 T T 0 ψ (τ )
2 2 dτ : root mean square of the signal ψ

The main result of this section (Theorem 1) gives a necessary and a sufficient condition for strict residual (u, W )-distinguishability of S p and S q . This condition is based on checking the strict positivity of the real-valued function ∆ [s] p q [u] defined on W by

∆ [s] p q [u] (w) = min ∆ [s] p/q [u] (w) , ∆ [s] q/p [u] (w) (12) 
where

∆ [s] p/q [u] (w) = min x o p ∈R n Ψ [s] q p x o p , u, w 2 RM S (13) and ∆ 
[s] q/p [u] (w) is obtained by reverse p and q in the formula (13). The function ∆ [s] p q [u] represents the gap between the zero valued-function and the functions Ψ

[s] q p u, x o p , w of residuals differenciation. To characterize the strict residual distinguishability with the function ∆ [s] p q [u], we need to prove that the function

x o p -→ Ψ [s] q p x o p , u, w 2 RM S
admits a minimum on R n . In Lemma 1 we establish that the existence of the minimum ( 13) is entirely controlled by the matrices O q p that appears in the formula (14) of Ψ

[s] q p x o p , u, w 2 RM S . Proposition 1. Let u, x o p , w ∈ U × R n × W . Then Ψ [s] q p x o p , u, w 2 RM S = x o p H [s] q p x o p + 2 L [s] q p (u, w) x o p + K [s] q p (u, w) (14) where H [s] q p ∈ R n×n , L [s] q p (u, w) ∈ R 1×n and K [s]
q p (u, w) ∈ R + are defined by :

H [s] q p = 1 T T 0 e τ A p Λ [s] q p Λ [s] q p e τ Ap d τ, (15) 
L [s] q p (u, w) = 1 T T 0 Ψ [s] q p [u, w] (τ ) Λ [s]
q p e τ Ap d τ, (16) and

K [s] q p (u, w) = Ψ [s] q p [u, w] 2 RM S (17) with Λ [s] q p := O [s] q ⊥ O [s]
(18) and Ψ [s] q p [u, w] (t) = Λ [s] 

q p t 0 e (t-τ )Ap [B p u (τ ) + w (τ )] d τ + O [s] q ⊥ T [s] p q U [s] (t) + O [s] q ⊥ T [s] p q W [s] (t) . ( 19 
)
Proof. In the expression (11) of Ψ

[s] q p x o p , u, w , by substituting x p (t) by

x p (t) = e t Ap x o p + t 0 e (t-τ ) Ap [B p u (τ ) + w (τ )] dτ, one obtains Ψ [s] q p x o p , u, w (t) = Λ [s]
q p e t Ap x o p + Ψ [s] q p [u, w] (t) . Thus, for every τ ∈ [0 ; T ], Ψ [s] q p x o p , u, w (τ )

2 2 = Λ [s] q p e τ Ap x o p 2 2 + Ψ [s] q p [u, w] (τ ) 2 2 2 Ψ [s] q p [u, w] (τ ) Λ [s]
q p e τ Ap x o p . Finally, one obtains the formula ( 14) by integrating the previous equality.

Proposition 2. The matrix H [s]

q p defined by (15) has the following properties :

(i) H [s]
q p is symmetric and positive semidefinite.

(ii) H [s]

q p is positive definite if and only if the pair Λ

[s] q p , A p is observable i.e. rank           Λ [s] q p Λ [s] q p A p . . . Λ [s] q p A n-1 p           = n. ( 20 
) (iii) If the matrix Λ [s]
q p defined by ( 18) is full column rank then H

[s] q p is positive definite.

Proof. (i) As the matrix e

τ A p Λ [s] q p Λ [s]
q p e τ Ap is symmetric for all τ ∈ [0 ; T ], from (15) one obtains

H [s] q p = H [s] q p . Hence H [s]
q p is symmetric. Now we will prove that H

[s] q p is positive semidefinite. For every ξ ∈ R n , one has

ξ T H [s] q p ξ = 1 T T 0 Λ [s] q p e τ Ap ξ 2 2 dτ ≥ 0. ( 21 
)
Hence the matrix H q p ξ = 0 if and only if Λ

[s]

q p e τ Ap ξ = 0 rq×n for every τ ∈ [0 ; T ]. Moreover, as the function τ -→ Λ

[s]

q p e τ Ap ξ is identically zero on [0 ; T ] if and only if Λ [s] q p A k p ξ = 0 rq×n , k = 0, 1, . . . , n -1, we conclude that H

