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REAL SUBMANIFOLDS OF MAXIMUM COMPLEX TANGENT SPACE
AT A CR SINGULAR POINT, I

XIANGHONG GONG AND LAURENT STOLOVITCH

ABSTRACT. We study a germ of real analytic n-dimensional submanifold of C™ that has
a complex tangent space of maximal dimension at a CR singularity. Under some assump-
tions, we show its equivalence to a normal form under a local biholomorphism at the
singularity. We also show that if a real submanifold is formally equivalent to a quadric,
it is actually holomorphically equivalent to it, if a small divisors condition is satisfied.
Finally, we investigate the existence of a complex submanifold of positive dimension in C™
that intersects a real submanifold along two totally and real analytic submanifolds that
intersect transversally at a possibly non-isolated CR singularity.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. We are concerned with the local holomorphic invariants of a real an-
alytic submanifold M in C". The tangent space of M at a point x contains a maximal
complex subspace of dimension d,. When d, is constant, M is called a Cauchy-Riemann
(CR) submanifold. The CR submanifolds have been extensively studied since E. Cartan
[Car32|, [Car33], Tanaka [Tan62], and Chern-Moser [CMT74].

We say that a point xy in a real submanifold M in C™ is a CR singularity, if the complex
tangent spaces T, M N J, T, M do not have a constant dimension in any neighborhood of
xg. A real submanifold with a CR singularity must have codimension at least 2. The study
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of real submanifolds with CR singularities was initiated by E. Bishop in his pioneering
work [Bis65]. He investigated a C'*° real submanifold M of which the complex tangent
space at a CR singularity is minimal, that is exactly one-dimensional. The very elementary
models of this kind of manifolds are the Bishop quadrics @), that depends on the Bishop
invariant 0 < v < oo, given by

Q,CC = |n+79(+7]), 0<7<00; Quo:20=2 +77.

The complex tangent at the origin is said to be elliptic if 0 < v < 1/2, parabolic if v = 1/2,
or hyperbolic if v > 1/2. In [MW83], Moser and Webster studied the normal form problem
of a real analytic surface M in C? which is the higher order perturbation of ). They showed
that when 0 < v < 1/2, M is holomorphically equivalent, near the origin, to a normal form
which is an algebraic surface that depends only on v and two discrete invariants. We
mention that the Moser-Webster normal form theory, as in Bishop’s work, actually deals
with an n-dimensional real submanifold M in C", of which the complex tangent space has
(minimum) dimension 1 at a CR singularity.

The main purpose of this paper is to investigate an n-dimensional real analytic sub-
manifold M in C", which is totally real outside a proper analytic subset and of which the
complex tangent space has the largest possible dimension at a given CR singularity. We
shall say that the singularity is a (maximal) complex tangent. The dimension must be
p = n/2. Therefore, n = 2p is even. We are interested in the normal form problem, the
rigidity property, and the local analytic geometry of such real analytic manifolds.

In suitable holomorphic coordinates, a 2p-dimensional real analytic submanifold M in
C? that has a complex tangent space of maximum dimension at the origin is given by

(11) M Zpt+j = Ej(z’,?), 1 S] S P,
where 2/ = (z1,...,2,) and
Ej(2, %) = hi(2,7) + ¢;(F) + O((, Z)).

Moreover, each h;(z’,Z') is a homogeneous quadratic polynomial in 2/, Z" without holomor-
phic or anti-holomorphic terms, and each ¢;(Z’') is a homogeneous quadratic polynomial in
Z'. One of our goals is to seek suitable normal forms of perturbations of quadrics at the

CR singularity (the origin).

1.2. Basic invariants. To study M, we consider its complexification in C?? x C?* defined
by

Wy = Ei(w',2'), i=1,...,p.

M {sz = FE(Z,w"), i=1,...,p,

It is a complex submanifold of complex dimension 2p with coordinates (2/,w’) € C? . Let
71, T2 be the restrictions of the projections (z,w) — z and (z,w) — w to M, respectively.
Note that my = C'mrypg, where pg is the restriction to M of the anti-holomorphic involution
(z,w) = (w,Zz) and C is the complex conjugate.

Our basic assumption is the following condition.

Condition B. ¢(2') = (¢1(2), ..., q,(2)) satisfies ¢~*(0) = {0}.
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When p = 1, condition B corresponds to the non-vanishing of the Bishop invariant ~.
When v = 0, Moser [Mos85] obtained a formal normal form that is still subject to further
formal changes of coordinates. In [HY09a], Huang and Yin obtained a formal normal
form and a complete holomorphic classification for real analytic surfaces with v = 0.
The formal normal forms for co-dimension two real submanifolds in C™ have been further
studied by Huang-Yin [HY12] and Burcea [Burl3]. Coffman [Cof06] showed that any m
dimensional real analytic submanifold in C” of one-dimensional complex tangent space at
a CR singularity satisfying certain non-degeneracy conditions is locally holomorphically
equivalent to a unique algebraic submanifold, provided 2(n + 1)/3 < m < n.

When M is a quadric, i.e. all E; in (1.1) are quadratic polynomials, our basic condition B
is equivalent to m; being a 2P-to-1 branched covering. Since mo = C'mipg, then s is also a
2P-to-1 branched covering. We will see that the CR singularities of the real submanifolds
are closely connected with these branched coverings and their deck transformations.

We now introduce our main results. Some of them are analogous to the Moser-Wester
theory. We will also describe new situations which arise with the maximum complex
tangency.

1.3. Branched coverings and deck transformations. In section 2, we study the exis-
tence of deck transformations for m;. We show that they must be involutions generating
an abelian group of order 2* for some 0 < k < p. The latter is a major difference with
the case p = 1. Indeed, in the Moser-Webster theory, the group of deck transformations
is generated by a unique non-trivial involution 7. Therefore, we will impose the following
condition.

Condition D. M satisfies condition B and the branched covering m of M admits the
mazximum 2P deck transformations.

Condition D gives rise to two families of commuting involutions {71, ..., 7;e } intertwined
by the anti-holomorphic involution py: (2/,w’) — (@',Z') such that m; = pori;00 (1 <
j < 2P) are deck transformations of mo. We will call {71,..., 7190, po} the set of Moser-
Webster involutions. We will show that there is a unique set of p generators for the deck
transformations of 7, denoted by 711, .., 7ip, such that each 7, fixes a hypersurface in M
pointwise. Then

T :T110-~-OT1p
is the unique deck transformation of which the fixed-point set has the smallest dimension
p. Let 7 = po11po and
g = T1T2.
Then o is reversible by 7; and po, i.e. 0~ = ;o7 ' and o=! = poopy.

As in the Moser-Webster theory, we will show that the existence of such 2P deck trans-
formations transfers the normal form problem for the real submanifolds into the normal
form problem for the sets of involutions {71, ..., 71,, po}-

In this paper we will make the following assumption.

Condition J. M satisfies condition D and M is diagonalizable, i.e. o'(0) is diagonalizable.

Note that the condition excludes the higher dimensional analogous complex tangency
of parabolic type, i.e. of v = 1/2. The normal form problem for the parabolic complex
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tangents has been studied by Webster [Web92], and in [Gon96] where the normalization
is divergent in general. In [AG09], Ahern and Gong constructed a moduli space for real
analytic submanifolds that are formally equivalent to the Bishop quadric with v = 1/2.

1.4. Product quadrics. In this paper, the basic model for quadric manifolds with a CR
singularity satisfying condition J is a product of 3 types of quadrics defined by

(1.2) Q.. CC?: 2= (21 +27v.21)%

(1.3) Q,, CC* 2y = (21 +2771)°% 1/2 <9, <0} Quo: 20 = 21 + 73

(1.4) Q.. CC* 23 = (21 + 27:7%2)°, 2= (22 +2(1 —=7,)%1)"

Here v € C and

(1.5) 0<7<1/2, 1/2<~, <00, Rev,<1/2, Imnv, >0, = #0,1/2.

Note that @, @, are elliptic and hyperbolic Bishop quadrics, respectively. Realizing a
type of pairs of involutions introduced in [Sto07], we will say that the complex tangent of
(), at the origin is complex. We emphasize that this last type of quadric is new as it is not
holomorphically equivalent to a product of two Bishop surfaces. A product of the above
quadrics will be called a product of quadrics, or a product quadric. We denote by e, h,, 2s,
the number of elliptic, hyperbolic and complex coordinates, respectively. We remark that
the complex tangent of complex type has another basic model @, with v, = 1/2, which is
excluded by condition J (see Proposition 2.10).

This is the first part of two papers devoted to the local study of real analytic manifold
at maximal complex tangent point. To limit its scope, we have to leave the complete
classification of quadratic submanifolds of maximum deck transformations to the second
paper [GS15] (see Theorem 1.1 therein), showing that there are quadratic manifolds which
are not holomorphically equivalent to a product quadric. In [GS15], we also show that all
Poincaré-Dulac normal forms of the o of a general higher order perturbation of a product
quadric are divergent when p > 1. With the divergent Poincaré-Dulac normal forms at our
disposal, we seek types of CR singularities that ensure the convergent normalization and the
analytic structure of the hull of holomorphy associated with the types of CR singularities.

We now introduce our main geometrical and dynamical results for analytic higher order
perturbations of product quadric. We first turn to a holomorphic normalization of a real
analytic submanifold M with the so-called abelian CR singularity. This will be achieved
by studying an integrability problem on a general family of commuting biholomorphisms
described below. The holomorphic normalization will be used to construct the local hull of
holomorphy of M. We will also study the rigidity problem of a quadric under higher order
analytic perturbations, i.e. the problem if such a perturbation remains holomorphically
equivalent to the quadric if it is formally equivalent to the quadric. The rigidity problem
is reduced to a theorem of holomorphic linearization of one or several commuting diffeo-
morphisms that was devised in [Stol5]. Finally, we will study the existence of holomorphic
submanifolds attached to the real submanifold M. These are complex submanifolds of
dimension p intersecting M along two totally real analytic submanifolds that intersect
transversally at a CR singularity. Attaching complex submanifolds has less constraints
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than finding a convergent normalization. A remarkable feature of attached complex sub-
manifolds is that their existence depends only on the existence of suitable (convergent)
invariant submanifolds of o.

1.5. Normal form of commuting biholomorphisms.

Definition 1.1. Let F = {F},..., F;} be a finite family of germs of biholomorphisms of C"
fixing the origin. Let D,, be the linear part of F}, at the origin. We say that the family F
is (resp. formally) completely integrable, if there is a (resp. formal) biholomorphic mapping
® such that {O1F,&: 1 <m < (} = {F,,: 1 <m < (} satisfies

(1) Fn(2) = (tm1(2)21, - - -, thn(2) 20) Where pi,,; are germs of holomorphic (resp. for-
mal) functions such that pi,; 0 Dy = pimj for 1 < m,m’ < fand 1 < j <n. In
particular, F,, commutes with D, for all 1 < m,m’ < /.

(44) For each j and each Q@ € N™ with |Q| > 1, u2(0) = f,,,;(0) hold for all m if and
only if u%(z) = pm;(2) hold for all m.

A necessary condition for F to be formally completely integrable is that Fi, ..., F, com-
mute pairwise. The main result of section 4 is the following.

Theorem 1.2. Let F be a family of finitely many germs of biholomorphisms at the origin.
If F is formally completely integrable and its linear part D has the Poincaré type, then it
1s holomorphically completely integrable.

The definition of Poincaré type is in Definition 4.11. Such a formal integrability condi-
tion can hold under some geometrical properties. For instance, for a single germ of real
analytic hyperbolic area-preserving mapping, the result was due to Moser [Mos56], and
for a single germ of reversible hyperbolic holomorphic mapping ¢ = 7,75 of which 7 fixes
a hypersurface, this result was due to Moser-Webster [MW83]. Such results for commut-
ing germs of vector fields were obtained in [Sto00, Sto05] under a collective small divisors
Brjuno-type condition. Our result is inspired by these results.

1.6. Holomorphic normalization for the abelian CR singularity. In section 5, we
obtain the convergent normalization for an abelian CR singularity which we now define. We
first consider a product quadric () which satisfies condition J. So the deck transformations
of m; for the complexification of () are generated by p involutions of which each fixes a
hypersurface pointwise. We denote them by Ti,...,T1,. Let Ty; = pTijp. It turns out
that each Ty; commutes with all Tj except one, Ty, for some 1 < k; < p. When we
formulate S; = Ty;To, for 1 < j <p, the Sy,...,S, commute pairwise. Consider a general
M that is a third-order perturbation of product quadric ) and satisfies condition J. We
define 0 = 7;7o,. In suitable coordinates, T;; (vesp. ;) is the linear part of 7;; (vesp. o)
at the origin. We say that the complex tangent of a third order perturbation M of a product
quadric at the origin is of abelian type, if o1, ..., 0, commute pairwise. If each linear part .S;
of o; has exactly two eigenvalues f;, ,uj_l that are different from 1, then S := {5;,...,S5,}
is of Poincaré type if and only if |p;| # 1 for all j. As mentioned previously, Moser and
Webster actually dealt with n-dimensional real submanifolds in C™ that have the minimal
dimension of complex tangent subspace at a CR singular point. In their situation, there
is only one possible composition, that is ¢ = 7y75. When the complex tangent has an
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elliptic but non-vanishing Bishop invariant, o has exactly two positive eigenvalues that are
separated by 1, while the remaining eigenvalues are 1 with multiplicity n — 2.
As an application of Theorem 1.2, we will prove the following convergent normalization.

Theorem 1.3. Let M be a germ of real analytic submanifold in C? that is a third order
perturbation of a product quadric given by (1.2)-(1.5) with an abelian CR singularity. Sup-
pose that M has all eigenvalues of modulus different from one, i.e. it has no hyperbolic
component (h, = 0) while each 75 in (1.4) satisfies Revys < 1/2 additionally. Then M is
holomorphically equivalent to

M: 2= Ay(0)¢G, Ay(0) =X, 1<j<p,
where ¢ = ((1, - .., (p) are the solutions to
Ce = Ae(ozeze — B, (C)(z +z ) 1< (S
Cs:AS(C)Zszs-l—s*_B( )(Z +A ( ) s+s) ey, < 8 < ey + S,
CSJFS* = ASJrS* (C)5328+8* - Bs+8* (C)(zg—i-s* + A%(s—i—s*)(C)gg)a

while Ay; satisfies (5.6)-(5.7), and A;, B; are rational functions in Ay; defined by (5.16)-
(5.17).

There are many non-product real submanifolds of abelian CR singularity.

Example 1.4. Let 0 < v; < co. Let R(z1,%1) = |21 +71(22 +72) + O(3) be a real-valued
power series in z1,Z; of real coefficients. Then the origin is an abelian CR singularity of

M zZ3 = R(zl,El), Z4 = (2’2 + 2’)/222 + 2’223)2.

We will also present a more direct proof of Theorem 1.3 by using a convergence theorem of
Moser and Webster [MW83] and some formal results from section 4. The above Ay, ..., Ay,
satisfy conditions A1;(0) = A; and (5.6)-(5.7) and are otherwise arbitrary convergent power
series. The Aqy,..., Ay, may be subjected to further normalization. In [GS15], we find
a unique holomorphic normal form by refining the above normalization for M satisfying
a non resonance condition and a third order non-degeneracy condition (see Theorem 5.6
in [GS15]); in particular, it shows the existence of infinitely many formal invariants and
non-product structures of the manifolds when p > 1.

As an application of Theorem 1.3, we will prove the following flattening result.

Corollary 1.5. Let M be as in Theorem 1.3. In suitable holomorphic coordinates, M is
contained in the linear subspace defined by zpye = Zptre and 2pys = Zptsts, Wherel < e < e,
and e, < s < e, + 8.

1.7. Analytic hull of holomorphy. One of significances of the Bishop quadrics is that
their higher order analytic perturbation at an elliptic complex tangent has a non-trivial
hull of holomorphy. As another application of the above normal form, we will construct
the local hull of holomorphy of M via higher dimensional non-linear analytic polydiscs.

Corollary 1.6. Let M be as in Theorem 1.3. Suppose that M has only elliptic component
of complex tangent. Then in suitable holomorphic coordinates, Hio.(M), the local hull of
holomorphy of M, is filled by a real analytic family of analytic polydiscs of dimension p.
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For a precise statement of the corollary, see Theorem 5.5. The hulls of holomorphy for
real submanifolds with a CR singularity have been studied extensively, starting with the
work of Bishop. In the real analytic case with minimum complex tangent space at an
elliptic complex tangent, we refer to Moser-Webster [MW83] for v > 0, and Krantz-Huang
[HK95] for v = 0. For the smooth case, see Kenig-Webster [KW82, KW84|, Huang [Hua98|.
For global results on hull of holomorphy, we refer to [BG83, BK91].

1.8. Rigidity of quadrics. In Section 6, we prove the following theorem.

Theorem 1.7. Let M be a germ of analytic submanifold that is an higher order perturbation
of a product quadric Q in C?" given by (1.2)-(1.5). Assume that M is formally equivalent to
Q. Suppose that each hyperbolic component has an eigenvalue puy, which is either a root of
unity or satisfies Brjuno condition, and each complex component has an eigenvalue s is not
a root of unity and satisfies the Brjuno condition. Then M is holomorphically equivalent
to the product quadric.

We emphasize that condition (1.5) ensure that A is diagonalizable (condition J). It
is plausible that theorem remains valid when M satisfies condition J and pu, satisfy the
Brjuno condition or are roots of unity; however, the resonance condition requires some
tedious changes of computation in section 6. The proof uses a theorem of linearization
of holomorphic mappings in [Stol15]. Brjuno small divisors condition is defined by (7.37),
with v = pp and p = 1. When p = 1, the result under the stronger Siegel condition is
in [Gon94]. This last statement requires a small divisors condition to be true as shown in
[Gon04]. When p = 1 with a vanishing Bishop invariant, such rigidity result was obtained
by Moser [Mos85] and by Huang-Yin [HY09b] in a more general context.

1.9. Attached complex submanifolds. We now describe convergent results for attached
complex submanifolds. The results are for a general M, including the one of which the
complex tangent might not be of abelian type.

We say that a formal complex submanifold K is attached to M if K N M contains at
least two germs of totally real and formal submanifolds K, K5 that intersect transversally
at a given CR singularity. In [K1i85], Klingenberg showed that when M is non-resonant
and p = 1, there is a unique formal holomorphic curve attached to M with a hyperbolic
complex tangent. He also proved the convergence of the attached formal holomorphic curve
under a Siegel small divisors condition. When p > 1, we will show that generically there
is no formal complex submanifold that can be attached to M if the CR singularity has an
elliptic component. When p > 1 and M is a higher order perturbation of a product quadric
of @,,,Q,, we will encounter various interesting situations.

By adapting Klingenberg’s proof for p = 1 and using a theorem of Poschel [P6s86], we
will prove the following.

Theorem 1.8. Let M be a germ of analytic submanifold that is an higher order perturbation
of a product quadric Q in C? without elliptic components. Assume that the eigenvalues
[y s P, Mfl,...,uzjl of Do(0) are distinct. Let €1,e2 = 1, vy, = uj’, vy == s and
Vsts, = U t. Assume v = (vq,...,1,) is weakly non resonant and Diophantine in the

sense of Pdschel. Then M admits an attached complex submanifold M..
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Weak non resonance is defined in (7.34), while Diophantine condition in the sense of
Poschel is defined in (7.37).
Finally, we prove the convergence of all attached formal submanifolds:

Theorem 1.9. Let M be as in Theorem 1.8. Suppose that the 2p eigenvalues of o are
non-resonant. If the eigenvalues of o satisfy a Bruno type condition, all attached formal
submanifolds are convergent.

The Brjuno-type condition, defined in (7.38), was introduced in [Stol5] for linearization
on ideals.

1.10. Notation. We denote the identity map by I and by LF' the linear part at the origin
of a mapping F': (C™,0) — (C",0). We also denote by DF(z) or F'(z), the Jacobian
matrix of F' at z. By an analytic (or holomorphic) function, we mean a germ of analytic
function at a point (which will be defined by the context) otherwise stated. We denote by
O,, (resp. @n, M., §J\Tn) the space of germs of holomorphic functions of C™ at the origin
(resp. of formal power series in C", holomorphic germs, and formal germs vanishing at the
origin). If Q@ = (q1,...,qx) € N*, then |Q| = ¢ + - -+ + ¢ and 29 = z* - - - 2.

Acknowledgment. This joint work was completed while X.G. was visiting at SRC-GATA
of POSTECH. He is grateful to Kang-Tae Kim for hospitality.

2. CR SINGULARITIES AND DECK TRANSFORMATIONS

We consider a real submanifold M of C". Let Té;’O)M be the space of tangent vectors

of M at zq of the form 2?21 ajﬁ. Let M have dimension n. In this paper, we assume
J

that Tm(é’O)M has the largest possible dimension p = n/2 at a given point xy. In suitable
holomorphic affine coordinates, we have zy = 0 and

(2.1) M: z;=E;j(2,7), 1<j<p.

Here we set 2/ = (z1,...,%,) and we will denote 2" = (2,41, ..., 29,). Also, the Ej together
with their first order derivatives vanish at 0. The tangent space Ty M is then the z’-subspace.
The main purpose of this section is to obtain some basic invariants and a relation between
two families of involutions and the real analytic submanifolds which we want to normalize.
Note that M is totally real at (2/,2”) € M if and only if C(2,Z') # 0, where C(2/,2) :=
det(2£)<; j<p. We will assume that C(2/,7') is not identically zero in any neighborhood
of thejorigin. Then the zero set of C' on M, denoted by Mcgsing, is called CR singular
set of M, or the set of complex tangents of M. We assume that M is real analytic. Then
M Rsing is a possibly singular proper real analytic subset of M that contains the origin.

2.1. Existence of deck transformations and examples. We first derive some qua-
dratic invariants. Applying a quadratic change of holomorphic coordinates, we obtain

(2.2) E;(2,7) = hj(«,7) + ¢;(F) + O((, 2)).
Here we have used the convention that if z = (xy,...,z,), then O(|z|¥) denotes a formal

power series in x without terms of order < k. A biholomorphic map f that preserves the
form of the above submanifolds M and fixes the origin must preserve their complex tangent
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spaces at the origin, i.e. z” = 0. Thus if Z denote the old coordinates and z denote the
new coordinates then f has the form

7 =AY +B +0(z]*), Z=UZ"+0(zP.
Here A and U are non-singular p x p complex matrices. Now f(M) is given by
Uz" = h(AZ, AZ) + q(AZ) + O(|z]*).

We multiply the both sides by U~! and solve for 2”; the vectors of p quadratic forms
{h(%',2"),q(Z")} are transformed into

(2.3) {h(2,7),4(Z)} = {U'h(AZ,AZ), U ¢(AZ)}.

This shows that if M and M are holomorphically equivalent, their corresponding quadratic
terms are equivalent via (2.3). Therefore, we obtain a holomorphic invariant

¢ = dimc{z": q1(2') = -+ = q,(2') = 0}.

We remark that when M, M are quadratic (i.e. when their corresponding E,FE are ho-
mogeneous quadratic polynomials), the equivalence relation (2.3) implies that M, M are
linearly equivalent, Therefore, the above transformation of A and ¢ via A and U deter-
mines the classifications of the quadrics under local biholomorphisms as wells as under
linear biholomorphisms. We have shown that the two classifications for the quadrics are
identical.

Recall that M is real analytic. Let us complexify such a real submanifold M by replacing
7 by w’ to obtain a complex n-submanifold of C?", defined by

M: {Zp-l—i = Ei(z/v w/)7

Wy = Ei(w', '), i=1,...,p.

We use (2, w’) as holomorphic coordinates of M and define the anti-holomorphic involution
p on it by

(2.4) p(Z w') = (0, 7).

Occasionally we will also denote the above p by pg for clarity. We will identify M with
a totally real and real analytic submanifold of M via embedding z — (z,Z). We have
M = M N Fix(p) where Fix(p) denotes the set of fixed points of p. Let m: M — C" be
the restriction of the projection (z,w) — z and let 7 be the restriction of (z,w) — w. It
is clear that my = mp on M. Throughout the paper, 7, ms, p are restricted on M unless
stated otherwise.

Condition B that ¢, = 0, introduced in section 1, ensures that 7; is a branched covering.
A necessary condition for g, = 0 is that functions ¢;(%'), ¢(%'),...,qy(%") are linearly
independent, since the intersection of £ germs of holomorphic hypersurfaces at 0 in CP has
dimension at least p — k. (See [Chi89], p. 35; [Gun90][Corollary 8, p. 81].)

When m;: M — C? is a branched covering, we define a deck transformation on M for
7 to be a germ of biholomorphic mapping F' defined at 0 € M that satisfies m o F' = ;.
In other words, F(2/,w’") = (¢, f(2/,w")) and

E(Z,w') = E(¢, f(z',v'), i=1,...,p.



10

Lemma 2.1. Suppose that ¢, = 0. Then Mcrsing s a proper real analytic subset of M and
M s totally real away from McRsing, t-e. the CR dimension of M is zero. Furthermore,
71 45 a 2P-to-1 branched covering. The group of deck transformations of w1 consists of 2¢
commuting involutions with 0 < ¢ < p.

Proof. Since ¢~1(0) = {0}, then 2’ — ¢(2') is a finite holomorphic map; see [Chi89], p. 105.
Hence its Jacobian determinant is not identically zero. In particular, det(%)lqd»q, is not
= 1< g<

identically zero. This shows that M has CR dimension 0.

Since w" — ¢(w’) is a homogeneous quadratic mapping of the same space which vanishes
only at the origin, then

la(w)] = c|w']?.

We want to verify that 7 is a 2P~to—1 branched covering. Let A, = {z € C: |z| <r}. We
choose C' > 0 such that m(z,w) = (2, E(2',w")) defines a proper and onto mapping

(2.5) m M= MO ((AS x AL) x (Afs x Aly)) = Af x AL,

By Sard’s theorem, the regular values of m; have the full measure. For each regular value
z, 7 *(2) has exactly 27 distinct points (see [Chi89], p. 105 and p. 112). It is obvious that
M, is smooth and connected. We fix a fiber F, of 2P points. Then the group of deck
transformations of 7 acts on F, in such a way that if a deck transformation fixes a point
in F}, then it must be the identity. Therefore, the number of deck transformations divides
27 and each deck transformation has period 2¢ with 0 < ¢ < p.

We first show that each deck transformation f of 7y is an involution. We know that f is
periodic and has the form

2= w = Auw + B2+ 0(2),

where A, B are matrices. Assume that f has period m. Then f(2,w') = (2, Aw' + BZ)
satisfies f™ = I and f is locally equivalent to f; indeed fgf~' = g for

m

g=> _(f)tef.

i=1
Therefore, it suffices to show that f is an involution. We have

[ w') = (2, A" + (A" + -+ A+ 1)BY).
Since f is a deck transformation, then E(2’, w’) is invariant under f. Recall from (2.2) that

E(2',Z') starts with quadratic terms of the form h(z',Z’) 4+ ¢(z'). Comparing quadratic

A A~

terms in E(2',w') = Eo f(z/,w'), we see that the linear map f has invariant functions
2" =h(z' w') + q(w).

We know that A™ = I. By the Jordan normal form, we choose a linear transformation
w' = Sw' such that SAS™! is the diagonal matrix diaga with a = (ay,...,qa,). In (2/, @)
coordinates, the mapping f has the form (2, @) — (2, (diaga)w’ + SBz'). Now

hi(2, @) + ¢ (@) := (2, S™ ) + ¢; (ST ')
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are invariant under f. Hence §;(@’) are invariant under @’ — (diaga)w’. Since the common

zero set of ¢ (w'), ..., g,(w') is the origin, then
V ={a" e CP: g(w') =0} = {0}.
We conclude that ¢(w1,0,...,0) is not identically zero; otherwise V' would contain the

w;-axis. Now ¢((diaga)w’) = g(w@'), restricted to @' = (w0y,0,...,0), implies that a; = %1.
By the same argument, we get a; = %1 for all j. This shows that A? = I. Let us combine
it with
A"=1, (A™'+...+A+I)B=0.

If m = 1, it is obvious that f = I. If m = 2 > 1, then (A +I)B = 0. Thus f2(z,w) =
(2, A’ + (A + I)B2’) = (/,w’). This shows that every deck transformation of 7 is an
involution.

For any two deck transformations f and g, fg is still a deck transformation. Hence

(fg)? = I implies that fg = gf. O

Before we proceed to discussing the deck transformations, we give some examples. The
first example turns out to be a holomorphic equivalent form of a real submanifold that
admits the maximum number of deck transformations and satisfies other mild conditions.

Example 2.2. Let B = (b;;;) be a non-singular p x p matrix. Let M be defined by

2
(26) sz:(ijkszxzxz')) S 1<j<w
k

where each R;(0,%) starts with terms of order at least 2. Then M admits 2? deck transfor-
mations for 7;. Indeed, let Eq, ... Eg be the set of diagonal p x p matrices with E? =1,
and let R be the column vector (Ry, ..., R,)". For each E; let us show that there is a deck
transformation (2/,w') — (2/,@') satisfying
(2.7) Bu' + R(Z,0') = E;(Bw' + R(2, w')).
Since B is invertible, it has a unique solution

@' =B E;Buw + O(||) + O(|w']%).
Finally, (2/,w’) — (2/,%') is an involution, as if (z/,w’, @) = (2/,w', f(Z/,w’)) satisfy (2.7)
if and only if (2/, f(2/,w’),w’), substituting for (2, w’, ') in (2.7), satisfy (2.7).

We now present an example to show that the deck transformations can be destroyed by
perturbations when p > 1. This is the major difference between real submanifolds with
p > 1 and the ones with p = 1. The example shows that the number of deck transformations
can be reduced to any number 2° by a higher order perturbation.

Example 2.3. Let N, . be a perturbation of ()., defined by
2pr = 2% T % ez, 1< <p.

Here €; # 0 for all j, ¢g = €, and 2y = z,. Let 7 be a deck transformation of N, . for m;.
We know that 7 has the form

Z; = Zj, w; = Aj(zlaw,) + Bj(zlv w/) + O(|(Z/7 w/)|3)'
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Here A; are linear and B; are homogeneous quadratic polynomials. We then have

(2.8) szj(z/, w') + vjA?(z/, w') = Zjw; + vjwf-,

(2.9) 2 Bi(2,w') + 27 (A;B;) (2, w') + €51 A1 (2 w') = €aw) .

We know that L7 is a deck transformation for @,. Thus a;(w’) := A;(0,w’) = fw;. Set
zj = 0in (2.9) to get a;(w)|e;—1(w} | —a?_ (w')). Thus a;_1(w') = w;_;. Hence, the

matrix of L7 is triangular and its diagonal entries are 1. Since Lt is periodic then L7 = I.
Since 7 is periodic, then 7 = I.

Based the above example, we impose the basic condition D that the branched covering
m; of M admits the maximum 27 deck transformations.

We first derive some properties of real submanifolds under condition D.

2.2. Real submanifolds and Moser-Webster involutions. The main result of this
subsection is to show the equivalence of classification of the real submanifolds satisfying
condition D with that of families of involutions {7, ..., 7,, p}. More precisely, condition
J is not imposed. The relation between two classifications plays an important role in the
Moser-Webster theory for p = 1. This will be the base of our approach to the normal form
problems.

Let F be a family of holomorphic maps in C™ with coordinates z. Let LF denote the
set of linear maps z — f/(0)z with f € F. Let O denote the set of germs of holomorphic
functions i at 0 € C™ so that ho f = h for each f € F. Let [2,]57 be the subset of linear
functions of ML

Lemma 2.4. Let G be an abelian group of holomorphic (resp. formal) involutions fixing 0 €
C". Then G has 2° elements and they are simultaneously diagonalizable by a holomorphic
(resp. formal) transformation. If k = dimc[IN,|F then ¢ < n — k. Assume furthermore

that ¢ = n — k. In suitable holomorphic (z1,. .., z,) coordinates, the group G is generated
by ZkJrl’ ey Zn with

(2.10) Zj: 2y =—z, zi=z, i#j, 1<i<n

In the z coordinates, the set of convergent (resp. formal) power series in zy,..., 2,

ZEq,. ., 22 is equal to OF (resp. (/9\5), and with Z = Z,_ -+ Zyp,

n

(2.11) [,]¢ = [M,]?, Fix(Z) = n Fix(Z;).

Proof. We first want to show that G has 2¢ elements. Suppose that it has more than one
element and we have already found a subgroup of G that has 2! elements fi,..., foi. Let
g be an element in G that is different from the 2° elements. Since g is an involution and
commutes with each f;, then

f17"'7f2i7 gf17"'7gf2i

form a group of 27! elements. We have proved that every finite subgroup of G has exactly
2¢ elements. Moreover, if G is infinite then it contains a subgroup of 2¢ elements for every
¢>0. Let {f1,..., for} be such a subgroup of G. It suffices to show that ¢ < n—k. We first
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linearize all f; simultaneously. We know that Lfi,..., Lfy commute pairwise. Note that
I+ f](0)71f; linearizes f;. Assume that f is linear. Then f; = Lf; and Lf, commute, and
I+ f5(0)~! fo commutes with f; and linearizes fo. Thus f; can be simultaneously linearized
by a holomorphic (resp. formal) change of coordinates. Without loss of generality, we may
assume that each f; is linear. We want to diagonalize all f; simultaneously. Let E;! and
E; ' be the eigenspaces of f; with eigenvalues 1 and —1, respectively. Since f; = f;l fifi,
each eigenspace of f; is invariant under f;. Then we can decompose

(2.12) cC'= @ Ein---nE: s=2"

(i15000r5)
Here (i1, ..., i) runs over {—1,1}* with subspaces E(t#) .= Ei' 0 ... N E%. On each of
these subspaces, f; = I or —I. We are ready to choose a new basis for C" whose elements
are in the subspaces. Under the new basis, all f; are diagonal.

Let us rewrite (2.12) as C" = Vi @ Vo @ --- ® V. Here V; = Eli and I = (1,...,1).
Also, I; # (1,...,1) and dimV; > 0 for j > 1. We have dim¢ Fix(G) = dimcV; =
dimg[IM,)F¢ = k. Therefore, d — 1 < n — dim¢V; < n — k. We have proved that in
suitable coordinates G is contained in the group generated by Zy.1, ..., Z,. The remaining
assertions follow easily. O

We will need an elementary result about invariant functions.

Lemma 2.5. Let Zyyq,...,2Z, be defined by (2.10). Let F' = {fxi1,..., fa} be a family
of germs of holomorphic mappings at the origin 0 € C". Suppose that the family F is
holomorphically equivalent to {Zx,1, ..., Zn}. Let bi(z),...,bn(2) be germs of holomorphic
functions that are invariant under F. Suppose that for 1 < j <k, b;(0) =0 and the linear
part of b; at the origin is Bj. Suppose that for i >k, b;(z) = O(|z|?) and the quadratic part
of b; at the origin is b;. Suppose that by, ..., b are linear independent, and that biyrs---5 05
are linearly independent modulo bi,... b, i.e.

doabi(z) = di(2)bi(2) +O(2°)

holds for some constants ¢; and formal power series d;, if and only if all c¢; are zero.

Then invariant functions of F are power series in by, ..., b,. Furthermore, F' is uniquely
determined by by, ..., b,. The same conclusion holds if F' and b; are given by formal power
Series.

Proof. Without loss of generality, we assume that F'is {Zyy1,...,Z,}. Hence, for all j,

there is a formal power series a; such that b;(z) = a;(z1, ..., 2k, 241, - - - 22). Let us show
that the map w — a(w) = (a1 (w), . .., a,(w)) is invertible.

By Lemma 2.4, by(2), ..., bk(z) are linear combinations of zi, ..., zx, and vice versa. By
Lemma 2.4 again, b ,,...,b;, are linear combinations of ziﬂ, ..., 22 modulo 2, ..., 2.
This shows that

bi(z) = Z iz + Zdiz(z)bg(z), i> k.
>k <k
Since by 4, ..., b}, are linearly independent modulo bi,...,b,. Then (¢ij) is invertible; so is

the linear part of a.
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To show that F' is uniquely determined by its invariant functions, let F' be another such
family that is equivalent to {Zyi1, ..., Zn}. Assume that F and F have the same invariant
functions. Without loss of generality, assume that F is {Zks1,---,Zn}. Then zy,... 2z
are invariant by each Fj, i.e. the ith component of Fj(z) is z; for i < k. Also F7y(2) = 27

for ¢ > k. We get Fj, = %z,. Since 2z, is not invariant by F, then it is not invariant by

F either. Then F},(z) = —z for some ¢; > k. Since Fj, is equivalent to some Z;, the
set of fixed points of F}, is a hypersurface. This shows that Fj, = Z,. So the family F is
{Zxs1, -, Zn}- O

We now want to find a special set of generators for the deck transformations and its basic
properties, which will be important to our study of the normal form problems.

Lemma 2.6. Let M be defined by (2.1) and (2.2) with q. = 0. Suppose that the group T;
of deck transformations of m;: M — CP has exactly 2P elements. Then the followings hold.

(¢) Tv is generated by p distinct involutions 1i; such that Fix(m1), ..., Fix(m,) are
hypersurfaces intersecting transversally at 0. And 7 = 791 ---71p 1S the unique
deck transformation of which the set of fixed points has dimension p. Moreover,
Fix(m) = (N Fix(7;).

(ii) OT (resp. OTY) is precisely the set of convergent (resp. formal) power series in z'
and E(2,w'). OT (resp. OF) is the set of convergent (resp. formal) power series
inw' and E(w',2"). In particular, in (2',w') coordinates of M, T, and T, satisfy

(2.13) [mn]lLTl A [mn]lLTQ = {0},
dim Fix(7;) = p, Fix(m) N Fix(r) = {0}.

Here [9,]1 is the set of linear functions in z',w" without constant terms.

Proof. (i). Since zq,..., 2, are invariant under deck transformations of m;, we have p’ =
dime[0,]¥7 > p. By Lemma 2.4, m; has at most 22?7 deck transformations. Therefore,
p’ = p. By Lemma 2.4 again, we may assume that in suitable (£,n) coordinates, the deck
transformations are generated by Z,.1,..., Zs, defined by (2.10) in which z = (&¢,n). It
follows that Z = Z,,; -+ Zy, is the unique deck transformation of 7, of which the set of
fixed points has dimension p.

(ii). We have proved that in (£,7n) coordinates the deck transformations are generated
by the above Z, 11, ..., Z5,. Thus, the invariant holomorphic functions of Z,,4, ..., Z, are
precisely the holomorphic functions in &,...,&, 77, ..., 7. Since z1,...,z, and E;(2/,w’)
are invariant under deck transformations, then on M

(2.14) d=fEni. ), Bl w)=gEnt . ..n).

Since (2’,w’) are local coordinates of M, the differentials of 21, ..., z, under any coordinate
system of M are linearly independent. Computing the differentials of 2z’ in variables &, n by
using (2.14), we see that the mapping & — f(&,0) is a local biholomorphism. Expressing
both sides of the second identity in (2.14) as power series in &, 7, we obtain

E(f(&,0),w) = g(&.ni, .., 1) + O(&, ).
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We set € = 0, compute the left-hand side, and rewrite the identity as
(2.15) (0,777, .. ,m3) = q(w) + O(|(&, ) ).

As coordinate systems, (2/,w’) and (£,n) vanish at 0 € M. We now use (Z,w') =
O(|(&,m)]). By (2.14), f(0) = ¢g(0) = 0 and g(&,0) = O(|¢]?). Let us verify that the lin-
ear parts of g1(0,7),...,g,(0,7) are linearly independent. Suppose that >°¥_, ¢;g;(0,7) =
O(|n|?). Replacing ¢, 77 by O(|(2,w")|) in (2.15) and setting 2" =0, we obtain

ZC]qJ O(lw'), chqj

As remarked after condltlon B was introduced, ¢. = 0 implies that ¢;(w'),..., ¢, (w') are
linearly independent. Thus all ¢; are 0. We have verified that £ — f(,0) is biholomorphic
near £ = 0. Also n — ¢(0,7n) is biholomorphic near n = 0 and g(¢,0) = O(|£|?). Therefore,
(&,m) — (f,9)(&,n) is invertible near 0. By solving (2.14), the functions &,77,..., 72 are
expressed as power series in 2z’ and E(z/,w').

It is clear that zi, ..., 2, are invariant under 77;. From linearization of 7;, we know that
the space of invariant linear functions of L7; is the same as the space of linear invariant
functions of L7y, which has dimension p. This shows that 21, ..., 2, span the space of linear
invariant functions of L7y. Also wy, ..., w, span the space of linear invariant functions of
L7y. We obtain [, 0 [9,]5™ = {0}. We have verified (2.13).

In view of the linearization of 7; in (i), we obtain dimFix(ry) = dimFix(7;) = p.
Moreover, Fix(7;) is a smooth submanifold of which the tangent space at the origin is
Fix(L7;). We choose a basis uy,...,u, for Fix(Lm). Let vy,...,v, be any p vectors such
that uy, ..., up, v, ..., v, form a basis of C". In new coordinates defined by > &u;+mn;v;, we
know that linear invariant functions of L7y are spanned by &, ...,&,. The linear invariant
functions in (&, n) that are invariant by L7y, are spanned by f;(£,7) = > (& + bjknk)
for 1 < j < p. Since [9,)F N 9N, ]F2 = {0}, then &,..., &, f1,..., [, are linearly
independent. Equivalently, (b;;) is non-singular. Now Fix(L7y) is spanned by vectors
> w(@ur+bj,vy). This shows that Fix(Lm)NFix(L7) = {0}. Therefore, Fix(y) intersects
Fix(7y) transversally at the origin and the intersection must be the origin. U

Note that the proof of the above lemma actually gives us a more general result.