[s] q p is positive definite if and only if Λ [s] q p A k p ξ = 0 rq×n , k = 0, 1, . . . , n -1, =⇒ ξ = 0 n . This conclude the proof of (ii). (iii) Suppose Λ

[s] q p is full column rank. Then the pair Λ

[s] q p , A p is observable and we conclude from statement (ii) that H

[s] q p is positive definite. Lemma 1. Let (u, w) ∈ U × W . If the pair Λ [s] q p , A p is observable or if the matrix Λ [s]
q p is full column rank then min

x o p ∈R n Ψ [s] q p x o p , u, w 2 RM S
exists.

Proof. Suppose the pair Λ

[s] q p , A p is observable or the matrix Λ

[s] q p is full column rank. The matrix H

[s] q p is symmetric and positive definite and we derive from the formula ( 14) that the function

x o p -→ Ψ [s] q p x o p , u, w 2 RM S
is coercive and strictly convex. Consequently, its admits a minimum on R n . Example 1. Consider the systems S p and S q described as follows :

A p = -2 2 2 -2.5 ; B p = 1 0 ; C p = [0 1] ; D p = 0 A q = -1 1 1 4 ; B q = B p ; C q = C p ; D q = D p
The systems S p and S q represent two operating modes of an hydraulic two-tank system linearized around an equilibrium point. By a simple computation, it is easy to verify that

O [2] p = 0 1 2 -2.5 -9 10.25 ; O [2] q = 0 1 1 4 3 17 ; O [2] q ⊥ = -5 -3 1 T [2] p q = 0 0 0 0 0 0 1 0 0 ; T [2]
p q = 0 0 0 0 0 0 0 0 0 0 0 0 1 -6.5 0 0 0 0 . Thus, the matrix Λ

[2] q p = [-15.0 12.75] is not of full column rank and the pair Λ

[2] q p , A p is observable because rank Λ [2] q p Λ [2] q p A 1 = rank -15.0 12.75 55.5 -61.87 = 2.
Consequently, min

x o p ∈R n Ψ [s] q p x o p , u, w 2 RM S
exists. The formula of the function Ψ

[2] q p x o p , u, w is Ψ [2] q p x o p , u, w (t) = u (t) + w 1 (t) -6.5 w 2 (t) + -15 x p 1 t, x o p , u, w + 12.75 x p 2 t, x o p , u, w . where x p k and w k , k = 1, 2 denote respectively the kth component of the state variable x p and the disturbance w. The existence of the minimum of the root mean square of this function is illustrated by Figure 1. This numerical result is obtained for the control input u (t) = sin (0.5 t) and for the disturbance w (t) = cos (-0.25 t) 0 q p , A p is observable or if the matrix Λ

[s] q p is full column rank then the following statements are equivalent :

(i) S p is strictly residual (u, W )-distinguishable from S q on the time interval [0 ; T ].

(ii) for every w ∈ W , ∆

p/q [u] (w) > 0, where the function

∆ [s] p/q [u
] is defined by the relation (13).

Proof.

(i) =⇒ (ii) : Let w ∈ W . There exists x o p such that

∆ [s] p/q [u] (w) = Ψ [s] q p x o p , u, w 2 RM S
.

Moreover, as S p is strictly residual (u, W )-distinguishable from S q on the time interval [0 ; T ], Ψ

[s]

q p x o p , u, w 2 RM S = 0. Consequently, ∆ [s] p/q [u] (w) > 0. (ii) =⇒ (i) :
The proof of this implication follows from the fact that for every

x o p , w ∈ R n × W , Ψ [s] q p x o p , u, w 2 RM S ≥ ∆ [s] p/q [u] (w) .
Thus, the strict residual distinguishability of S p and S q can be characterized as follows:

Theorem 1. Let u ∈ U be fixed. If the pair Λ [s] q p , A p is observable or if the matrix Λ [s]
q p is full column rank then the following statements are equivalent :

(i) S p and S q are strictly residual (u, W )-distinguishable on R n × W during the interval times [0 ; T ]. (ii) The function ∆ [s] p q [u] defined by equation ( 12) is strictly positive on W i.e

∆ [s] p q [u] (W ) ⊆ R * + ( 22 
)
where ∆ [s] p q [u] (W ) denotes the image of W under ∆ [s] p q [u].

Proof. The proof is an immediate consequence of Proposition 3.