Corollary 2.7. Let J be a group of commuting holomorphic (formal) involutions on C™.
(1) Fix(LJ) = {0} if and only if [IM,]{” has dimension 0.
(i4) Let T be another family of commuting holomorphic (resp formal) involutions such
that [9,)" N [N, |59 = = {0}. Then Fix(LJ) N Fix(LJ) = {0}. Moreover, Fix(J) N

Fix(3) = {0} if 3 and J consist of convergent involutions.

In view of Lemma 2.6,we will refer to the family

7—1:: {Tlla---77—1p}7 7—212 {T21,...7T2p}, p
as the Moser-Webster involutions, where 75; = p7i;p. The significance of the two sets
of involutions is the following proposition that transforms the normalization of the real
manifolds into that of two families of commuting involutions. L
For clarity, recall the anti-holomorphic involution pg: (2/,w") — (w', 2’).
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Proposition 2.8. Let M and M be two real analytic submanifolds of the form (2.1) and
(2.2) that admit Moser-Webster involutions {Ti, po} and {71, po}, respectively. Then M and
M are holomorphically equivalent if and only if {T1,po} and {7~'1,p0} are holomorphically
equivalent, i.e. if there is a biholomorphic map f commuting with py such that fry;f~' =
T, for 1 < j <p. Here {ir,...,i,} ={1,...,p}.

Let Ty = {m1,...,7p} be a family of p distinct commuting holomorphic involutions.
Suppose that Fix(111), . .., Fix(7y,) are hypersurfaces intersecting transversely at the origin.
Let p be an anti-holomorphic involutions and let Ty be the family of involutions To; = pTy;p
with 1 < j < p. Suppose that

(2.16) (200,77 N )7 = {0}
There exists a real analytic real n-submanifold
(2.17) MCC?:z;=A(27), 1<j<p

such that the set of Moser-Webster involutions {7~], po} of M is holomorphically equivalent
to {1, p}-

Proof. We recall from (2.5) the branched covering
w1 M= MO ((Af x AL) x (Afs x Ag)) — Af x AL,
Here C' > 1. Let m; be restricted to M;. Then my = 77 0 p is defined on p(M;). Note that
mo: p(My) — Af x AL,

We have 7' (2) N Fix(p) = {(2,%)} for € M and m (Fix(p)) = M. Let By C A} x AP, be
the branched locus. Take B = 7, (By). We will denote by M 1, B and B, the corresponding
data for M. Here le is an analogous branched covering over m (le) We assume that
the latter contains f(m (M) if M is equivalent to M via f.

Assume that f is a biholomorphic map sending M into M. Let f¢ be the restriction of

biholomorphic map f¢(z,w) = (f(z), f(w)) to M. Let M be defined by 2" = E(2/,Z’) and
M be defined by 2" = E(',Z). By f(M) c M, f = (f', f") satisfies

(2, E(Z,Z)) = E(f(<,E(,7)), f(Z,EZ,?7))).
Using the defining equations for M, we get f¢(M) C M and pf¢ = f¢p on M N p(M).
We will also assume that f¢(M;) is contained in M;. It is clear that f¢ sends a fiber
7 *(2) onto the fiber ;! (f(2)) for z € Q = 7 (M) \ (Bo U f~1(By)), since the two fibers

have the same number of points and f is injective. Thus f°r; = 715, f© on 77 H(Q). Here i
is of course locally determined on m; *(€2). Since B has positive codimension in M; then
M; \ B is connected. Hence i; is well-defined on 77 *(Q2). Then féry; = 7;, f¢ on My \ B.
This shows that f¢ conjugates simultaneously the deck transformations of M to the deck
transformations of M for m1. The same conclusion holds for . -

Conversely, assume that there is a biholomorphic map g: M — M such that pg = gp and
gTi; = T1j,9. Since Ty, ..., Ty are distinct and M; \ B is connected, then U#i{x e M\
B: 1;(xz) = 7;(x)} is a complex subvariety of positive codimension in M; \ B. Its image
under the proper projection 7 is a subvariety of positive codimension in A x AL\ By. This
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shows that the latter contains a non-empty open subset w such that {m;(z),..., 7w (z)} =
T 17T1(:L‘) has 27 distinct points for each mi(x) € w. Therefore, 71,..., 79 are all deck
transformations of 7m; over w. Hence they are all deck transformations of m: M; \ B —
AL x AL\ By, too. This shows that 7 (mi(z)) = {m;(z): 1 < j < 2°} for z € My \ B.
Now, g sends 7i;(z) to 71, (g(z)) for each j. Hence f(z) = mgm; ' (2) is well-defined and
holomorphic for z € Af x Af; \ By. By the Riemann extension for bounded holomorphic
functions, f extends to a holomorphic mapping, still denoted by f, which is defined near the
origin. We know that f is invertible and in fact the inverse can be obtained by extending
the mapping 2 — mg 'm(z). If 2z = (2, E(z,w')) € M, then v = 7 and f(z) =
mgm H(2) = mg(z,Z) with (2,%) € Fix(p). Since pg = gp, then g(z,%) € Fix(p). Thus
f(z) =mg(z,%z) € M.

Assume that {7;} and p are germs of involutions defined at the origin of C". As-
sume that they satisfy the conditions in the proposition. From Lemma 2.4 it follows that
Ti1, ..., T1p generate a group of 27 involutions, while the p generators are the only elements
of which each fixes a hypersurface pointwise. To realize them as deck transformations of the
complexification of a real analytic submanifold, we apply Lemma 2.4 to find a coordinate
map (§,17) = ¢(&,n) = (A, B)(&,n) such that invariant holomorphic functions of {7,} are
precisely holomorphic functions in

= (A1), ApEm), 2" = (BI(Em),. ... Bi(E ).

Note that B, is skew-invariant under 7; and is invariant under 7y; for ¢ # j and A is
invariant under all ;. Set

wy = Ajop(&n), wj=Blop(&n).
Since To; = p71;p, the holomorphic functions invariant under all 75; are precisely the holo-
morphic functions in the above w’,w”. We now draw conclusions for the linear parts of
invariant functions and involutions. Since ¢ is biholomorphic, then LA;,..., LA, are lin-
early independent. They are also invariant under L7y;. Since 79; = p71,p, the p functions
LA; o p are linearly independent and invariant under L7,;. Thus

LA,,...,LA, LAjop,...,LA,0p
are linearly independent, since [,]X™ N[9N,,]¥™ = {0}. This shows that the map (£,7) —
(+,w') = (A(€, ), Ao p(&, 7)) has an inverse (€,7) = (', w/). Define
M: 2" =(Bi,...,B))oy(,7).

The complexification of M is given by
2 2, —

M: 2" = (B;,....Bl)op(dw'), w'=(By,....B,)ovw, 7).
Note that ¢ o (2, w’) = (', B o1(2',w’)) is biholomorphic. In particular, we can write
B} otp(<,Z) = hj(2,Z) + ¢;(Z) + b;(2') + O((, 7))
Here ¢;(Z') = ¢;(Z'), and §(w') is the linear part of w’ — B ov(0,w’). Therefore, |q(w’)| >
clw'|? and ¢, = 0. By Lemma 2.1, 7;: M — CP is a 2P-to-1 branched covering defined near

0 € M. Since B? is invariant by 7y, then 2" = B?o(2’, w’) is invariant by 17,4 (2', w’).
Also A is invariant under 71;. Then 2/ = Ao (2, w') is invariant by ¢~ 79 (2, w’). This
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show that {¢)~'71;4} has the same invariant functions as of the deck transformations of ;.
By Lemma 2.5, {¢)~ 71,1} agrees with the set of deck transformations of 7. For po(z', w') =
(w’, 2’) we have pgtp~! = ¢p~!p. This shows that M is a realization for {7y,...,71p, p}. O

Remark 2.9. We choose the realization in such a way that z,.; are square functions.
This particular holomorphic equivalent form of M will be crucial to study the asymptotic
manifolds in section 7.

Next we want to compute the deck transformations for a product quadric. We will first
recall the Moser-Webster involutions for elliptic and hyperbolic complex tangents. We will
then compute the deck transformations for complex tangents of complex type.

The Moser-Webster theory deals with the case p = 1 for a real analytic surface

2=z + (20 +27) + O(|z1]?), or 2z =27 +7 +O0(|=]*).

Here v > 0 is the Bishop invariant of M. One of most important properties of the Moser-
Webster theory is the existence of the above mentioned deck transformations. When ~ # 0,
there is a pair of Moser-Webster involutions 7, 7» with 7, = p7p such that 7, generates the
deck transformations of m;. In fact, 7y is the only possible non-trivial deck transformation
of m. When 7 # 1/2, in suitable coordinates their composition ¢ = 7173 is of the form

T = pE+ O(I(En)?), 0 =+ O(|(En)?).

Here p(&,n) = (7,€) when 0 < v < 1/2, and p(£,7) = (£,7) when v > 1/2. When the
complex tangent is elliptic and 0 < v < 1/2, o is hyperbolic with p > 1; when the complex
tangent is hyperbolic, i.e. 1/2 < v < oo, then o is elliptic with |u| = 1. When the complex
tangent is parabolic, the linear part of ¢ is not diagonalizable and 1 is the eigenvalue.

We will see later that with p > 2, there is yet another simple model that is not in the
product. This is the quadric in C* defined by

(2.18) Qi 23 = 21%2 + 7%+ (1 — 75)2], 24 =7Z3.

Here v, is a complex number. We will, however, exclude 75 = 0 or equivalently v, = 1
by condition B. We also exclude 75, = 1/2 by condition J. Note that v, = 1/2 does not
correspond to a product Bishop quadrics either, by examining the CR singular sets. Under
these mild non degeneracy conditions, we will show that ~, is an invariant when it is
normalized to the range

(2.19) Revs <1/2, Im~ys >0, ~s#0.

In this case, the complex tangent is said of complex type.

We have introduced the types of the complex tangent at the origin. Of course a product
of quadrics, or a product quadric, can exhibit a combination of the above basic 4 types. We
will see soon that quadrics have other invariants when p > 1. Nevertheless, in our results,
the above invariants that describe the types of the complex tangent will play a major role
in the convergence or divergence of normalizations.

Let us first recall involutions in [MW83] where the complex tangents are elliptic (with
non-vanishing Bishop invariant) or hyperbolic. When 7 > 0, the non-trivial deck transfor-
mations of

Qy: 20 = |z]? + (25 +77)
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for 7y, my are 1, 7o, respectively. They are
(2.20) TiiZ =21, wy=-—wi =g Ty = pTp
with p being defined by (2.4). Here the formula is valid for v = oo (i.e. v~! = 0). Note
that 77 and 7 do not commute and o = 775 satisfies
o' =rom=pop, TP=1 p*=1I

When the complex tangent is not parabolic, the eigenvalues of o are p, u=! with p = A2
and YA?2 — X+~ = 0. For the elliptic complex tangent, we can choose a solution A > 1, and
in suitable coordinates we obtain

(2:21) n: & =M+ 0(E), 1 =1"E+0E ),
n=pnp, p&n) = (7.6,
o & =pE+O(EmP), 7' =pn+0(En)?), p=X.
When the complex tangent is hyperbolic, i.e. 1/2 < v < oo, 7; and o still have the above
form, while |u| = 1 = || and

p(&,m) = (£,7).
When the complex tangent is parabolic, i.e. v = 1/2, the pair of involutions still exists.
However, Lo is not diagonalizable and 1 is its only eigenvalue. We recall from [MW83]
that

(2.22) = L
| T

For the complex type, new situations arise. Such a quadric has the form
(2.23) Qq: 23 = 2%+ 7% + (1 — 7)2f, 24 =73

Here v, is a complex number. Let us first check that such a quadric is not the product of
two Bishop quadrics : Its CR singular set is defined by

(21 4 27572) (22 + 2(1 = 7,)71) = 0,

which is the union of a complex line and a real surface when v, = 0,1, or a union of two
totally real surfaces. The CR singular set of a quadric defined by z3 = |21]® + 71 (2% + Z%)
and 24 = |22]? 4+ 72(25 + Z3) is given by

(Zl -+ 2’}/151)(22 -+ 2"}/252) =0.

It is the union of two Bishop surfaces when v; # 1/2 and ~, # 1/2, and it contains a
submanifold of dimension 3 otherwise.

By condition B, we know that v, # 0,1. Let us compute the deck transformations of
the complexification of (2.23). According to Lemma 2.6 (i), the deck transformations for
m, are generated by two involutions

/
Z] = 21, 21 = Z1,
/I !
Zy = Zo, L) R2 = R,
m I 1 = \—1 712+ [
wy = —wy — (1 =7,)" 2, wy = Wy,
wy = ws; wy = —wy — 75 'z
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We still have p defined by (2.4). Let 7; = p7yjp. Then 791, 702 generate the deck transfor-
mations of m. Note that

I -1 I
4=z — (1), %=,
/ ! =—1
. 29 22, . Rg = —Z2 — 74 W,
T21: , T22: ,
w; = Wy, Wy = Wi,
whH = Wy; whH = ws.

Recall that 7; = 71732 is the unique deck transformation of 7; that has the smallest dimen-
sion of the set of fixed-points among all deck transformations. They are

o o -1
21 = 21, 7= —z1 — (1 —75) " we,
/ / ——1
Zo = % Zo = —Z29 — w
. 2 2 . 2 2 75 1
(2.24) Ty . | _= -1 Ty : ,
wy = —wy — (1 =7,) 2, wy = Wy,
! 1. . /
Wy = —W2 — Vg " 21;

And 775 is given by

2 ==z — (1 —75) twy,

_ —1
R = —Zo — g Wi,

In contrast to the elliptic and hyperbolic cases, 71; and p71p commute; in other words,
T11p7T11p s actually an involution. And 75 and pri9p commute, too. However, 711 and 799
do not commute, and 712, 791 do not commute either. Thus, we form compositions

Os1 = T11T22, Os2 = T12721,

Oy = poap.
By a simple computation, we have

z1 = 21,
o 2h = —z9 — 7, twy,
T wi =1 -7) e+ (7, -7 - D,
wh = wa;
2 ==z — (1 — ) lwo,
zh = 29,
g
s2 U}ll — wy,

wh =, 2+ (1 —2) 7 = Dws.

We verify that o405 = 0, = 7. This allows us to compute the eigenvalues of 041049
easily:

(2.25)

,Us, M;17 ﬁ;17 ﬁm
(2.26)

ps =75 — 1.

In fact we compute them by observing that the first two in (2.25) and 1 with multiplicity
are eigenvalues of o1, while the last two in (2.25) and 1 with multiplicity are eigenvalues of
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0s. Note that oy is diagonalizable if and only if v, # 1/2. When 4 < 1/2 and 74 # 0, us
and p; ! are eigenvalues of multiplicity two while condition J holds. Therefore, for vy, # 1/2,
i.e. pus # 1, we can find a linear transformation of the form

Y (z1,w2) = (&2,m2) = (21, w2), (22, w1) = (§1,m) = P(wr, 22)
such that o4, 04,05 = 04104 are simultaneously diagonalized as
oa: & =ps&,  mi=pgtm. &=, nhy = 12,
(2:27) o & =&, m=, & = ﬁ;iﬁz, My = [N,
os: S =ps&, M =psms S =M %, nh = 0.
Under the transformation ¢, the involution p, defined by (2.4), takes the form

(228) /)(5175277717772) = (EQaElaﬁ%ﬁl)'
Moreover, for j = 1,2, we have 75; = p7y;p and

- Tt &G = Ay =08 S =8, =0, UF];
(2:29) &= F=A E=6 #
(2.30) M=Xy o=, s = AL

Condition J on ., is equivalent to v, # 1/2. By a permutation of coordinates that
preserves p, we obtain a unique holomorphic invariant us satisfying

(2.31) ls| > 1, Impgs >0, ps#0,—1, 0<argh, <7m/2, A #0,i.
Note that Revs < 1/2 implies that |us| # 1.

For later purpose, we summarize some facts for complex type in the following.

Proposition 2.10. Let Q,, C C* be the quadric defined by (2.18) and (2.19) with vs # 0, 1.
Then w1 admits two deck transformations i1, T2 such that the set of fixed points of each
71 has dimension 3. Also, T9; = pmijp are the deck transformations of my and
T11721 = T21T11, T127T22 = T227T12-
Let Os1 = T11722, Os2 = T12721, Ti = Ti17i2, and Og = T17T2. Then
0 = 051052 = 052051, 0'3_21 = POs1p, 0-3_1 = POsP.

Assume further that v # 1/2. In suitable coordinates og1,04,0,ps are given by (2.27)-
(2.28), while o5 has 4 (possibly repeated) eigenvalues given by (2.25)-(2.26). The o has four
distinct eigenvalues if and only if Q, can be holomorphically normalized so that Im~y, > 0
and Re~y, < 1/2.

In summary, we have found linear coordinates for the product quadrics such that the
normal forms of S, T;;, p of the corresponding o, 0}, 7;;, po are given by

(2.32) S: & =&, my = py
(2.33) Si & =&, ni=un, =& M=k k#J;

(235) p: { (S €4 7) = (s 10T,

( ;7 ;—l—s*? 7727 n;—l—s*) = (gers* ) gs? ﬁers* ) ﬁs)
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Throughout the paper, the indices h, e, s have the ranges 1 < e < e,, e, < h < e, + hy,
and e, + h, < s < p — s,. Notice that we can always normalize p, into the above normal
form p.

The commutativity of o, 0., 01, 0so Will be important to understand the convergence of
normalization for the abelian CR singularity.

3. FORMAL DECK TRANSFORMATIONS AND CENTRALIZERS

In section 2 we show the equivalence of the classification of real analytic submanifolds M
that admit the maximum number of deck transformations and the classification of the fam-
ilies of involutions {71, ..., 71, p} that satisfy some mild conditions (see Proposition 2.8).
As a consequence we show that a real submanifold is formally equivalent to a quadric if
and only if its family of Moser-Webster involutions is formally linearizable.

3.1. Formal submanifolds. We first need some notation. Let I be an ideal of the ring
R[[z]] of formal power series in x = (z1,...,zx). Since R[[z]] is noetherian, then I and
its radical /T are finitely generated. We say that I defines a formal submanifold M of
dimension N — k if v/T is generated by rq, ..., 7, such that at the origin all r; vanish and
dry,...,dry are linearly independent. For such an M, let I(M) denote VT and let TyM
be defined by dri(0) = -+ = dri(0) = 0. If F = (fy,..., fy) is a formal mapping with
f; € Rl[[z]], we say that its set of (formal) fixed points is a submanifold if the ideal generated
by fi(z) =1, ..., fx(x) — 2y defines a submanifold. Let I, I be ideals of R[[z]], R[[y]] and
let V1, ﬁ define two formal submanifolds M, M, respectively. We say that a formal map
y = G(z) maps M into M if oG C V/I. If M, M are in the same space, we write M C M
if I € v/I. We say that a formal map F fixes M pointwise if I(M) contain each component
of the mapping F — 1.

3.2. Formal deck transformations. Consider a formal (2p)-submanifold in C? defined
by

(3.1) M: z,;=E;j(2,7), 1<j<p.
Here E; are formal power series in 2/,Z'. We assume that
(3.2) Ei(2,7) = hi(,Z) + ¢;(Z) + O((|(+", 7)]*)

and h;, q; are homogeneous quadratic polynomials. The formal complexification of M is

defined by

i = EBi(Zw'), i=1,...,p,
wpy = Ei(w', '), i=1,...p.
We define a formal deck transformation of m; to be a formal biholomorphic map
r () = (2 (), T(0) =0

such that m7 = m, i.e. F o1 = E. Recall that condition B says that ¢, = dim{z’ €
C™: q(#') = 0} is zero, i.e. ¢ vanishes only at the origin in C”.
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Lemma 3.1. Let M be a formal submanifold defined by (3.1)-(3.2). Suppose that M
satisfies condition B. Then formal deck transformations of my are commutative involutions.
FEach formal deck transformation T of my: M — CP is uniquely determined by its linear part
Lt in the (Z/,w") coordinates, while LT is a deck transformation for the complezification
form: Q — Cp where Q is the complexification of the quadratic part QQ of M. If M is
real analytic, all formal deck transformations of m are convergent.

Proof. Let us recall some results about the quadric ). We already know that ¢. = 0
implies that m; for the complexification of () is a branched covering. As used in the proof
of Lemma 2.1, 7; is an open mapping near the origin and its regular values are dense. In
particular, we have

(3.3) det Oy {h (2", w") + q(w")} Z 0.

Let 7 be a formal deck transformation for M. To show that 7 is an involution, we
note that its linear part at the origin, L7, is a deck transformation of ). Hence L7 is an
involution. Replacing 7 by the deck transformation 72, we may assume that 7 is tangent
to the identity. Write

(2 w') = (2w + u(Z,w)).
We want to show that u = 0. Assume that u(2/,w’) = O(|(2’, w)|¥) and let u; be homoge-
neous and of degree k such that u(2/,w’) = ug(2',w’) + O(|(2', w)|*+1). We have

(
E(Z, v +u(z,w')) = E(Z,w).
Comparing terms of order k + 1, we get
O {h(Z' ;W) + q(w') }up(2',w') = 0.

By (3.3), uy = 0. This shows that each formal deck transformation 7 of m; for M is an
involution. As mentioned above, L7 is a deck transformation of m; for ). Also if 7,7 are
commuting formal involutions then 7717 is an involution and 7 = 7 if and only if LT = L7.
Assume now that M is real analytic. We want to show that each formal deck transfor-
mation 7 is convergent. By a theorem of Artin [Art68] applied to the solution wu, there
is a convergent 7(2/,w’) = 7(2',w’) + O(|(z',w')|?) such that E o7 = FE, i.e. 7 is a deck
transformation. Then 7 !7 is a deck transformation tangent to the identity. Since it is

a formal involution by the above argument, then it must be identity. Therefore, 7 = 7
converges. U

Analogous to real analytic submanifolds, we say that a formal manifold defined by (3.1)-
(3.2) satisfies condition D if its formal branched covering m; admits 27 formal deck trans-
formations.

Recall from section 2 that it is crucial to distinguish a special set of generators for the
deck transformations in order to relate the classification of real analytic manifolds to the
classification of certain {7y1,..., 7, p}. The set of generators is uniquely determined by
the dimension of fixed-point sets. We want to extend these results at the formal level.

Proposition 3.2. Let M, M be formal p-submanifolds in C™ of the form (3.1)-(3.2). Sup-
pose that M, M satisfy condition D. Then the following hold :

(1) M and M are formally equivalent if and only if their associated families of involu-
tions {Ti1, ..., Tip, p} and {711, ..., T1p, p} are formally equivalent.
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(17) Let Ty = {m11,...,T1p} be a family of formal holomorphic involutions which com-
mute pairwise. Suppose that the tangent spaces of Fix(m1),. .., Fix(m,) are hyper-
planes intersecting transversally at the origin. Let p be an anti-holomorphic formal
involution and let Ty = {To1,...,Top} with To; = p11jp. Suppose that o = 175 has
distinct eigenvalues for 7, = Ti1 -+ Tip, and

()17 0 [0, )17 = {0}
There exists a formal submanifold defined by

(3.4) = (Bi,...,B)(,7)
for some formal power series By, ..., B, such that M satisfies condition D. The set
of involutions {711, ..., Tip, po} of M is formally equivalent to {m1,..., Ty, p}.

Proof. (i) Let M and M be given by 2" = F(2',7") and 3" = E(3' ,~?), respectively. Suppose
that f is a formal holomorphic transformation sending M into M. We have
(3.5) (2 E(Zw") = E(f'(Z, E(Z,v"), f (W, E(w', ).
Here f = (f', f"). Recall that po(z/,w’) = (w’,2’). Define a formal mapping (2/,w') —
(2, 0") = F(&,w') by
(3.6) F(Z ') = (f'(¢,E(Z, "), f/(w, E(w', ))).
It is clear that Fipg = pol". By Lemma 2.5, we know that z' and 2" = E(Z,w’) generate
invariant formal power series of {71;}. Thus, Z’oF(2',w’) = f'(¢/, E(¢',w")) and EoF (', w')
are invariant by F~' o 7, 0 F. By (3.5) and the definition of F,

EoF(Z v = f'(Z,E(,w)).
This shows that f(2/, F(2/,w’)) is invariant under F~! o 7; 0 F. Since f is invertible, then
2" and E(z',w’) are invariant under F~' o 7y; o F. Therefore, {71} and {F~'o7; 0 F} are

the same by Lemma 2.5 as they have the same invariant functions.
Assume now that {r,} = {F~! o 7y; o F'} for some formal biholomorphic map F com-

muting with py. Recall that Z’, 2" are invariant by 7;. Then 2’ o F" and E o F are invariant
by {71;}. By Lemma 2.5, invariant power series of 7y; are generated by 2’, E(%',w’). Thus
we can write

ZoF(Z,w) = f'(Z,E(Zw)),
(3.7) EoF(Z,w') = f'(Z,E(Z,v))
for some formal power series map f = (f’, f”). Since poF' = Fpy, then by (3.6)
F(Z,w') = (f/(<,0), F (,0) + O(|(,w) ).
Since F is (formally) biholomorphic then 2" — f/(z,0) is biholomorphic. Then
1"(0, £(0,w) = E(0, F (w',0)) + O(jw').

We have E(0,w') = q(w’) + O(Jw']*) and E(0,w') = §(w') + O(|w'[*). Here q(w'),j(w')
are quadratic. By condition ¢, = 0, we know that ¢;,...,g, and hence ¢ o L,...,g,0 L

are linearly independent. Here L is the linear part of the mapping w' — ?I(w’ ,0), which
is invertible. This shows that the linear part of w’ — f”(0,w’) is biholomorphic. By (3.7),



25

f"(,0) = O(|#|?). Hence f = (f’, f”) is biholomorphic. By a simple computation, we
have f(M) = M, i.e.

E(f'(2), ['(2)) = ["(2)
for 2" = E(¢, 7).

(ii) Assume that {71;} and p are given in the (£, 7) space. We want to show that a formal
holomorphic equivalence class of {7y, p} can be realized by a formal submanifold satisfying
condition D. The proof is almost identical to the realization proof of Proposition 2.8 and
we will be brief. Using a formal, instead of convergent, change of coordinates, we know
that invariant formal power series of {r;} are generated by

2= (A m), . A&m), 2= (Bi(& ), ..., B ),

where B, is skew-invariant by 7, and A, B; are invariant under 7, for i # j. Moreover,

o(&,m) = (A, B)(&,n) is formally biholomorphic. Set
w; = Ajop(&n), wj=DB}op(&mn).
Then (£,7) — (A(&,n), Ao p(&,n)) has an inverse 1. Define
M: 2" =(Bf,...,B))oy(,7).

The complexification of M is given by

M: "= (B;,....Bl)oy(d w), w'= (Ef, . ,Fi) oh(w', ).
Note that ¢pop(2/,w') = (2/, Boy(z',w')). Since ¢ is invertible, the linear part D of Bo
satisfies |D(0,w’)| > |w'|/C. This shows that g. = 0. As in the proof of Proposition 2.8,
we can verify that M is a realization for {7y, p}. O

4. NORMAL FORMS OF COMMUTING BIHOLOMORPHISMS

In this section, we shall consider a family of commuting germs of holomorphic diffeo-
morphisms at a common fixed point, say 0 € C". We shall give conditions that ensure
that the family can be transformed simultaneously and holomorphically to a normal form.
This means that there exists a germ of biholomorphism at the origin which conjugates each
germ of biholomorphism in the family to a mapping that commutes with the linear part of
every mapping of the family.

4.1. Centralizers and Decomposition.

Definition 4.1. Let F be a family of formal mappings on C" fixing the origin. Let C(F)
be the centralizer of F, i.e. the set of formal holomorphic mappings ¢ that fix the origin
and commute with each element f of F, ie., fog=go f.

Let Co(F) be the “higher order formal centralizer” of F, that is
Co(F)={H e @) |HoF=Fol, FeF}

We now deal with the following decomposition problem: Let C be a set of analytic
mappings. We want to decompose an arbitrary invertible mapping into the composition of
an element of a centralizer of C and an element which is normalized with respect to C. We
first prove a general convergence decomposition, which will be used several times. Let e;
denote the standard jth unit vector of C™.
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Definition 4.2. Let A be a group of permutations of {1,...,n}. Then A acts on the
right (resp. on the left) on O;' by permutation of variables z = (21, ..., z,) as follows: Let
F(z) = E|Q|>O Fgz9 be a formal mapping from C" to C", and let v, u € A; set

vokFo ,LL<Z) = Z Z F,,(im-l(Q)zQei.

i QeNr
Define the components (AF);, (F.A);, and consequently (AFA); by

(AFN() = 3 max|Fule®  (FAN(:) = Y max|Fug)l
QEN" QEN™

(AFA)(2) = max | F u-1@))2%-
Genn (v,p)eA?

We see that F'A is the smallest (w.r.t. <) power series mapping that majorizes F' and
is right-invariant under A, while AF is the smallest power series mapping that majorizes
F and is left-invariant under A. In particular, if F,G are mappings without constant or
linear terms, then

(4.1) A(F o (I +G)A < (AFA)(AIA+ AGA),

where the last relation holds if the composition is well-defined.
To simply our notation, we will take A to be the full permutation group of {1,...,n}.
We will denote
Foym = AFA.

Lemma 4.3. Let # be a real subspace of (ﬁi)” Let 7 : (53\12)” — H be a R linear pro-

jection (i.e. w2 =) that preserves the degrees of the mappings and let G = (I —W)(ﬁ%)"

Suppose that there is a positive constant C' such that

(4.2) m(E) < CEgym

for any E € (ﬁi)” Let F' be a formal map tangent to the identity. There exists a unique
decomposition

(4.3) F=HG!

with G—1€G and H—1 € H. If F is convergent, then G and H are also convergent.

Proof. If f is a formal mapping, we define the k-jet:
Tf(z) = for?.
IQI<k
Write F =1+ f,G=1+gand H =1+ h. We need to solve F'G = H, i.e to solve
h—g=[f(I+g)
Since f/(0) = 0, then for any k£ > 2, the k-jet of f(I + g) depends only on the (k — 1)-jet of

g. Since 7 is linear and preserves degrees, (4.2) implies that J* commutes with w. Hence
we can define, for all k > 2,

—J*g) = (ST +g)), JHh) = —m) (T +9g)).
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This solves the formal decomposition uniquely. Assume that F'is a germ of holomorphic
mapping. Hence, we have

g =< C(f(I+ 9))sym = CfoymLsym + Gsym)-

Since gsym, is the smallest left and right A invariant power series that dominates g, we have

sym =< C foymLsym + Gsym)-
Therefore, gsym is dominated by the solution u to
u = C foym(Lsym +u), u(0)=0.
Notice that u is real analytic near the origin by the implicit function theorem. So, gsym is

convergent, and g, h = g + f(I + g) are convergent. O

Remark 4.4. Let A, B be two subgroups of permutations. Instead of using the full per-
mutations group, we could have used Gy, := AGB. We have

G < AGB < CA(F o (I +G))B < (AFA)(AIB+ AGB).

4.2. Abelian family of biholomorphisms. Let D; := diag(u;1, .. ., ptin) with 1 <i < /¢
be diagonal invertible matrices of C". Let D;: x — D;z be the linear mappings. Let D
denote the family {D;}i—1, ¢ of linear mappings.

Definition 4.5. We say that F' = (fi,..., f.) is normalized with respect to D if it is
tangent to the identity and it does not have components along the centralizer of D, i.e. for

each @ with |Q| > 2,

fio=0, if pe = f;; for all 7.
Let C¢(D) denote the set of formal mappings normalized with respect to D. Let CS(D) be
the set of all H € (S/D\Ti)" satisfying I + H € C¢(D).

Let us consider a family F' := {F;}{_, of germs of holomorphic diffeomorphisms of (C",0)
of which the linear of Fj(z) at the origin is D;. Thus

The group of germs of (resp. formal) biholomorphisms tangent to identity acts on the
family F by @, F :={®P 1o F,o®: 1< </}

Let {F;}i—1, ¢ be a family of commuting germs of biholomorphisms with ¢ < oco.
Let us recall a result by M. Chaperon (see theorem 4 in [Cha86], page 132):

Proposition 4.6. If the family of diffeomorphisms is abelian then there exists a formal
diffeomorphism ®, which is tangent to the identity, such that

F(Dz) = D;Fi(z), 1<i,j</

where F; := O.F;, for 1 <1 < (L. We call the family {ﬁl} a formal normal form of the
family F (or a normalized family) with respect to the family D of linear maps.

For convenience, we restrict changes of holomorphic coordinates to the ones that are
tangent to the identity. Also ®,{F;}%_, = {F;}{_, means that
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These restrictions will be removed by mild changes. For instance, if ® transforms a family
F into a family F' that commutes with LF , the family of the linear part of the F', then
(L®)"'(LF;)L® = LE,. Therefore, ®(L®)" is tangent to the identity and transforms F
into (L®)E(L®)~* which commutes with LF.

Let (55 be the ring of formal invariants of the family D, that is
OP = {f€O,| f(Dix) = f(x), i=1,...,0}.

If Q € N, Q # 0, then 29 € OP if and only if

=l el =1, V1<i<L

If |Q > 1, then 29%; € Cy(D) if and only if pe = i,V 1 <4 < ¢. With notation of
Definition 4.1, we have

Lemma 4.7. Any formal diffeomorphism ® of (C",0), tangent to identity, can be written
uniquely as ® = ®; o ®5 with &, € C(D) and & € C(D). Furthermore, ®y, &, are
convergent when ® is convergent.

Proof. This follows from Lemma 4.3, where H is replaced by Cy(D) and 7 is defined by

T (Z fj,cﬂQ@j) => > e, [

J z@e;¢Ca(D)

Lemma 4.8. Let F' := {F}} and F := {F;} be two formal normal forms of the abelian
family of diffeomorphisms F := {F;}. There ezists a formal diffeomorphism ®, tangent to
identity at the origin, such that ® € C(D) and ® o F; = F; o ®. Furthermore, there is a
unique ® € C°(D) that transforms the family F' into a normal form.

Proof. Since both F' and F are normal forms of F, there exists a formal diffeomorphism
®, tangent to identity at the origin, such that F, o ® = ® o Fi. According to Lemma 4.7,
we can decompose ® = ®; o &;' where &, € C(D) and ®; € C(D). Hence, we have
dilo Fiod, = &yl o Fyody. Let us set G; := &5’ o Fj o &y. Then G; is a formal
diffeomorphism satisfying G;(x) — D,z € C(D). Let us show by induction on N > 2 that if
O =1+ Y + O(N + 1) with &Y being homogeneous of degree N, then & = 0. Indeed,
a computation shows that

{Gi}nv = {E}n+ D; 0 ®Y —dY o D;.
Express Y as sum of monomial mappings. The monomial mappings are not in C(D),
while those of F; and G; are. We obtain ®) = 0.

To verify the last assertion, assume that V,F" = F and \I/*F — F are in the normal
form. Suppose that ¥, ¥ are normalized. Then (U~'W),F = ¥, (¥~1),F is in the normal
form. Write U0 = o405 with ¢4 € C(D) and v € C(D). Then (), F is in a normal
form. From the above proof, we know that ¢y = I. Now ¥ = 1), which implies that
U=V, O

Lemma 4.9. If a formal normal form of F' is completely integrable so are all other normal
forms of F; in particular, the unique ® in Lemma 4.8 transforms F' into a completely
integrable normal form.
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Proof. By Lemma 4.8, we transform a normal form {FZ} into another one {F;} by applying
a transformation ® that commutes with each D;. Hence, we have F,:=®10F,0®, for all
i=1,...,0 Let us write ®(z) = >_ncnn. 1<j<n ¢, or%e;. Suppose that {F}} is completely
integrable, then
®oFi(z) = > djqmlx)?2;.
QEeN™
Since ® commutes with each D;, then

® o Fi(z) = diag(puir (2), - . ., pan(2)) - ®().
The conjugacy equation leads to

pij(x) - @5(z) = Fij(®(x)), 1<j<n.
As a consequence, we have Fj(z) = diag((fis1(2), . . ., fiin(x)) - @ with (fi; 0 ®(x)) - ®;(x) =
pij(x) - (), Le. fuy; = puijo &
Each function fi;; is an invariant function of D since
fiij(Dyar) = pij 0 @71 (Dyar) = pij 0 Dyp(®7' () = pgj 0 @7 (2).

The second and third conditions of the definition of the complete integrability is obviously
satisfied by {F;} since fi;; = p;; 0 @1 O
Lemma 4.10. If a formal normal form of F is linear so are all other normal forms of F.

Proof. According to Lemma 4.8, we transform a linear normal form {ﬁ’l} into another one
{F;} by applying a transformation ® that commutes with each D;. Since Fj(z) = D;x, we
have F, = & 1(D;®(z)), for all i = 1,...,/. Since ® commutes with each map = — Dz,
then

Fy =3 Y(D;®(x)) = o Y(®(Dyz)) = Dy O

Definition 4.11. We say that the family D is of Poincaré type if there exist constants
d > 1 and ¢ > 0 such that, for each (j,Q) € {1,...,n} x N" that satisfies u& — p,,,; # 0

for some m, there exists (i,Q’) € {1,...,¢} x N™ such that ug/ = ,ug forall 1 <k </,
ue — i # 0, and
max (m?’|, |M;Q’|) > 9 Q' — Qe N"U(-N").
Such a condition has appeared in the definition of the good set in [BHV10].

Definition 4.12. Let f =3, n» for®@ and g = > Qenn go® be two formal power series.
We say that g majorizes f, written as f < g, if go > 0 and |fg| < g for all Q € N™. Set
f= Z | folz®.

QeEN™

Theorem 4.13. Let F' be an abelian family of germs of holomorphic diffeomorphisms at
the origin of C™. Assume that it is formally completely integrable and that its linear part
at the origin is of Poincaré type. Then F' is holomorphically conjugated to a normal form
F= {ﬁ’l, . .7Fg} so that each F} is defined by

o = pig(x)zy, j=1,...,n
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where p;;(z) are germs of holomorphic functions invariant under D and p;;(0) = p5. In
fact, the unique normalized mapping ® in Lemma 4.8 is convergent.

The primary example is the following Moser-Webster normal form of reversible mappings:

6:&=M(&nO0f 0 =M"¢énOn (¢ =C

where (£,17) € C?, ¢ € C" 2, and |M;(0)] > 1. Our convergence proof is inspired by the
proof in Moser-Webster [MW83].

Proof. The last assertion follows from Lemma 4.7 and Lemma 4.9. Let us conjugate,
simultaneously, each F; = Dy + f; to F; := D;(z)x by the action of ®(z) = x + ¢(x) where
$(0) = 0 and ¢/(0) = 0. Here, D;(x) denotes the matrix diag(fi;1(z), ..., flin(z)) and each
fu;;(x) is a formal power series invariant under D, i.e. ji;;(x) € (/9\5 . We can assume that
® does not have a non-zero component along the centralizer of D; indeed, by Lemma 4.9,

we can assume that ® is normalized w.r.t D. Then, for each i = 1,...,/, we have
Fy0®(z) = Dy + fi(®)(x) + Dig(z), @ o Fy(z) = Dy(x)x + ¢(F) ().

Equation F;o® = ® o FZ reads
(4.4) (gb(f)i(x)x) - Digzﬁ(x)) + (f)i(x) - Di) v =fi(®)(x) i=1,....0

Our convergence proof is based on two conditions: the existence of a formal ¢ € C(D) that
satisfies the above equation, and the Poincaré type condition on the linear part D. We
already know that ¢ is unique. We shall project equation (4.4) along the “non-resonant”
space (i.e. the space C¢(D) of normalized mappings w.r.t. D). The mapping ¢ also solves
this last equation and we shall majorize it using that projected equation.

Let us first decompose these equations along the “resonant” and “non-resonant” parts,
Le. Co(D) and C5(D). Since ¢ = > ncnn g2 ¢;or%e; is normalized then ¢;q = 0 for
some Q € N, |Q| > 2 and 1 < j < n, if we have u% = p,,; for all m. We recall that,
since each D; is a diagonal matrix, then a map belongs to the centralizer of D if and only
if each monomial map of its Taylor expansion at the origin belongs to this centralizer as
well. Since the fi;; is a formal invariant function then

o(Di(x)xr) = > diohl(@)ae; = > eae;

QEN™,|Q[>2 Q'EN™ Q=2

The latter contains only non-resonant terms, that is that if ,u?/ = p;; for all 4, then 9, or = 0.
Indeed, 12(z) contains monomials of the form ¥ with pf = 1 for all 1 < i < ¢. Hence,
;.o is a linear combination of ¢; o such that Q' = Q + P with ! =1 for all i. Therefore,
if ,u?l = yu;; for all i, then for all these Q’s, we have 2 = uin = ;5 for all i so that ¢; o = 0;
that is ;o = 0.

Hence, the projection on the resonant mappings in Co(D) leads to

(4.5) (ﬁi(:c) . Di> 2= {fi(®) (@) bress i=1,....0
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Here for any formal mapping g(:p) = O(|z]*) on C", we define the projection on Cy(D) by

(46) :L‘ res Z Z ngl‘ 6]

Y Vl,/.tl =Hij

The projection g onto CS(D) is defined as g(z) — (g())pes, i.e. it is the projection of g on
the non-resonant mappings.