The function ∆ [s] p q [u] is identically zero on W when S p and S q are not strictly residual (u, W )-input distinguishable and ∆ [s] p q [u] is different from zero otherwise. Thus, this function constitutes an index for quantifying the degree of strict residual distinguishability of S p and S q . Therefore, we introduce the following definition. Definition 2. (index of distinguishability). The index of strict residual distinguishability of S p with respect to S q is the function ∆

[s] p/q [u] defined in (13) and ∆ [s] p q [u] defined in ( 12) is the index of strict residual distinguishability of S p and S q .

It should be noted that the condition ( 22) is not easy to verify in practice. Indeed, for any w ∈ W , the relation ( 12) does not provide an expression of ∆ [s] p q [u] that depends explicitly of u and w. Thus, the next section is devoted to establish the explicit formula of ∆ [s] p q [u].

AN EXPLICIT FORMULA OF THE INDEX OF STRICT RESIDUAL DISTINGUISHABILITY

From the formula ( 14) of Ψ

[s]

q p x o p , u, w 2 RM S
, it is easy to see that

∂ Ψ [s] q p x o p , u, w 2 RM S ∂x o p = 2 H [s] q p x o p + 2 L [s] q p (u, w) .
Consequently, for fixed values of u and w, the function

x o p -→ Ψ [s]
q p x o p , u, w attains its minimum at the point x o p solution of the following linear equation

H [s] q p x o p = -L [s] q p (u, w)
Thus, if the pair Λ

[s] q p , A p is observable or if Λ

[s] q p is full column rank then

x o p = -H [s] q p -1 L [s] q p (u, w) (23) 
and one obtains finally the following formula of the index

∆ [s] p/q [u]: Theorem 2. Let u ∈ U be fixed. If the pair Λ [s] q p , A p is observable or if the matrix Λ [s]
q p is full column rank then for every w ∈ W ,

∆ [s] p/q [u] (w) = -L [s]
q p (u, w) H [s] q p -1

L [s] q p (u, w) + K [s] q p (u, w) (24) where H

[s] q p , L

[s] q p (u, w) and K

[s] q p (u, w) are defined respectively by equations ( 15), ( 16) and (17).

Proof. The proof follows from the fact that

∆ [s] p/q [u] (w) = Ψ [s] q p x o p , u, w 2 RM S
where the explicit formula of x o p is given by the relation (23).

It should be noted that for the disturbance-free models of S p and S q , the formula of the index given by the relation ( 24) depends only on the known control input and some known matrices. Consequently, this index can be computed easily. Example 2. Consider the systems S p and S q of Example 1. The two systems are observed during the time interval [0 ; 10] i.e T = 10. For this value of T , it is easy to verify that H [s] q p = 4.1 -1.5 -1.5 2.0 .

For the control input u (t) = sin (0.5 t), one has L [2] q p (u, 0) = [2.4 2.0] ; K [s] q p (u, 0) = 16.0 Thus the value of the index ∆

[s] p/q [u] (0) that allows to quantify the degree of residual distinguishability of S p with respect to S q is

∆ [s]
p/q [u] (0) = 9.0 > 0. Consequently, S p and S q are strictly residual (u, {0})distinguishable on [0 ; T ]. Consider the following domain of deterministic disturbances :

W = γ cos (-0.25 t) 0 , γ ∈ R . (25) 
For every w ∈ W , one has

L [2] q p (u, w) = [3.4 γ + 2.4 2.4 γ + 2.0] and K [s] q p (u, w) = 16.0 γ 2 + 30.0 γ + 16.0. Consequently, the value of ∆ [s] p/q [u] (w) is ∆ [s] p/q [u] (w) = 3.7 γ 2 + 11.0 γ + 9.0. (26) 
Thus, it is easy to verify that ∆

[s] p/q [u] (W ) ⊆ R + . We conclude that for the control input u (t) = sin (0.5 t), the systems S p and S q are strictly residual (u, W )-distinguishable on the time interval [0 ; 10].

SOME EFFECTS OF DISTURBANCES ON STRICT RESIDUAL DISTINGUISHABILITY

In this part, we are interested by the following problem : Problem 2. Given a control input u, characterize the domains W - u and W + u defined by : W

- u = w ∈ W : ∆ [s] p/q [u] (w) ≤ ∆ [s] p/q [u] (0) (27) 
and

W + u = w ∈ W : ∆ [s] p/q [u] (w) > ∆ [s] p/q [u] (0) . (28) 
The domain W - u corresponds to the class of deterministic disturbances for which S p is close to S q (in terms of residual distinguishability) comparatively to their disturbancefree models. The space W + u represents the class of deterministic disturbances for which S p is far from S q comparatively to their disturbance-free models.

As illustrative example of domains W - u and W + u , we consider again the systems S p and S q of Example 2. Example 3. For T = 10, u (t) = sin (0.5 t) and for W defined by the relation (25), it follows from (26) that for every w ∈ W ,

∆ [s] p/q [u] (w) -∆ [s] p/q [u] (0) = γ (3.7 γ + 11.0) .
Consequently, for the systems S p and S q of Example 2, one has

W - u = γ cos (-0.25 t) 0 , γ ∈ [- 11.0 3.7 ; 0]
and

W + u = γ cos (-0.25 t) 0 , γ ∈ ]-∞ ; - 11.0 3.7 [ R * + . -6 -4 -2 0 2 4 6 0 4 8 12 γ ∆ [s] p/q [u] (w) ∆ [s] p/q [u] (0) Fig. 2. Comparison of the index ∆ [s] p/q [u] (0) and ∆ [s]
p/q [u] (w) for systems S p and S q of Example 2

In order to characterize the domains W - u and W + u , we consider the following decomposition of the function Ψ

[s] q p [u, w] : Ψ [s] q p [u, w] (t) = Ψ [s] q p [u, 0] (t) + F [s] q p [w] (t) (29) 
where the function F

[s]

q p [w] is defined on R + by F [s] q p [w] (t) = Λ [s] q p t 0 e (t-τ ) Ap w (τ ) dτ +O

[s]

q ⊥ T [s]
p q W [s] (t) .

From ( 29) and ( 16), we can rewrite L

[s]

q p [u, w] as follows :

L [s] q p [u, w] = L [s] q p [u, 0]+ 1 T T 0 F [s]
q p [w] (τ ) Λ [s] q p e τ Ap dτ.

(30) By combining ( 29) and ( 17), we can rewrite K

[s] q p [u, w] as follows K [s] q p [u, w] = Ψ [s] q p [u, 0]

2 RM S + F [s] q p [w] 2 RM S + 2 T T 0 F [s]
q p [w] (τ ) Ψ [s] q p [u, 0] (τ ) dτ.

(31) Now, from (31), ( 30) and ( 24), it is easy to verify that one can rewrite the index ∆

[s] p/q [u] (w) as follows :

∆ [s] p/q [u] (w) = ∆ [s]
p/q [u] (0) + G [s] q p [u, w] (32) with

G [s] q p [u, w] = F [s] q p [w] 2 RM S + 2 T T 0 F [s]
q p [w] (τ ) Ψ [s] q p [u, 0] (τ ) dτ -2 T L [s] q p [u, 0] H [s] q p -1 T 0 e τ A p Λ [s] q p F [s] q p [w] (τ ) dτ -

1 T 2 H [s] q p -1/2 T 0 e τ A p Λ [s] q p F [s] q p [w] (τ ) dτ 2 2 (33)
where H

[s] q p -1/2

denotes the square root of the matrix

H [s] q p -1
.

Finally, we obtain the following characterization of W - u and W + u : Proposition 4. Let u ∈ U be fixed. If the pair Λ

[s] q p , A p is observable or if the matrix Λ

[s] q p is full column rank then

W - u = w ∈ W : G [s]
q p [u, w] ≤ 0 (34) and

W + u = w ∈ W : G [s] q p [u, w] > 0 (35) 
where G

[s]

q p [u, w] is defined by the relation (33).

Proof. The proof follows from ( 27), ( 28) and (32).

CONCLUSION

This paper deals with the distinguishability of the linear systems describing the operating modes of a continuoustime switched linear system subject to disturbances. Parity residuals of the linear systems are used to study this property. A notion of strict residual distinguishability of the linear systems is introduced. A necessary and sufficient condition is given for testing the strict residual distinguishability of the systems. An index for quantifying the degree of strict residual distinguishability of two linear system is defined. The explicit formula of this index is calculated and this allowed a geometric characterization of the strict residual distinguishability.
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  and A p . The proof of this lemma uses the formula (14) of the quadratic term Ψ

  positive semidefinite. (ii) Let ξ ∈ R n . Since the function τ -→ Λ on [0 ; T ], it follows from (21) that ξ T H [s]

Fig

  Fig. 1. Function x o p -→ Ψ [s] q p x o p , u, w 2 RM S