Let us consider the projection on the non-resonant mappings. We first need to decompose
power series according to a non-homogeneous equivalence relation on their coefficients. Let
us define the equivalence relation on {1,...,n} x N" by

(4, Q) ~ (3, Q) if pij — 1 () = iz — i () for all 1 < i < 1.
Here the identities hold as formal power series. Let A be the set of the equivalence classes
on the non-resonant multiindex set

(. € {1 m} x N (4 = g1 = ) £0,1Q1 > 1}

If ,ug — pj 7 0 for some k, clearly ﬂg — pg; is not identically zero. We can decompose
any formal power series map f along these equivalent classes and the resonant part of the
mapping. Let 6 € A and f = EQ—GN” 1<j<n 19 or%e; with f = 0(2). We can write

(47) Z fJQl‘ Gj, Zf(;

(7,Q)€s seA

We denote by ﬁ% the vector space of such maps. To a given equivalence class 9§, we
associate a representative (js, Q)s), and we shall identify an equation among n equations in
(4.4) for estimation. Since ¢ contains no resonant mappings, then

(4.8) 6=> ¢s

Let us decompose the projection onto non-resonant mappings in C5(D) of equation (4.4)
along each equivalence class § as follows. Using the definition of the equivalence class A,
we obtain

(4.9) (09 (@) = i | 65() = L@} (2), Wi=1,....0

where {f}s denotes the projection of f on 53\?2 s, defined by (4.7).

For each (js,Qs) € 9, we know that ug‘s — pgjs 7 0 for some k. By the Poincaré type
condition, there exist ¢ and Q5 € IN™ such that

(4.10) W =y A0 g =p, V1<m <l Q- Qs € N"U(-N")
and, furthermore, one of the following holds:
(4.11) |,uiQ:5| < ed 19! or |N@'—Q3| < ed™ 19!,

Here, d > 1 does not depend on Q5. So, let us use the ith equation of (4.9) to estimate ¢;.
We have, for that i,

(412) 65 = [ — ] U@,
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Therefore, we have established the uniqueness of ¢ under (4.8) and (4.12), and under the
condition that ¢ satisfies the equation when (4.4) is projected onto C(D). The existence

of ¢ is ensured by assumption. We now consider the convergence of ¢. By (4.10) we obtain
%579 — 1. This allows us to rewrite (4.12) as

NaJ -1
(4.13) Ps = [Ni P — Mm] {fi(®)}s-
We majorize this power series.
Recall that f1,;(0) = ;5. Let us set M;j(x) := u;lﬂw(:p) We have M;;(0) = 1 and we
decompose M;;(x) = 3 penn Mij@u®. Let us set p* = max;;{ |, i |}, and
m; = Z max |M;;olz?, m = Z max | M, olz?.

1<j<n 1<i<t, 1<j<n
QeNn QeNn

Note that m(0) = 1. Then M;; < m and

1 1 1
M= < = :

Here and in what follows, if f(x) is a formal power series with f(0) = 0, then for any
number a # 0, #(x) stands for the formal power series in x for

1 o
Z11 -1 n\
Hissasor]
To simplify notation in (4.13), let us write @ for @ and j for js. We want to show that,
(4.14) (B2 — i)™ < S(m—1).

Here S(t) is a convergent power series independent of all (j, @Q)'s of the form (js, Q%)’s.
Fix dy with 1 < dy < d. We consider the first case that ,u*cd*|Q| > dl_IQI. Since d > dj,
we have only finitely many such @'s (recall that each @ has the form Q). The function
M; — g — p@ME is holomorphic in M; € C™ at M; = (1,...,1) and does not vanish at
this point. Hence, the function

(i = 1) = (i — i M2) ™!
is also holomorphic at M; = (1,...,1). For all Q's in the first case, we have

» C ) C

(ps — )™
Consider the second case that p*cd~19 < d;'Ql. For the first case in (4.11), we obtain

~ — — — — * * — -1
(M’Q — i)™ = —Nz’jl(l - Nz’jlﬂz‘QM'Q) f<n [1 —wed IQImIQl]

(2

* —-1Ql, Q] -1 * —1 -1
< p|l=d;,"'m <p[1—di'm] .
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For the second case in (4.11), we have

-1
(i = i)™ = = OM? [1 - Mijﬂ;QMz‘iQ]
< ed 92— m) 191 — pred 192 — m)f\Q\]*l

< ()l — )@ [1 —d;¥2 - m)“Q‘} -

< () i=dte-m)T]

We have obtained the estimates for the second case. Therefore, we have shown that for
any @ = Q5 and j = js
(4.15) (0 = pig) ™" < S(m = 1).

Here S(t) is a convergent power series independent of all (j, @)’s of the form (js, Qf)’s.
Let us set

fr= Z max  |fiolz%e;.
Gemen 15456 155<
By the definition of the equivalence relation on multiindices, we have

(4.16) S =t
dEA
According to (4.13) and (4.15), we have ¢5 < S(m — 1) {f*(®)}
imply
(4.17) 6 < S(m—1)f(d).

s Now (4.7) and (4.16)

Let us project (4.5) onto the kth components of Cy(D) as follows. For a power series
map g, we define

Gres k() = Z gk,QxQ'
e =
By the definition of g,es in (4.6), gres = (Gres.1s- - - s Gresn). We have
pie (M p(2) — 1) 2 = (fuix () — prir) 2 = { fis(P) }res x(2)-
Therefore, for all 1 < k < n,

(4.18) (m—1)xy < mf (D).
Let us set p,. = m We set 71 =t,...,x, =t in ®(x) and m(z). Let ¢(t), ®(¢), and
m(t) still denote ¢(t,...,t), ®(¢,...,t), and m(t,...,t), respectively. Let

tW(t) :== o(t) + (m(t) — 1)t.
We have W(0) = 0, ¢(t) < tW(t), and (m(t) — 1) < W(t). From estimates (4.17) and
(4.18), we obtain

(4.19) tW(t) < p f5(®(1)) + S(m(t) — 1) f*(D(1)).
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Since fi;(z) = O(|x]?), there exists a constant ¢; such that
frlay <
L—a(s; )

Hence, estimate (4.19) reads

cu(n(t + ¢))*

1 —cn(t + ¢)

at?(n(1 + W(t)))*

L —cnt(1+W(t))

Let us consider the equation in the unknown U with U(0) =0 :

(4.21) Ut)(1—cnt(1+U(1)) = (e + S(W () ert(n(l + U(2)))>

According to the implicit function theorem, there exists a unique germ of holomorphic
function U(t), solution to (4.21) with U(0) = 0. According to inequality (4.20), the function
W is dominated by U : W (t) < U(t). This can be seen by induction on the degree of the
Taylor polynomials at the origin. Therefore, W converges at the origin. The theorem is
proved. O

(4.20) W) < (. +S(m(t) — 1))

< (pe +S(W(1)))

5. REAL MANIFOLDS WITH AN ABELIAN CR-SINGULARITY

Let us consider a real analytic manifold M with a CR-singularity at the origin, which is
an higher order perturbation of a product quadric. We assume that for its complexification

M, m; has 2P deck transformations generated by {71,...,7,}. Let ; = pomjop.
Let us consider the following germs of holomorphic diffeomorphisms :

(5].) g; .= T14 © T4, 1 §Z§€*+h*,

(52) Os = T1s O T2(sy+s)s  Osdse = Tl(s+ss) O T2sy  Cx +h, <s< D — S«

Notice that the above property holds for quadrics of the complex case by Proposition 2.10.
We assume that the linear parts T;;, S}, S of 7;;, 05, 0 and p are given by (2.32)-(2.35). The
family {o;} is reversible with respect to p. More precisely, we have the following relations

o' =poip, 1<i< e+ hy a;rls*:pcrsp, ex +he <s<p— s,

Definition 5.1. We say that the manifold M has an abelian CR-singularity at the
origin if its complexification M has the maximum number of deck transformation and if
the family {oy,...,0,} of germs of biholomorphisms at the origin of C? is abelian, i.e.

0,0 = 0;05.

The aim of this section is to show that such an analytic perturbation with an abelian
CR-singularity and no hyperbolic component is holomorphically conjugate to a normal
form. We shall give two proofs of this result. The first one rests on Moser-Webster result
[MW83][theorem 4.1] applied successively to each ;. It is to be emphasized that it is
fortunate that we can apply such a result to our situation including the new type of CR
singularity of complex type. The other one is based on the fact that the family {o;} is
formally completely integrable and their linear part is of Poincaré type. We then apply
Theorem 4.13.
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Before we apply the above theorem, let us first exhibit an example of real manifolds

with an abelian CR singularity. We start with a Bishop surface M, C C? defined by
29 = R(Zl,Z_l) with
(5.3) R(21,70) = 2121 + (2 +2°) + 0(3),  R(21,71) = R(71, 1)
Let 77, 75 be the Moser-Webster involutions of M. On the complexification M of My, the
21 and 2y := R(21,w) are invariant by 7. Condition (5.3) implies that wy := R(wy, 21) = 23
is also invariant by 7V. Analogously, w;, wy and 2o are invariant by 7. We are ready to
verify the following

Proposition 5.2. Let R be given by (5.3) and let
(5.4) M: z3 = R(21,71), 2= (22 +279% + C(22, 23, %2))°,
where C(za, R(21,7%1),22) = O(3). Then M has an abelian CR singularity at 0.

Proof. Let 11 be defined by (z],w]) = (21, w;1) and (25, w)) = (22, ws). Let us verify
that 71; is a deck transformation of 7y, i.e. all z; are invariant by it. Obviously, 22, w, are
invariant by 7;. We know that 2y, 23 = R(21,w;) are invariant by 70 and hence by 7i;.
On M, z4 = (29 + 279wy + C(29, z3,wy))? is then invariant by 7i;. Therefore, 7; is an
involution and it fixes a hypersurface in M. Let 719 be defined by (21, 25, w}) = (21, 22, w1)
and

29 + 270wh + C(z9, R(z1, w1 ), wh) = —29 — 279wy — C(22, R(z1, wy), wa).

By the implicit function theorem, w), = —v5 2y — wy + f(22, R(21,w;), ws) with f being
convergent. It is clear that 7y, leaves z; invariant and it fixes a hypersurface.

For the abelian property, we note that ze,ws and R(z1,w;) are invariant by 711, 791. By
a straightforward computation, we verity that 71 and 75; commute with 75. Now 75; and
711 commute with 799 = p7i9p. This shows that 71179 commutes with 71979. O

5.1. Normal forms for abelian CR singularity.

Theorem 5.3. Let M be a germ of real analytic submanifold in C™ at an abelian CR-
singularity at the origin. Suppose that M is a higher order perturbation of a product quadric
of which vy, ...,7, satisfy (1.5). Suppose that M does not have a hyperbolic component (i.e.
ex > 0,8, > 0,h, = 0) and Revs < 1/2. Then there exists a germ of biholomorphism 1)
that commutes with p and such that, for 1 <i <pand k=1,2

& = Mi(§n)&: & = Ari(En)ns

I = —1 ; , = _,1 .
(5.5) ooy V=M Em )= A )

=& & =¢

J J Ji J

n,=mn, JFi n,=mn;, JFi
Moreover, Ayj = Al_jl and
(56) Ae=Aeop,, 1<e<e Afsl = A1(5+5*) 0Pz, €x <SP — Sy,

(57) pZ: Ce — Ze? CS — Zers*a CSJrS* — Zs'
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Proof. We will present two convergence proofs: one is based on a convergent theorem of
Moser and Webster and another is based on Theorem 4.13. We first use some formal results
obtained by Moser and Webster [MW83] and some results in section 4. The conditions of
the theorem imply that, for all 4, |u;| # 1.

Since M is a higher order perturbation of a product quadric, there are linear coordinates
such that, for 1 <i <pand k = 1,2, 7; and o; are higher order perturbations of

& = wiki & = Akini

g Jm=wm T =N
& =6 & =&
77;:7717 J # 1 77;:7717 J# i

For elliptic coordinates, this was computed in [MW83] and recalled in (2.21). For complex
coordinates, this is computed in (2.27) and (2.29). Recall that oy,...,0, are defined by
(5.1)-(5.2) Since |u1| # 1, then by theorem 4.1 of Moser-Webster ([MW83]), there is a
unique convergent transformation v normalized w.r.t. S; (see Definition 4.5) such that
of =17 oo oty and 7 := ¢ o7y 01y are given by

'y = My(§,n)& & = A (&, m)m
r— ML 1 A-1
(5.8) oy 77,1 : My (& n)m oE 77,1 : Apr (€ m)&
gj - fj §j = fj
m=m, J# mo=mn;, j#L

Here k = 1,2. It is a simple fact (e.g. see Lemma 4.9, D = {S;}) that there is a unique
¢1 € C°(S1) such that gbl_lalgbl is in the centralizer of S;. Therefore, ¢ = 7 is also
convergent.

Furthermore, we have M;(£,1) = A1 (€,7)A5N(E,n); and Ay, Agy, M, are invariant by
S1. In the new coordinates, let us denote 7;,,, 0,, by the same symbols for m > 1. However,
o1 = oy and T3y = 7;. Since each o, commutes with oy, then o, is in the centralizer
of Sj. Indeed, according to [MW83][Lemma 3.1](or Lemma 4.7 with D = {S1}), we can
decompose ,,, = ol 0% where o} is normalized w.r.t S; and ¢9 is in the centralizer of S;.
Write 010, = 0,,01 as
1)1y gl

m) 010, m)

(o = 0,010y,

Since 0201(02,)~! belongs to C(S1), so does (o)) 'o10),. Then applying the uniqueness of
1y stated earlier to o}, we conclude that ¢}, = I and o, = 02, is in the centralizer of S.

Let us verify that o2, or in general each (formal) transformation ¢ in C(S;) preserves
the form of o} and 7};. Indeed, ! commutes with S; too. Thus ¢~ 'of¢ commutes with
S1 and its linear part is S7. The linear part of ¢ must preserve the eigenspaces of S; and

hence it is given by
& —aky,  mo—=bm, (&) = (6 1)
for & = (&2,...,&,) and n. = (12, ..., ms). The linear part of 7} is given by

§1—= A, o — )\1;11517 (e M) = (&, M)

By a simple computation, the linear part of ¢ 17}, ¢ still has this form with )\klg instead
of A\g1. According to [MWB83|[lemma 3.2], there a unique normalized mapping ¥ that
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normalizes ¢ 1o} and the =17}, ¢’s. According to the uniqueness property of Lemma 4.8,
U = Id. Therefore, ¢ preserves the forms of 7 and oj.

Let 1), be the unique biholomorphic map normalized w.r.t. Sy such that ¢y ‘o9 = o3
and ¥, 1Tk2w2 = T, are in the normal form :

gé = MQ(&? 77)52 gé - AkQ(ga 77)772
e =My e L= AR (E G

5.9 : :
77}:773‘7 ]7&27 n;‘:nja j#z

Here k£ = 1,2, and My and Ay, are invariant by S,. Since o5 commutes with S7, we have
(ST 81) ™ 0 0y 0 (ST S)) = Sy 13 S

Note that S; o35S (resp. S;'7;,51) has the form (5.9) in which M, (resp. Ays) is replaced
by My o Sy (resp. Agy o S1). In other words 51_10551 and Sfngle are still of the form
(5.9). Since S; is diagonal, then Sy '4,S; remains normalized w.r.t. Sy. Applying the above
uniqueness on 1, for oy, we conclude that vy = S;'42S;. This shows that v, preserves
the forms of 7}, and o}. By the same argument as above, we have o € C(Sy, 53).

In summary, we have found holomorphic coordinates so that 7,; = 77, and o, = o},
for m = 1,2. As mentioned previously, we know that o}, 03,03, ..., 0, commute with S;
and Sy. In particular, My, My are invariant by S;,S,. Repeating this procedure, we find
a holomorphic map ¢ so that all ¢$~'0;¢ = ¢F and ¢~ '7;¢ = 77, are in the normal forms.
Furthermore, M; and Ay ; are invariant by S = {Sy,...,S,}.

By Lemma 4.7, we decompose ¢ = ¢ ¢, " where ¢, is normalized w.r.t. S and ¢y is in
the centralizer of S. Then gbl_lcrjgbl = o} and gbl_lnjgbl = 7;; are in the normal forms, since
¢o commutes with S;. We want to show that ¢; commutes with p.

Note that 0,1 = po.p and 0., = po,p. Thus (pp1p)~toj(ppip) = o7 where G} =
p(of)tp and oF = p(or,,,) 'p. It is easy to see that p¢ip is still normalized w.r.t. S
(see also Definition 6.4). By Lemma 4.8, we know that there is a unique normalized formal
mapping ¢, such that <b1_10j ¢1 are in the centralizer of S. Since 7 belongs to the centralizer
of §, then we have po1p = ¢;.

Now, 73; = p7y;p follows from 75; = p7y;p. This shows that

AQe = Al_el O Pz, AQs = Al(s-l—s*) © Pz, AQ(S-FS*) = Als O Pz,
where 1 < e <e, and e, < s < p— s,. Let ¢35 be defined by

&= (MM Emg. of = (AP M Enmy, 1< <.

For a suitable choice of the roots, we have ¢op = p@y. Furthermore, ¢, preserves all
invariant functions of S. Hence, each ¢! o ¢;' o 71 0 ¢y © ¢ has the form 7;; stated in
Theorem 5.3.

We now present another proof by using the more general Theorem 4.13.

Note that the above proof is valid at the formal level without using the convergence
result of Moser and Webster. More specifically, if 7;; are given by formal power series with
o1, ...,0, commuting pairwise, there exists a formal map 1) that is tangent to the identity
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and commutes with p such that (5.5) holds. Since each p; is not a root of unity, then (5.5)
implies that the conjugate family {¢},} is a completely integrable normal form.

Let o; be defined as above. Let S; be its linear part at the origin of C". The eigenvalues
{pij}r<j<n of S; are either ;, p; ' or 1. More precisely, if Q@ € N", |Q| > 2 then

m ifg=m
(5.10) UL — pj = plr e — &=l i j=m 4 p
1 otherwise.

We need to verify the condition that the family of linear part {Sy,...,S,} is of the Poincaré
type. So we can apply Theorem 4.13.

Suppose that (7,Q) € {1,...,2p} x NP satisfies ulQ — p; # 0 for some 1 <[ < 2p. Set
d = {min; max (||, |p; 1))}/ ). We define

p
Q=Q- Z min(gi, gisp)(€i + €inp) := (1, - - - q;p)-
i=1

Then ,uiQ = MZ-Q, for all 7. Take i = [ if |@Q'| < 2p. In this case, we easily get

(5.11) ud =y A0, |ud| > d?

by choosing a sufficiently large c¢. Assume that |Q'| > 2p. Take i such that
Gi + Qip = Max(qy + Gpsp).

Then ¢; + q;,, > |Q'|/p > 2. By (5.10), we get the first equality in (5.11). We note that
(q;, qg+p) = (¢;,0) or (0, qi+p). Thus

max ([ |, [ 1) = (max(|pu, o] )% > dI9

This shows that {Do1(0),. .., Do,(0)} is of the Poincaré type.

We now apply Theorem 4.13 as follows. We decompose ¢ = 113, such that ¢, €
C(Si,...,S,) and ¢y € C(Sy,...,S,). Then each o} = b, ‘0,1, still has the form in (5.5);
in particular, {07}, ..., 0,} is a completely integrable formal normal form. By Theorem 4.13,
Yy is convergent. Now, 17 'm0 = by (¥~ mi;00)1g are still of the form (5.5); however
(5.6) and Ag;Aq; = 1 might not hold. As in the first proof, we can verify that ¢ p = pi;.
Applying another change of coordinates that commutes with p and each S; as before, we
achieve (5.5)-(5.6) and Ag;A;; = 1. The proof of the theorem is complete. O

As a corollary of Theorem 5.3, we have the following normal form for real submanifolds.
In order to study the holomorphic flatness and hull of holomorphy, we choose a realization
similar to the case of Moser-Webster for p = 1.

Theorem 5.4. Let M be as in Theorem 5.3. Then M is holomorphically equivalent to

—~

(5.12) M: 2z, 5= Mj;(Q)¢G, 1<j<p,
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where ¢ = ((1, ..., (p) are the convergent solutions to
(513) Ce = Ae(§)|ze|2 - Be(g)(zz + g2)
(5.14) Gs = As(Q)2sZsrs, — Bs(Q)(22 + AL (O)Z24s,)s
(5-15) Cers* = Aers*gsszrs* - Bers* (C) (Zers + Al(s+s <O§§>
Here A1;(C) = X\ +O(C) (1 < j <p) satisfy (5.6) and
14+ A2 Ayj + A3
(210 AR (e A
(5.17) B, = Ay | =e,8,8+ 5
. 97 (1 _ A%]>27 j )< *e

In particular, M is contained in Zpre = Zpre and 2y A2 (2") = Zpiars., where § =
251 0N15(2"), 1 < j < p, is the inverse mapping of z,+; = (;A1;(¢),1 < j <p.
Proof. We use a realization which is different from (2.17). We assume that M already has
the normal form as in Theorem 5.3. Thus for j = 1,...,p, we have
(5.18) iy &= AyEnny, = AL (ENE,  (Eonk) = Eom), K #
Let us define

[i&m) =& +&omy, gi=/[fiop, 1<j<p
The latter implies that the biholomorphic mapping ¢(&,71) = (f(&,n),9(€,n)) transforms

p into the standard complex conjugation (2/,w’) — (w’,Z"). Define

Fj(gan):é.jole(gan)gja ]-Sjgp

Using the expressions of 71; given by (5.18), we verify that f; and Fj are invariant by 7.
Note that the linear part of f;(&,n) is § + A;jn; for 1 < j < p, and the quadratic part of
Fj(&,n) is ;7. By Lemma 2.5, fi,..., f, and Fy, ..., F, generate all invariant functions

of {Tllu c. 7T1p}.
Using Aqe 0 p. = Ay, and Ay 0 p, = A, 18+8 y rewrite z; = f;(§,m),w; = g;(§,n) as
_ Re T A (€n)we _ — Nie(§m)2e
ge - 2 ’ 776 - 2 )
1— A7, 1— A%,
¢ _ AT A%S(&ﬁ)w3+3* 1 = A1 (En)(weys, — 2s)
’ 1— A%s(@l) ’ 1= A3(6n) 7
¢ | Rstse T 1(s+s (gn) - A1(5—1—5 (gn)(ws Zsts.)
Sts« ) S+S« T
I - A%(H_s*)(fn) 1(5+5 (&7)

Using the above formulas and w; = Z;, we compute (j
= (jA1;(¢). This shows that z,,; = Fjop~ (2’

Note that F;(&,n)

= &;n; to obtain (5.13)-(5.15).
,Z') have the form (5.12).

Again, we use the formula of 713 to verify that z = (2/,2”) are invariant by all o710 !

On the other hand, z = (2

2") generate invariant functions of the deck transformations of
m; for the complexification of M given by (5.12). This shows that {p707,

< QOTlptpil}

and the deck transformations of 71, of which each family consists of commuting involutions,
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have the same invariant functions. By Lemma 2.5, we know that the two families must be
identical. This shows that (5.12) is a realization for {7y, ..., T, p}-

To verify the last assertion of the theorem, we first note that by (5.6) the solutions
1y .-G to (5.13)-(5.15) satisfy ¢, = (, and (s, = ,. By (5.6), on M we have z,,, =

Ale(g)ge :~Zp+6' AISO zp+8+8* = Al(ers*)(g)gsqu* = Al_fl(g)cs = A1_52(§)Zp+8' FI'OH] (512)7
solve (j = Ay;(2")2p1; (1 < 5 < p) to obtain A;j(g) = Ay;(2"). The proof is complete. [

5.2. Hull of holomorphy for the abelian CR singularity. Let X be a subset of C".
We define the hull of holomorphy of X, denoted by H(X), to be the intersection of domains
of holomorphy in C" that contain X. Let B’ be the ball in C" of radius r and centered at
the origin.

By Theorem 5.4, we assume that M has pure elliptic type and it is equivalent to

M: Zp+j = Alj(C)Cj, 1 S] S D,

where (; = (;(#') (j = 1,...,p) are the convergent real-valued solutions to (5.13). For
¢ € RP with small |(], we know that Ay;(() > 1.
Near the origin in RP, we define a real analytic diffeomorphism:

R: (= (Ai(Q)Cs - Ap(Q)G) -

If € is small enough, for each " € [0, €]’, we can define ( = R~'(z”). Note that R sends
¢; = 0 into z,4; = 0 for each j. We can write

R(") = (2p181(2"), .., 23,5 ("))

with S;(0) > 0. Then M N {z" = 2"} is given by (5.12)-(5.15). For z” € [0, €]? let D;(x")
be the compact set in the complex plane whose boundary is defined by the jth equation
in (5.12)-(5.15) where ¢ = R~*(z”). When z,,; > 0, the boundary of D;(z”) is an ellipse
with

(5.19) Dj(") C Bg, ymr
Here and in what follows constants will depend only on Ay, ..., A,. Thus

D(l‘”) — Dl(l‘”) XX Dp(l‘”) « {ZL‘”} C CP x R?

is a product of ellipses and its dimension equals the number of positive numbers among
Tpit,- .., Ty We will call D(2") an analytic polydisc and

O*D(x") := 0Dy (2") x - -+ x OD,(x") x {z"}

its distinguished boundary which is contained in M. Set D(0”) = 9*D(0”) = {0}. Thus,
M is foliated by 0*D(z") as x” vary in [0, €]P and e is sufficiently small. Specifying the €
later, we will use this foliation and Hartogs’ figures in analytic polydiscs to find the local
hull of holomorphy of M at the origin.

As 2" vary in [0, €], let M, be the union of 0*D(2"), and H, the union of D(z"). Both
H, and M, are compact subsets in C?”. Note that

B* + M, :={a+b:a € B* be M}
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is contained in a given neighborhood of M., if €, is sufficiently small. Analogously, B +H,
is a connected open neighborhood of H.. Let us first verify that a function that is holo-
morphic in a connected neighborhood of M, in C? extends holomorphically to a neigh-
borhood of H. such that the extension agrees with the original function on a possibly
smaller neighborhood of M,. Assume that f is holomorphic in a neighborhood U of
0D := Uynejo,gp0* D(2"). Note that H. is defined by

(5.20) Aj(@")|z* = Bi(a") (2] + 7)) S wpyy, 15 <ps
(5.21) y"'=0, 2" €l0,¢
with

_ 1+ A%j(Ril 1‘”)) B‘(l‘”) _ Alj(R_1<x”))
Sj(a”)(L = AL (R () Si(”)(1 = Af; (R~ ()

Let & be a small positive number. For 2” € [—6, €], let D}(2") C C be defined by
Aj(2"))z)* — Bj(x”)(zjz» + 23) < Zpij+ 0.

Let P (resp. 0*P?) be the set of z = (2/,2”) such that y” € [—6,]?, 2" € [-F, €], and
zj € D(a") (resp. z; € ODS(2")) for 1 < j < p. Let U? (resp. U) be a small neighborhood
of P° (resp. P%). Assume that 0 < §; < and §; is sufficiently small. We may also assume
that U°! is contained in U’ and 9*P° C U. Thus, for (2/,2") € U, we can define

1o 1 f(ga Z//) dgy - - dgp
5.22 F = o '
(5.22) (#,27) (27i)P /@eaDi‘(z") /CpeaD‘,?(m”) (G —21) (G — 2p)

When z is sufficiently small, F'(z) = f(z) as f is holomorphic near the origin. Fix zy € U°".
We want to show that F' is holomorphic at z;. So F'is a desired extension of f. By
continuity, when z = (21, ..., z,) tends to zg, 2 tends to z{ and dDJ(z") tends to AD(xf),

while z; € Dg(x{)’) when 2z is sufficiently close to z5. By Cauchy theorem, for z sufficiently
close to zy we change the repeated integral for (; € aD;?(xg), 1 < j < p. The domain of
integration is thus fixed. The integrand is holomorphic in z. Hence F' is holomorphic at
Z = Z2p.

Next we want to show that H,. is the hull of holomorphy of M, in Bfg’ for suitable ¢, €
that can be arbitrarily small.

Let us first show that H, is the intersection of domains of holomorphy in C?. Recall
that H. is defined by (5.20)-(5.21). Define for ¢’ := (dy,...,9,) with §; > 0

p
Py =A@zl = Bi(a") (2} + ) = apry + (07 5 D v
=1

+ ) 6 {A@) |z = Bi(@) (2] +2) — wpya )
i
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When p = 1, the last summation is 0. The complex Hessian of pg/ is

9% ot +5 !
> o2 Slaly = AL+ Zwuza 2")|f?
ap=1 770% i#j

+ Re Z aji(2"; 2t tpin + Z bjke(z"; 2 )t pratpre

+RGZZ(SC]Z]§I‘ thtp+k+zz djkgl‘ Zz p+ktp+€

i£j k i£j k0 0;

Here a;,(2";0) = bj u(2";0) = ¢;(2";0) = dju(2";0) = 0, and ¢, j,k, ¢ are in {1,...,p}.
From the Cauchy-Schwarz inequality, it follows that for z € ng’ with ¢y > 0 sufficiently
small and 0 < §; < 1,

& —1

s
2 Z tt5>A( ")+ = Z\tpﬂmz(s LA (2)|t:]2.

a,f= 1 Fa% i£]

Therefore, each pj-’ is strictly plurisubharmonic on |z| < ¢ for all 0 < §; < 1. Hence for
5* = (507 sy 5])) = (507 5/) S (07 ]-)erla

//|2 52

pg* (’Z) = mjaX{p?,, ‘y 0> p+] 62}

is plurisubharmonic on B?. By (5.19), D(2") is contained in Bé’;gl/g for 2" € [0,€]P. We
now fix € < (€y/C)? to ensure

(5.23) D(z") c B*, Va" €|0,€".

€’
This shows that H%* := {z € B> | : p}*(z) < 0} is a domain of holomorphy.

Let us verify that He = (Vs 5050...6,50 H’;. Fix z € H,. From (5.23) we get z € B
We have y” = 0. Hence (5.20) hold and 22, , < €*. Clearly, p%(z) < 0 for each j and
0 € (0,1)?. This shows that z € H, is in the intersection. For the other inclusion, let us

assume that z is in the intersection. Then y” = 0. With pj-*(z) < 0, we let 9; tend to 0 for
i # j. We conclude

Ai(a")zil* = Bi(a") (2] + %) < apu
for all 7 # j, and hence for all i as p > 1. When p = 1 the above inequality can be obtained
directly from p*. We also see that 0 < x,,; < e. We have verified (5.20) and (5.21). This
shows that z € H..
In view of (5.20)-(5.21), the boundary of H, is the union U_, S with H being defined
by
Aj(@")|z]* = B;(2") (25 + %)) = Tpay,
Al — B E 4T St 1
y” =0, Tpyi <€ 1

Therefore, we have proved the following theorem.
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Theorem 5.5. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that the complex tangent of M is purely elliptic at the origin. There is a base of
neighborhoods {U;} of the origin in C™ which satisfies the following: For each U;, the hull
of holomorphy H(M NU;) of M NUj is foliated by embedded complex submanifolds with
boundaries. Furthermore, near the origin H(M N U;) is the transversal intersection of p
real analytic submanifolds of dimension 3p with boundary. The boundary of H(M N U;)
contains M NUj;; and two sets are the same if and only if p = 1.

Remark 5.6. The proof shows that the hull H(M N U;) is foliated by analytic polydiscs,
i.e. holomorphic embeddings of closed unit polydisc in CP.

6. RIGIDITY OF PRODUCT QUADRICS

The aim of this section is to prove the following rigidity theorem: Let us consider a higher
order analytic perturbation of a product quadric. If this manifold is formally equivalent
to the product quadric, then under a small divisors condition, it is also holomorphically
equivalent to it. Notice that when p > 1, there are real submanifold M with a linearizable
o such that M is not formally equivalent to the quadric, or equivalently, the {7y;, p} is not
formally linearizable; see [GS15].

The proof goes as follows : Since the manifold is formally equivalent to the quadric, the
associated involutions {7;} and {7} are simultaneously linearizable by a formal biholo-
morphism that commutes with p. In particular, oy, ..., 0,, as defined by (5.1) and (5.2),
are formally linearizable and they commute pairwise. These are germs of biholomorphisms
with a diagonal linear part. According to [Stol5][theorem 2.1}, this abelian family can be
holomorphically linearized under a collective Brjuno type condition (7.38). Furthermore,
the transformation commutes with p. Then, we linearize simultaneously and holomorphi-
cally both 77 := 71 0--- 07, and 75 := Ty 0 -+ 0 Ty, by a transformation that commutes
with both p and &, the family of linear parts of the oy,...,0,. Finally, we linearize si-
multaneously and holomorphically both families {71;} and {7} by a transformation that
commutes with p, §, T and T5.

These last two steps will be obtained through a majorant method and the application of
a holomorphic implicit function theorem. This is obtained in Proposition 6.6. They first
require a complete description of the various centralizers and their associated normalized
mappings, i.e. suitable complements. This is a goal of Proposition 6.3.

Throughout this section, we do not assume that p, ..., u, are non resonant in the sense
that @ £ 1if Q € ZP and Q # 0. In fact, we will apply our results to M which might be
resonant. However, we will retain the assumption that ¢ has distinct eigenvalues when we
apply the results to the manifolds.

6.1. Centralizers. We recall from (5.1) and (5.2), the definition and property of germs of

holomorphic diffeomorphisms : ¢; := 7y;07y;, ai_l = poip, 1 <i < ethy; s 1= T1s0To(s, 14),

Osts, i= Ti(s4ss) © T2ss 0.t = posp, e« + h, < s < p—s,. Recall the linear maps
S:& =&, 0y =py
(6.1) Si & =&, ni=uin, =& My =1k Kk #J;
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while p is given by

P ( é?ﬁe?ghanh) (neageaghanh)
( ;7 ;—l—s 77737,'754—5 ) - (€s+s*7€s7ns+s*7ﬁs)'

Recall that indices e.h, s have the ranges 1 < e < e,, e, < h <e,+ h,,and e, + h, < s <
p — 5. The basic conditions on 1; = )\2 are the following:

(64) |Mh| =1, Hsts. = ﬂ;la He > L, |,u5| > 1, :u]; 7& 17k =12,....

In particular, a p; may be repeated and y, can be 1.

We need to introduce notation for the indices to describe various centralizers regarding
ATH Sj and ,0 We first introduce index sets for the centralizer of S := {Sy,...,5,}, 11 =
Tqo- Tip, p- We recall that T; :== {T},...,T;,}.

Let (P Q) € N? x N? and 1 < j < p. By definition, £"n%e; belongs to the centralizer of
S if and only if it commutes with each S;. In other words, £n%e; € C(S) if and only if

(63 N T

Note that the same condition holds for £9nFe,, ; to belong to C(S). This leads us to define
the set of multiindices

;= A{(P,Q) e N1y ™" =y, ™" = 1Vi#£j}, 1<j<p.
We observe that if (P, Q) € R, then (6.4) implies that
pi=aqi+1, j#Fh pi=a Yi#jh
(6.6) A= 1 R gy ATV =21 j=h

(6.3)

Here we have used the assumption that ps are not root of unity, which simplifies greatly
the results and computation in this section.
For convenience, we define for P = (pe, pn, Ds, Psts.) and Q = (¢e, @, @s, Gs+s.)

( ) = (q67ph7p8+8*7p87p67Qh7QS+S*7qs)7
pa(P

(6.7) Q) = (Ge> Phs Psys.rDs)s  Po(PQ) = (Pes Ghs Gstsas Gs);
(6.8) Toray = (Fop)ra.

Here p. = (p1, ..., pe.) denotes the “elliptic coordinates” of P. Hence,
(6.9) p(PQ) = (pu(PQ), (PQ)) = (p(QP), pulQP)).

According to (6.5) and equation (6.3) of p, the restriction of p to Ry is an involution,
which will be denoted by p,. Moreover, p is a bijection p, from R4 onto Rsis,. We define
an involution on R, by

(6.10) pe(PQ) = (pp(PQ), pa(PQ)) = (Des G, Gsts.+ Gs> Ges Phy Phy Psts.s Ps)-

Note that p. is not a restriction of p, and p, is not an involution either.
Next, we introduce sets of indices to be used to compute the centralizers on Ty, 73, p. Set

Ny =R, {(P,Q): pi > qi, Yi#j}, 1<j<p.
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Since there is no restriction for p = 1, we have N; = R; for j = e or h. Let us set
Ajk:<P7 Q) = maX{pku qk}u k # j7 Ajj<P7 Q) = Dj;
Bjk(Pa Q) = min{pka qk}7 k 7& j) Bjj(Pv Q) = dqj.
We define a mapping
(45, Bj): Rj = N

with A] = (Ajb Cey A]p) and BJ = (th ey B]p) For (P, Q) € M Wlthj =€, h, we have

A] © pj<P7 Q) = (pe7ph7ps+s*7ps) and Bj © pj(P7 Q) = <q67qh7q3+3*7q3>' In other WOI'dS, on
N for j =e or h, Ajo p; just interchanges the sth and the (s + s,)th coordinates for each

s, so does B; o p;, while Ay, ps and By, ps have the same property on N;. Furthermore,

(611) (Ah, Bh)p = p(Ah, Bh) on Rh,
(6.12) (Asts.s Bors.)p = p(As, Bs)  on R

Finally, with the convention that the product over an empty set is 1, we define, for
(P,Q)ER;:

[T M j#h,
6.13 Upo ‘= _
( ) e {)‘ih_qh_l Hh’;ﬁh )‘27/ ", J=h;

qp’ —Pp! . .

(6 14) I/+ o Hh’\qh/>ph/ )\h}’L " ) J # h,
. PQ H qp' —Dp/ . h
h/#hth/>ph/ h'! I j — It

Here e, < I/, h < e, + h,. For convenience, we however define
vop ‘= VpQ, (Pa Q) S Rj'
If p=1 we set V;Q: 1.

Lemma 6.1. Let (P,Q) € R;. Then )\j’l)\P*Q = vpq, and

(6.15) vpg = *£1; I/;FQ = 41; I/;FQ =1, (P,Q)eN;
(6.16) Vpe(PQ) = VPQs J = € Vo(PQ) = VPQ;
(6.17) V;(PQ) = VpoVrQ, J =€ y;r(PQ) = Vo

Proof. The first identity follows from the definition of vpg and R;. From the definition of
R;, we have (\Vi7%)2 = /"% = 1 for i = I in (6.13)-(6.14). We also have pb* "' = 1
for terms in (6.13)-(6.14). Thus

XTI = 1, NPT = 4],

Thus we obtain (6.15); the rest identities follow from the definition of pe, p, and the above
identities. O
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Lemma 6.2. For all multiindices (P, Q), £¥n@ o p = gpa(PQ)ﬁpb(PQ). For all multiindices
(P, Q) € Re URy,, we have

(618) )\pa(P7Q)_pb(P,Q) — )\Q_P’ Mpb_Pa — MP_Q’
(6.19) £PnR o po Ty = AP Fp0a(PQ).
(6.20) PR opo STt = MP—QEP“(PQ)ﬁpb(PQ)_

Proof. Identity (6.18) follows from (6.7) and the fact that . and p. are reals, A\, ' = Ay,
Ps = (s, and psis, = Qsis,- A direct computation shows that

PR o po Ty = N e P VpeuPQ) - ¢PpQ 6 5o 51 = grv—rag? P pa(PQ).

)

The result follows from (6.18). O
Finally we note that
(6.21) te: (P,Q) = (Ae, Be) 0 pe(PQ) = (Ac, Be)(po(P, Q), pa(P, Q))

defines an involution on N.. We now can describe the centralizers.

Proposition 6.3. Let S ={S1,...,S,}, Ti = {Ti1, ..., T;p} and p be given by (6.1)-(6.3).
Let o =1+ (U,V) be a formal biholomorphic map that is tangent to the identity.
(1) ¢ € C(S) if and only if
(622) Uj,PQ - O - ‘/j7Qp, V(P, Q) ¢ Rj.
Also, ¢ € C(S, p) if and only if (6.22) holds and

(6.23) Unpro = Unprg) (P,Q) € Ry Usis..ro = Uspro), (PiQ) € Rots,;
(624) ‘/;,QP = Ue,pe(PQ)a (Pa Q) € Re;
(6.25) Vior = Vh,p(QP)a (P,Q) € Ry;  Viis.op = Vs,p(QP)> (P,Q) € Roys, -
(i) ¢ € C(S,Ty) if and only if (6.22) holds and
(626) ‘/J}QP = I/PQUJ‘7PQ, \V/(P, Q) € Rj.
(1ii) ¢ € C(S,Th,p) if and only if (6.22), (6.23) and (6.26) hold, and
(627) UeJDQ = VPQU@pe(pQ), (P, Q) € Re.
() Let p>1. ¢ € C(T1,Tz) if and only if (6.22) and (6.26) hold, and
(6.28) Uirq = vioUjm,syra, (P,Q)€R;\N;.
Also, v € C(T1,Ts, p) if and only if (6.22), (6.26) and (6.28) hold, and
(6.29) Ue,pq = Ue(acBpe(pq),  (PrQ) € NG,
(6.30) Un,pg = Uh,p(PQ)a (P, Q) € Ny,
(631) Us-l—s*,PQ - Us,p(PQ)a (Pa Q) € -/\/’S—I—S*'

We remark that condition (6.28) holds trivially when (P, Q) € Nj, in which case it
becomes U; pg = Uj pg-
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Proof. To simplify notation, we abbreviate
P = Pa(PQ), pp=pp(PQ), A;=A;(P,Q), Bj=B;(P,Q)
Recall that A, = A\, A\ = X,:l and A\; s, = Xs_l. By definition,
Se = TieTre,  Sp=TiTon, Ss=TiTos1s,), Ssts. = Ti(sts.)Tos-

In the proof, we will use the fact that .S; is reversible by both involutions in the composition
for S;. In particular,

(6.32) Ty;S;Ty; = St Vi

However, we have T5(s14,)SsTo(s1s5.) = S5 Vand Ty Sets, Tos = S, Jrls*. For simplicity, we will
derive identities by using (6.32) and

(6.33) S;t=pSep, Syt =pSwp,  Sils. = pSap.
Finally, we need one more identity. Recall that
TleTQj = TQjTlea J#e; TlhTQj = TQjTlh, J# h;

TlsT2j = T2jT157 J ?é S+ Sy T1(5+s*)T2j = TQjTl(s—i-s*)u J 7£ S.
Therefore, for any 7 we have the identity
(6.34) T,S;Ty =S5

In what follows, we will derive all identities by using (6.32), (6.33) and (6.34), as well as
SiSj = SjSZ', Tlile = leTli and TQ = pTlp
(i) The centralizer of S is easy to describe. Namely, ¢ € C(S) if and only if

UjoS;=piU;, UjoS,=U;, k#j,
VioS;=u;'V;, VioSe=V;, k#j
For ¢p = pp, we need
(6.35) Uh=Thop, Uss =Tiop,
(6.36) V.=T.op, Vai=Viop, Vie =Viop.
Hence, using (6.8)-(6.10), we have U, pg = Ve pp@) = Vepo(@p)- The other equalities are

obtained in the same way.
(ii) If ¢ € C(S,T1) C C(S,T1), then it satisfies

(6.37) Vi =X 'UjoTy.

This implies (6.26).
(iii) Assume furthermore that ¢ € C(S, Ty, p). Eliminating V, from (6.37) and (6.36), we
obtain
U.=AUcopoT.
According to (6.19), we obtain (6.27) by

Ue,pbpa = )\e)\ Ue,PQ = I/PQU&pQ.
(iv) Let ¢ € C(T1,7T2). Then, in particular, we have
Uj:Uj(le), k’#], V}:)\;lUjOTl.
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Let (P,Q) € R; \ N,;. We compose U; successively by each Ty if g > pr. We emphasize
that such a k is a hyperbolic index. The previous identity yields

(6.38) Uirqg = LirqUjas,, Lirg= [[ M7
k#3,p<qk

By the definition of V;FQ, we conclude
(639) LjJ:JQ = V;Q’ (P, Q) S Rj.

If (P,Q) € Nj, then (A;, Bj) = (P,Q) and we have L; pg = vjo = 1, so that the relation
(6.38) just becomes the identity U; po = Uj pg-

Assume now that ¢ € C(71, 7Tz, p). In addition to the previous conditions, we have (6.35)
and (6.36). Hence, (6.23), (6.27) and (6.38) lead to:

VPQUe,pe(PQ) = Ue.pg = Le,pUe,a.B., (P, Q) € Re;
Uh,ph(PQ) = Unpg = LnrqUna,B,, (P,Q) € Ry;

Us—l—s*,p(PQ) = Us,PQ = Ls,PQUs,AsBS7 <P7 Q) € Rs-

Since p., pn, are involutions on R. and R}, respectively, and since p is a bijection from R
onto Rsys,, we obtain

Vo (PQUe.p@ = Lepe(P)Ue(ac Boyope(P@), (P, Q) € Re;
Unpq = Lupuam)Un (an.50)00,P@): (P, Q) € Ris
Usis,.pQ = Ls pap)Us (As,B.)0p(PQ) (P,Q) € Reys, -
By (6.39), we copy the values L, ,pg) = V;’(PQ) from (6.17). We have

V;Z(PQ) = Vo, if j # e, and (P,Q) € R;;
V/—)Z(PQ) - VPQVI-L_Qv if (PaQ) € Re;
Vpe(PQ) = VPQ, if (P,Q) S Re-

Finally, we obtain
Uj,PQ - V;QUj,(Aj,Bj)Opj(PQ)a (Pv Q) € Rja ] =€, ha
Uers*,PQ == V;QUS,(AS,BS)Op(PQ)7 (P, Q) c Rers*-

Therefore, we have derived necessary conditions for the centralizers. Let us verify that
the conditions are also sufficient. Of course, the verification for (i) is straightforward.
Furthermore, that ¢ = I + (U,V) commutes with Si,...,S5, is equivalent to U;pq =
Viop = 0 for all (P,Q) € R;, which is also trivial in cases (ii) and (iii).

For (ii), (6.22) and (6.26) imply that ¢ commutes with 7;. We verify that ¢ commutes
with p. In other words, (6.24) and (6.25) hold. The latter follows immediately from (6.23)
and (6.26). For the former, take (P,Q) € R.. By (6.26) and (6.27), we get V. op =
vpoUe,pg = Ue . (Pg), which is (6.24).

For (iii), let us verify that (6.28), (6.22), and (6.26) are sufficient conditions for ¢ €
C(T1,T2). By (6.26), we get T7 = Typ. Also, for ¢ € C(77) it remains to show that for
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(P, Q) € R,
(6.40) (UjoTi)pq =Ujpq, k#ji (UjoTy)or = NVjqr-

We introduce (P;,Q;) via £7n% o Ty; = X/~ "¢"in% and also denote (P;,Q;) by (P,Q);.
We remark that (6.28) also holds for (P, Q) € N,. Therefore, we will use (6.28) for all
(P,Q) € R;.
For k # j, h, we have (P, Q) = (P, Q). Thus in this case we immediately get the first
identity in (6.40). Using (6.28) twice, we obtain for j # h
(Uj o Tu)pg = X " Ujpen = N " Vpgy, Ui(4;,8,)(P,Q)
= )\ph_qhy(—;Q)hﬁ$QUj,PQ = Uj,PQ-

Combining with the identities which we have proved, we get (U; o T3;)gp = (Uj o T1)gp =
(A\;jVi)qp for j # h. This gives us all the identities in (6.40) for (P, Q) € R;. These identities
are trivial when (P, () is not in R;. Therefore, we have shown that these conditions are
sufficient for ¢ € C(T1,7z).

Finally, we need to verify that (6.22), (6.26), and (6.28)-(6.31) imply that ¢ and p
commute. In other words, we need to verify (6.23) and (6.27), by (iii). We have

(6.41) (AeBe) o peo (AcBe) = (AcB:) o pe on R..
Let (P, Q) € R.. By (6.28), (6.29), (6.41) and (6.28), we get
Ue,p = ViqUe (40,8(PQ) = VEQUe (40 Bpe(PQ) = ViV (pny U e (P.Q)-

By (6.17), (6.15), V]JSQV;(PQ) = vpg. We obtain (6.27). Let us prove (6.23) with PQ) €
Rore.. Using (6.28), (6.31) with PQ = (Ayys. Beys.)(PQ),(6.12), (6.28) with PQ = p(PQ)
successively, we get

Usts..p@ = ViQUstsu Avse. Beron(PQ) = VEQUosp(Art . Bure. (PQ))
— vt U ot o TT
- VPQU&AsBs(p(PQ)) = VPQVp(pQ)Us,p(PQ)-

which gives us (6.23) by (6.17). To prove (6.23) for hyperbolic index, apply successively
from left to right, (6.28), (6.30) with PQ = (A, B)(PQ), (6.11) and (6.28) with PQ =

pr(PQ) :
V;QU/%PQ = Un(4,B)(PQ) = U pn(44B,)(PQ)
= Un,(4nB1)on(PQ) = V;;(PQ)Uhvﬂh(PQ)'

By (6.17) again, we obtain (6.23). The proof is complete. O

6.2. Normalized mappings. We have described the conditions on centralizers. We now
determine complements of these conditions to define normalized mappings.

Definition 6.4. Let ¢ = I + (U, V) be a formal mapping tangent to the identity.
(i) We say that ¢ is normalized with respect to Sy, ..., S, if

Upog=0=V,gp, if(P,Q)eR;, Vj.

Furthermore, ppp is normalized w.r.t. S1,...,.S, if and only if ¢ is.
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(77) We say that ¢ is normalized w.r.t. {S,T1}, if

(642) ‘/J}QP = —VPQU]‘7PQ, (P, Q) - Rj.

(17i) We say that ¢ is normalized w.r.t. {S, Ty, p} if
(6.43) Unrg = —Unprg), V(P,Q) € Ru;
(6.44) Usts,.pg = _Us,p(PQ)a V(P,Q) € Reys.;
(645) Ue,PQ - _VPQUe,pe(PQ)a V(Pa Q) € Re-

(iv) Let p > 1. We say that ¢ is normalized w.r.t. {71, Tz} if
(646) UjJDQ = O, (P, Q) - ./\/’]

We say that ¢ is normalized w.r.t. {7y, Tz, p} if

(6.47) Uepq = —Uc(ABope(PQ): Y(P,Q) € Ne;
(6.48) Unro = —Un ppq): Y(P,Q) € Np;
(649) Us+s*,PQ = _Us,p(P,Q)a V(P7 Q) € -/V‘ers*'

The set of normalized mapping w.r.t. to a family F is denoted C*(F).

Lemma 6.5. Let F' be a formal map which is tangent to the identity. There exists a
unique formal decomposition F' = HG™' with G € C(S,Ty,p) (resp. C(Ti,Ta,p)) and H €
C(S, T, p) (resp. C(T1,T2,p))). If F' is convergent, then G and H are also convergent.

Proof. We will apply Lemma 4.3 as follows. Let H be the set of mappings in C5(S, Ty, p).
Note that H is a R-linear subspace of (92)". We will define a R-linear projection
from (9M2)" onto H such that 7 preserves the degree of F' if F' is homogeneous. We will

show that G = (I—m)H agrees with C5(S, 77, p). We will derive estimates on 7 stated in
Lemma 4.3, from which we conclude the convergence of H,G. The same argument will be
applied to the second case of C(71, p) and C<(T, p).

For the first case, let us define a projection 7: (92)" — H. We decompose
U, V)=U"+U0"v'+V"), wUV)= U, V".
We first define
(6.50) U,‘,PQ = Uj.rq, V‘,,PQ = VirQ; U,‘fPQ =0, ‘/j,,/PQ =0,

J J J

for (P, Q) ¢ R;. Suppose that (P, Q) € R.. We have

2 2

Uepq =U. pg +Ulpg:  Uep(pg) = Ué,pe(PQ) + Ue p.(PQ)-
According to (6.45) and (6.27), we need to seek solutions that satisfy

—/ -/
(6.51) Uepq T vPQUecppg) =0, Ulpg = vPQUec . (pq) = 0.
Hence, for (P, Q) € R. we choose
1

_ 1 _
erQ = 5(Uerq = VPQUep.(rq))s Ucpq = 5(Uepa +vPQUe,p.(p)-
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We verify directly that the solutions satisfy (6.51) as follows:

_, 1 _
Uepq +vPQUe . (pg) = 5(Uere = VPQUe . (r)

1 _
+ §(VPQU epe(PQ) — VPQVp(PQ)Uc,Pq) = 0.

Here we have used that p is an involution on R, and v, po)vpg = 1 from (6.16).
For (P,Q) € Ry, we achieve (6.43) and the first identity in (6.23) by taking

iz

1 — 1 =
U;L,PQ = é(Uh,PQ - Uh,p(PQ))7 Uh,PQ = §(Uh,PQ + Uh,p(PQ))'

For (P, Q) € Rsys,, we achieve the second identity in (6.23) and (6.44) by taking

1 — 1 _
U;-{—s*,PQ = §(Us+s*,PQ - Us,p(PQ))7 ;/—f—s*,PQ = i(Us—I—s*,PQ + Us,p(PQ))'

We have determined coefficients for U] pg, U pg with (P, Q) € R;. Let us set for (P, Q) €

(6.52) jl,/QP = )‘jil)‘PiQUJI’:PQ’
6.53) Vier = Vier = Vigp:

This fulfills the conditions on V; and V]’ easily. Note that the first identity means that
(U", V") commutes with Tj. We have obtained the required formal decomposition.
To prove the convergence, we start with

(6.54) AIAPTR = pg = 1

for (P,Q) € R;. So m is indeed an R-linear projection which preserves degrees. Since
lvpg| = 1, we have that

Upbpl < Upiol.

| pQ|_(g}%>§)| P

Here (P’, Q') runs over all permutations of (P, Q) in 2p coordinates. The same holds for
V’. Hence, with the notation of Lemma 4.3, we have

{W(Ua V)}sym = (Uv V)sym'

The existence and uniqueness as well as the convergence also follow from Lemma 4.3.
We now consider the second case of C(71,7s,p) by minor changes. Let us define a

projection 7: ((ﬁ%)" — H. Here H is the space associated with the mappings satisfying
the normalized conditions (6.46)-(6.49). Let G = (I —m)H. We decompose as above

U V)=U+v",v'+v"), =«UV)= U, V.



52

Recalling that ¢, = (A., B.) o p is an involution on N, we choose :

(6.55) Tro = 3Wira + Tipra)s  (P,Q) €N,
(6.56) jPQ = %(Uj,PQ ~Ujprq),  (P.Q) €N,
(6.57) epQ = %(Ue,PQ +Ueu(P); (P,Q) € N,
(6.59) Lro =5 Uera ~ Ueira) (P.Q) €N,
(6.59) Uheo = 3Wsssra+ Toptra), (P.Q) € N
(6.60) U;-i-s*,PQ = %(Us-‘,—s*,PQ - Us,p(PQ))? (P,Q) € Nops, .

We still use (6.50) for (P,Q) € R;. For (P,Q) € R;, define Vop by (6.52) and V},p =

Vir — Vjop, after we set

(6-61) _;:PQ = V;QU]{f(Aj,Bj)(P,Q)a U]I',PQ = Uj,PQ - ;:PQ’ (P, Q) S Rj \-/\[J

Let us verify that (U, V) = (U, V') is in H. To verify (6.47) for j = e, via (6.56) we
compute
A 1 _ 1 _
Ue,pq +UeacBoop (P) = 5(Uer@ = Uc(p@) + 5 (Uesp@) = Uerq) = 0.

We also know that p is an involution on N}, and it is a bijection from N, ,, onto N;. Analo-
gously, we verify (6.48) and (6.49) via (6.56) and (6.60). Note that (P, Q) — (4;, B;)(P, Q)
is a projection on N;. Analogously, we verify (6.46) via (6.61). This shows that =(U, V)
is in H. We can also verify that (U”,V") = (I—=)(U,V) satisfies the conditions on the

centralizer, i.e. it is in G.
As before, we have

U’ U, <C U; pror].
| ]’PQ|7 | ]’PQ| - mzaX (P/,Q/)perrl?t}tiﬁon of (P,Q) ‘ LPQ ‘

Equations (6.52) lead to the same inequality for V" and hence for V! = V — V", Hence,
again the result follows from Lemma 4.3. U

6.3. Convergence of linearizations.
Proposition 6.6. Assume that the family of involutions {Ty, T2, p} is formally linearizable.
Assume further that o1, ..., 0, defined by (5.1)-(5.2), are linear.

(i) There is a biholomorphic mapping in the centralizer of {S, p} which linearizes T
and 1.

(17) Assume further that 7y =Ty and 7o = Ty. Then {11, ..., Tip, p} is holomorphically
linearizable.

Proof. (i) Suppose that ¥ is a formal mapping satisfying
\11717'1]'\1/ = TM']., \I]p = p\I’
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Then Ty = (LV) o Ty;, o (LV)~!, and LW commutes with p. Replacing ¥ by ¥ o LU,
we may assume that ¥ is tangent to the identity and i; = j. We decompose ¥ = U0t
where ¥, is normalized w.r.t. §,71, p and ¥y is in the centralizer of S, 77, p. Since ¥, ¥,
commute with the S;’s and p, then ¥; commutes with the S;’s and p too. We now let ¥
denote Wy.

To be more specific, let us write

o f;:)\ln2+f2(€777> izlu"'7p7
n= NG+ gEn) i=1.p,
and
mi=m+Vil§n) i=1...p

Let us write that ¥ conjugates 71 to

T1I g;:)\l’lh, 77; = )\Zlgi, 1= 1,...,p.
We have W o T; = 7, o U, that is
(6.63) NI —VioT, = —gioW(Em) i=1,...,p.
Since ¥ is normalized with respect {S,T1,p}, it satisfies Definition 6.4 (iii). Since W
commutes with each S;, then U; pg = Vj op = 0 for (P, Q) € R;. Since it also commutes
with p, then by (6.23) and (6.43)-(6.44) we obtain U; pg = 0 for (P,Q) € R; and j =

h,s,s+ s,.
We need to majorize U, pg, Ve gp for (P, Q) € R.. By (6.63) and (6.54), we obtain

Uepg — V;é‘/e,QP = —Ae{ge 0 V}pg.

Using (6.24) and (6.45), we obtain V. op = U, ,,(Po) = —I/];é?U&PQ, and hence

1 1
Uepg = —§>\e{ge oVUlpg, Veor= §VPQ>\e{ge oW}pq.

Therefore, we have
[Veapl |Ue,pql < C[{gj 0 ¥}prgl.

The above holds for (P, Q) € R.. It holds trivially for (P, Q) &€ R.. In view of (4.1), we
then have

Qﬁsym = Cgsym o \IIsym = Gsym © (Isym + ¢sym)-

Therefore, 1), is convergent at the origin and so is W.

(ii) Assume now that o = S, 7y = T}, 75 = T3 are linear. Suppose that ¥ linearizes the
{;;} and commutes with p. We decompose ¥ = ¥, ¥, with ¥; being normalized w.r.t.
Ti, Tz, p and with ¥q being in the centralizer of 71,73, p. Since U7, ¥ = T;;, we have
\Ill_lTij\Ifl = \IfalTij\Ifo = T;;. Hence, Uy linearizes the 7;; and is normalized w.r.t Ty, 7z, p.
Since ¥, ¥y commute with S, 77 and p, so does V¥;.
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We recall
& = Aimj &= Ny + fi5(§m)
7. 1= A n M= A+ g55(60m)
TG =&, kA NG =G+ f(&n), kA

Since we have W o T; = 7; o U, we obtain the following relations
AiVi—UjoTyy = —fjjoV¥
)\j_lUj —V;oTyj = —g;joW¥
U, —UgoTyy=—fixoW, k#j
Vk_VkOle:_gjko\Ila k#]
Since ¥ € C(S,T1,p), combining (6.23), (6.26) with the normalizing conditions (6.48),
(6.49), we find that U; pg = 0 =V, gp for (P,Q) € Nj and j = h, s, s+ s,. Using Up = p\,
we get V., = U, o p. By the first equation above, we get
)\eUe OpOTIe - Ue = _fee O Tie © v,
For (P, Q) € N., we have (AU 0 po T1.)pg = Ue a,B.(p.(PQ))- By (6.47), we get

(6.64)

1
(665) Ue,PQ == 5 {fe,e O T1e © \I]}PQ 5 ‘/e,QP = VPQUG,PQu (PQ) S M-

We now majorize U pg, Vjop for (P,Q) € R; \ N;. Fix (P,Q) € Ry \ N. Start with
some j such that p; < g;. In the second last identity in (6.64), let us compose on the right
by T1; with 5 # k, j to get

Uk [e] le/ — Uk [e] le @) le/ = _f],k (o] \I/ [e] le/ = f],k [e] le/ [e] \I]

Let {¢1,...,¢4} be the set of i # k such that p; < ¢;. Composing successively with the
Ty,;’s and adding, we get

d
Uy —=UoTyy, 0Ty, =— E fo k0T, 001y, oW
i1

Hence, if PQ € Ry, \ N, then

d
Uepg ={Uxo T, 00Ty, }tpg — {Zf&,k O Tyg O+ 0Ty, , O ‘Il}
i=1 PQ
The first term on the right-hand side, Uy, (4,,5,)(Pg), is either zero or majorized by (6.65).
The summations have finitely many combinations. This shows that Uy < a;o V. By (6.26),
we obtain V; < (U;)sym. This shows that (U, V) < bo (Isym + (U, V)sym) for some analytic
mapping b = O(2). Using Lemma 4.3, we obtain the convergence of Uy, Vj. U

Theorem 6.7. Let M be a germ of analytic submanifold that is an higher order perturbation
of a product quadric QQ in C*. Assume that M satisfies condition J and it is formally
equivalent to Q). Suppose that each hyperbolic component has an eigenvalue py, which is
either a root of unity or satisfies the Brjuno condition (7.38) in which T =0, { = 1,n =
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1, i = pij = pn, and each g is not a root of unity and satisfies the Brjuno condition.
Then M is holomorphically equivalent to the product quadric.

Proof. We first apply a theorem (with Z = 0) in [Stol5] that linearize simultaneously and
holomorphically the oy,...,0,. Note that the small divisor condition in this special case
is equivalent that each uy is either a root of unity or a Brjuno number. Then, we apply
successively the two assertions of Proposition 6.6. Hence, in good holomorphic coordinates,
{71, ..., T1p, p} are linear. Then, by Proposition 2.8, the manifold is holomorphically equiv-
alent to the quadric. O

As in the case of Theorem 5.3, we can also prove the first part of the above proof by
applying Riissmann’s theorem [Riis02] successively to each ;. This is due to the commu-
tativity property and the special type of the linear parts that lead to the relatively simpler
relations on C(S;) and C¢(S;) for each fixed i.

7. EXISTENCE OF ATTACHED COMPLEX MANIFOLDS

We are interested in complex submanifolds K in C?” that intersect the real submanifold
M at the origin. Recall that M has real dimension 2p. Generically, the origin is an isolated
intersection point if dim K = p. Let us consider the situation when the intersection has
dimension p. Without further restrictions, there are many such complex submanifolds; for
instance, we can take a p-dimensional totally real and real analytic submanifold K; of M.
We then let K be the complexification of K. To ensure the uniqueness or finiteness of the
complex submanifolds K, we therefore introduce the following.

Definition 7.1. Let M be a formal real submanifold of dimension 2p in C?. We say that
a formal complex submanifold K is attached to M if K N M contains at least two germs of
totally real and formal submanifolds K, K5 of dimension p that intersect transversally at
the origin. Such a pair { K7, K} are called a pair of asymptotic formal submanifolds of M.

Before we present the details, let us describe the main steps to derive the results. We first
derive the results at the formal level. We then apply the results of [P6s86] and [Stol5]. The
proof of the co-existence of convergent and divergent attached submanifolds will rely on a
theorem of Poschel on stable invariant submanifolds and Siegel’s small divisor technique.

We now describe the formal results. When p = 1, a non-resonant hyperbolic M admits a
unique attached formal holomorphic curve [K1i85]. When p > 1, new situations arise. First,
we show that there are obstructions to attach formal submanifolds. However, the formal
obstructions disappear when M admits the maximum number of deck transformations and
M is non-resonant. These two conditions allow us to express M in an equivalent form
(3.4). This equivalent form for M, which has not been used so far, will play an essential
role in our proof for p > 1.

We will consider a real submanifold M which is a higher order perturbation of a non-
resonant product quadrics. By adapting the proof of Klingenberg [K1i85] to the manifold M
(3.4), we will show the existence of a unique attached formal submanifold for a prescribed
non-resonance condition. As in [Kli85], we also show that the complexification of K in M
is a pair of invariant formal submanifolds /Cy, Ko of 0. Furthermore, K is convergent if and
only if Ky is convergent.
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Let us first recall the values of the Bishop invariants. The types of the invariants play
an important role for the existence and the convergence of attached formal complex sub-
manifolds. From (2.22) and (2.26), we recall that

(7.1) AN =, =14
(7.2) 0<79 <1/2, ~v,>1/2, ~5€(—-00,1/2)4+i(0,00), Ysrs, =1 —7,.

Here we exclude the case that Rey, = 1/2 or vy, < 1/2 as we will assume that o has distinct
eigenvalues. We normalize
~1

(7.3) Ae> 1, (N =1, | A >1, Asps, = A,
(7.4) arg \, € (0,7/2), arg)s € (0,7/2).
Recall that p; = A2, By (7.1), we have

Iy : ~ H
75 2 = 7‘7’ = ’h’ s — 78
9 R S (R Bk

We first verify the following.

Lemma 7.2. Let v;, \; be given by (7.1)-(7.4). Let p; = X3. Assume that p, urts
tp, pyt are distinct.  Then Y2, 75, Vs Vstso, Vs Tsrs, T distinct p numbers. The latter is
equivalent to v1,...,7, being distinct.

Proof. Note that 7! + z and z~! decrease strictly on (0,1). So 2,77 are distinct. We
also have v47,,, =75 — 2. If a,b are complex numbers, then a —a® = b — b? if and only if
a=bora+b=1. Since v, is not real, then vy, are different from 72 and ;. For any
distinct complex numbers aq, as in (—oo,1/2) 4+ i(0,00). We have 1 — as # 1 — aq, aq, as.
The lemma is proved. O

Let us first investigate the numbers of pairs of formal asymptotic submanifolds and
attached formal submanifolds.

Lemma 7.3. Let M be a formal submanifold that is a third order perturbation of a product
quadric QQ in C?. Assume that M has distinct eigenvalues

H1s -y Hps :ul_la“w:u;l'

(1) If M admits an attached formal submanifold, its CR singularity has no elliptic
component.

(it) If Q has no elliptic components, then Q has at least 25~ pairs of asymptotic
totally real and real analytic submanifolds that are contained in a single attached
complex submanifold.

(1ii) There is no formal submanifold attached to

M: z23 = (Zl + 2’}/151)2 + (22 —+ 2’)/252)3, Z4 = (212 + 2’}/252)2.

Here M has a hyperbolic complex tangent at the origin.
(iv) Assume that M has no elliptic component and it admits the mazximum number of
formal deck transformations. Given €, e, = £1, let v = v, = (11, ...,1,) with

(76) Vp = N;hv Vs = Tg°s Vs 1= fbg
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Suppose that
(7.7) Ay VQeNP, Q| >0, 1<j<p

Then M admits a unique pair of asymptotic formal submanifolds K1, Ko such that
each K; is defined by 2’ = p;(2') for a formal anti-holomorphic involution p; and

the linear part of py'p, has eigenvalues v1, . . ., vp. In particular, if (7.7) holds for
each v of the form (7.6) then M admits exactly 2"F5=1 pairs of asymptotic formal
submanifolds.

Proof. (i) Let M be defined by

(7.8) oy = Qi(Z\Z)+ Hi(2,Z'), 1<j<p

where H;(2,2") = O(|#|?) and each Q; is quadratic. Let {K;, K>} be a pair of asymptotic
formal submanifolds of M intersecting a formal complex submanifold K. We know that
the totally real spaces TyK, Ty K, are contained in ToM, the z'-subspace. Let K be the
projection of K; onto the z’-subspace, then K7, K} are still totally real. Let K] be defined
by

K|:Z =AY +R(Y), AA=1R(¢)=0(2

such that p;(z') := AZ' + R(Z') defines an anti-holomorphic formal involution. Let K, be

the (formal) fixed-point set of the anti-holomorphic involution ps(z') = A7 + R~(z’ ) with
R(Z') = O(2). Then K7, K5 intersect transversally at the origin if and only if det(A — A) #
0. Let us define holomorphic mappings

(7.9) pi(?) =pi(¥), i=12
Then K is given by
(7.10) 2= Q2 p,(¢) + Hy(, (7)), i=1,2, j=1,...,p.

The two equations agree, if and only if
(711) Qj(zlaﬁl(z/)) + Hj(z/vﬁl(z/)) = Qj(z/vﬁZ(zl)) + Hj(zlaﬁQ(zl))a 1<7<p
Then the asymptotic totally real submanifolds { K, Ky} are defined by
(7.12) Kz =Qi(2,Z)+ Hij(2,Z'), 1<j<p, p(2)=72"
Recall that
Q;(#,7) = (% +2v%))*, j=eh;
QS(Z/7§/> = (’ZSJrS* =+ 273+s*5s)27
QerS* (2/75/) = (zs + 273531%*)2-

Let us first find necessary conditions on the linear parts of p; for (7.11) to be solvable. Let
w' = Az and @' = Az'. Comparing the quadratic terms in (7.11) for i = 1,2, we see that

(2 + 2vjw;)* = (25 + 29;5)%,
(’ZS+S* + 2’73+s*w8)2 = (’ZSJrS* + 273+3*U~Js)2,

(zs + 2'78ws+s*)2 = (25 + 2’75155-1—5*)2-
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Here 7545, = 1 —7,, by (7.2). For each j, w; # ;. Otherwise, the fixed points of p; and
p2 do not intersect transversally. Therefore, the above 3 identities can be written as
zj + 2v5w; = —(2 + 2;10;),
Zots, T 2Vsqs,Ws = _(ZS-%-S* + 2'7/3-1-3*@5)7
Zs + 2’7511}5_,_5* - _(Zs + 278,&}8-{-8*)'

In the matrix form, we get
Yo, O 0 0

0 ~, O 0

0 0 0 =,
0 0 7, 0

(7.13) A=—~y1_A with ~:=

Here in matrices v,, = I, — 7, . Let us express in block matrices

Ae*e* Ae*h* Ae*s* Ae* (2s4)

Ah*e* Ah*h* Ah*s* Ah* (2s4)

As*e* As*h* As*s* A‘S*(QS*)
Asye. A@son. Aps)s. A@s)s)

where the diagonal block matrices are of sizes e, X e,, hy X hy, 5, XS4, and s, X s, respectively.
By AA =1, AA =1 and (7.13) we get (AA — AA)7 =0, ie. v '+ A+~ TAF = 0.
Recall that 47, ...,72 . are real and distinct. It is easy to see that A, . =0, Aj.. =0,
and A.,.,, Ap,n, are diagonal. Also,

(714) Ae*e* _'_Ke*e* = _7;17 Ah*h* + Kh*h* = _7]:*1
In block matrices, we obtain

(7-15) 7]'_1Kj(25*)§s* = _Ajs*a 5/3_*1K(2s*)j7j = _As*j;

(7.16) Vi AT, = —Ajes, e Ay = — A

(717) A Apses) Ve, = —Ass Fol AssTe, = — Ay — Vel
(718) 73_*1Ks*(23*)§s* = _A(Qs*)s* - '73_*17 75_*1Ks*s*73* = _A(Qs*)(2s*)-
In the first 4 equations, we have j = e,, h,.
By Lemma 7.2, we know that 72,77, and 757,,,, are distinct. Thus, A, = Ajp,), =0
and A ; = Ag,); = 0 for j = e,, h,. Since 77, is different from all v,.,,7,, then

A, = Apgyes,) = 0 while A (9,,), A2s,)s, are diagonal. Now AA =T implies that

Sx

(7.19) AccAce =1, AppnApn =L A )Aps)s =1

Combining the first identities in (7.14) and (7.19), we know that the diagonal eth element
a. of A.,., must satisfy a, +a. = —. ', a.a. = 1. Since 0 < 7, < 1/2, there is no such
solution a. if e, > 0. We have verified (i).

(ii) For the hyperbolic components, by (7.1) we have v, ' = X\, + A, with |\,| = 1 By
the second identities in (7.14), (7.19), and by (7.13), we obtain (an,dn) = (=, —Ap) or
(=An, —An). For the complex components, we use As*(QS*)K(QS*)s* = I and multiply the
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second identity in (7.17) by the diagonal matrix A, (ss,). Thus the sth diagonal element
as of A, (2, satisfies a,(as +7;1) + 7,17, = 0. By the last identity in (7.5), we get

az+ (1+p;YNas+p; ' =0.

Obviously a; = —1,—u;! are solutions. By (7.13), we get (as,as) = (—1,1 — ;1) =

(=1, —p;Y) or (—pgt, pust =AY = (—pgt, —1). Each tuple determines a tuple (b, by) by
(7.19), with by being the diagonal entries of A (s,,)s,. We verify that (bs, bs) = (65’1,&_3_1).

There are exactly 2/+%~1 solutions for A and A since we can only determine the pairs

{Ap. 1., Ah*h*}, {As,(25.); AS*(QS*)}. Indeed, we have

diag(ap) 0 0 3 diag(ap) 0 0
A = 0 0 diag(as) |, A= 0 0  diag(as) |,
0 diag(bs) 0 0 diag(bs) 0
3 diag(a;, 'ay) 0 0
(7.20) diagr := A7'A = 0 diag (b7 'bs) 0 :
0 0 diag(a; ‘a,)
(7'21) V= e = (M;hvﬂgsvus_es)a 6%?% =1, Vsys, :vs_la

where there are 2"+ distinct combinations. Thus, we get exactly 2%F5~1 pairs { K}, K?}
of asymptotic linear submanifolds indexed by € = (e,...,€x,15,) With e? = 1 for the
product quadric. The attached formal submanifolds associated to these linear asymptotic

submanifolds are unique and restricting to ¢; = 1 for all 4, it is given by
Zp+h = (1 - 47]3)227 Zpts = (1 - 273+s*)223+s*7 Cptsts. — (1 - 275)223-

Here we have used (1 — 493) = (1 — 2y,An)%

In summary, we have shown that there are exactly pairs of linear anti-holomorphic
involutions {pi1, p2}. In (iv) we show that under the non-resonant conditions on iy, .. ., fi,,
they are the only pairs of anti-holomorphic involutions. This finishes the proof of (ii).

(iii). Let us continue the computation for the perturbations. We have determined linear
parts of antiholomorphic involutions p;. We expand components of R(z') as R;(%') =

2h*+s* —1

> rey Rj(2). Here Rjy are homogeneous terms of degree k. We expand R; analogously.
Suppose that terms of order up to £—1in R;, R; have been determined. For the hyperbolic
components, we need to solve the equations

(7.22) A0/1 = 4922, (Ry(2) + Bp(2)) =+ -,

where the right-hand side has been determined. Indeed, let us compute the terms of degree
k in (7.11) to obtain
(1= 270)%27 +2(1 = 290)) 2 Ry = (1= 205A71)%25 + 2(1 = 2950, )z Ry + R
where R is a polynomial that depends on I;’j;l, Ry, I < k. Since (1-2v,);) = —(1—2%)\;1),
we obtain (7.22).
When p > 1, the system of equations (7.22) cannot be solved even formally, unless the
right-hand side is divisible by z,. When p = 1, the equation (7.22) is clearly solvable.
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In fact, under the non-resonant condition on p;, the formal anti-holomorphic involutions
{p1, p2} can be uniquely determined.

Let us keep the above notation and compute for the example stated in (iii). We need to
solve

(21 + 2m101)* + (22 + 272102)° = (21 + 271w1)? + (22 4 270w2)?,
(22 4 2792102)? = (22 + 270ws)%
Again 10y — wy cannot be identically zero. Thus @, = —w; — 75 *22. Then we need to solve
(21 + 271101)? = (21 + 271w1)? + 2(2 + 270w3)>.
By (ii), we know that wy = —A1z1 + Rl_(z’) and wy = =222 + Ry(2') with R;(2") = O(2).
Also Wy = —A1z1 + Ri(Z) and Wy = —Ag29 + Ry(2’). Comparing the cubic terms implies
that z; must divide 2(1 — 295)2)323, which is a contradiction.

(iv) For a general M, following Klingenberg [K1i85] we reformulate the problem by con-
sidering the following equations

h(Z/) = Q(zlaﬁz(z/)) + H(Z/vﬁi(zl))a 1=1,2,
W (p:(2) = Qpi(), #) + H(p,(),7), i=1,2.
Here h,h*,p; are unknowns. Initially, we require that p,,p, be arbitrary biholomorphic
maps, except their linear parts match with 2 — Az’ and 2/ — AZ’. This will ensure that
the solutions p; are unique and they are involutions.
As demonstrated in (iii), in general there is no formal submanifold attached to M.
Thus we assume that M is a higher order perturbation of product quadric without elliptic

component and it admits the maximum number of deck transformation.
We may assume that

(7.23) Zpin = (zn + 2920 + En(2,7))?,

(7.24) Zprs = (2 + 295Zsrs, + Es(2, 7))

(7.25) Zptstrs. = (Zots, + 2Yers.Zs + By (2,7))%

For late references, we express the above in an abbreviated form:

(7.26) M CC?: 2z, = (L;j(2,Z)+ E;j(2,7)*, 1<j<p.

We fix linear parts of p; such that
p(2)=AZ + R(Z), p(?)=A7 + R(Z).

For ¢ = 1,2 we then need to solve p,; from

(7.27) 2+ 2P, + En(2,7:) = (=1)" fu(2),
(7.28) ot 2B, + B = (1 (),
(7.29) Zotse T Vst Pis + By (2,71) = (=1) fors. (),
(7.30) 2920 + Pin + En(pis 2) = (=1)' f (72),
(7.31) 2y Zets, + Dis T Eo(pin ) = (1)1 (5)),
(7.32) Pgs.2s + Pisss, + By (i 2) = (1) f11s, (P2)-
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Suppose that we have determined terms of R;, éj, [j, [} of order < k. We have
A() =AY+ R(Z), () =AY — ATR(AT),

where the terms in R' — R of order k£ depend only on terms of R of order < k. For terms
of order £, by eliminating f;, we need to solve

(7.33) Rig+Rig="---
where the dots denote terms which have been determined. We compose from right in the
last 3 identities for 4 = 1 (resp. i = 2) by 7, " (resp. p,'). Eliminating f* from the new
identities, we obtain

AT'RATV)+ATRA YY) =+,
Recall that A~'A = diagr with v := v.. Multiplying on the left by A, using AA~' =
(diagv)™!, and evaluating at 2’ = AZ’, we thus need to solve (7.33) and

Vj_le,Q —+ IJQRLQ B
This shows that R;, Rj are uniquely determined as
(7.34) WAv, QeN’, Q>1, 1<j<p

To verify that p; are involutions, we compose by p; ! from right in (7.27)-(7.29), and we
apply complex conjugate to the coefficients of the new identities. This results in (7.30)-

(7.32) in which (p;, f}) are replaced by ((p;)~*, f;). We can also start with (7.30)-(7.32) and

apply the same procedure to get (7.27)-(7.29), in which (p;, f;) are replaced by ((p;)~%, f;)-
By the uniqueness of the solutions, we conclude that (p;)~! = p; as both sides have the

same linear part. We now have (p;)~1(z') = p:(2'). Hence, by (7.9), 2" = p;(pi(2')) = p2(#).
This shows that each p; is an involution. U

We now can prove the following theorem.

Theorem 7.4. Let M be a real analytic submanifold in C? defined by (7.26) without
elliptic components. Assume that in (§,n) coordinates, Do(0) is diagonal and has distinct
eigenvalues i1, ..., fy, iy - .- iyt Let v = v be of the form (7.21) and satisfy (7.34).
Then M admits a unique pair of formal asymptotic submanifold { K<, KS} such that the
complezxification of K in M is an invariant formal submanifold H. of o that is tangent to

(735) ﬂejzl{nj = O} N ﬂej:,l{ﬁj = O}

Furthermore, the complexification of K5 equals 71H..

Proof. Let K; = K{. We will follow Klingenberg’s approach for p = 1, by using the
deck transformations. Suppose that K is an attached formal complex submanifold which
intersects with M at two totally real formal submanifolds K, K. We first embed K; U K5
into M as M is embedded into M. Let K; be the complexification of K; in M. Since p
fixes K; pointwise, then p/C; = IC;.

We want to show that 71 (K1) = Ko; thus K; is invariant under o. We can see that IC; is
defined by

(7.36) p,(2)=w'.
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On Ky, by (7.27) and (7.29) we have L(2/,w') + E(2',w') = —f(2'). The latter defines a
complex submanifold of dimension p. Thus it must be ;. On M,

(f’j (Zlv w/) + Ej(zla w,))Q = Zp+j

are invariant by 7;. Thus each L;(z',w') + E;(2',w') is either invariant or skew-invariant by
71. Computing the linear part, we conclude that they are all skew-invariant by 7;. Hence
(K1) is defined by L(z',w') + E(#,w') = f(%'), which is the defining equations for Ks.
We must identify the tangent space of Ky at the origin. Let us verify (7.35) for ¢; = 1 for
all 7, while the general case is analogous. Let A, S be the linear parts of p; and o = 7 7.
Define e(2’,w') = w' — A(2’). The tangent space to Ky at the origin is {e(z’,w’) = 0}.
From the proof of Lemma 7.3 (ii), the matrix of A is

diag(ap) 0 0 —diag(An) 0 O
A= 0 0 diag(as) | = 0 0 -I
0 diag(bs) 0 0 -1 0

Thus e;, = wy + A\p2p, €5 = Ws+ Zsts,, and €g15, = Wsis, + 25. Using the formulas (2.20) and
(2.24) of 71, T, when M is the product quadric, we can verify that e, ¢, 0S5 = i 654 s,, €505 =
s tes, and ey o S = fiyen. Therefore, e;(2, w') = ¢;n;.

Finally, if Ky is convergent, then (7.36) implies that p; is convergent. Hence K, the
fixed point set of pp, is convergent. O

We now study the convergence of attached formal submanifolds. Let us first recall a
theorem of Poschel [P6s86]. Let v and € be as in (7.21). Define

wy(k) = min min {|I/P—I/i|,|l/P—l/'71|}.
1<|P|<2k, PeNp 1<i<p ‘

Suppose that
log w, (k)
Then the unique invariant formal submanifold of ¢ that is tangent to the H. defined by

(7.35) is convergent.
We now obtain a consequence of Theorem 7.4 and Poschel’s theorem.

Theorem 7.5. Let M be as in Theorem 7.4. Let v = u. be given by (7.21). Assume that
v=(p, ..., ) satisfy (7.37). Then M admits an attached complex submanifold.

To study the convergence of all attached formal manifolds, we use a theorem in [Stol5]
to conclude simultaneous convergence of all attached formal submanifolds. In fact the
conclusion is much more stronger. It is based on the simultaneous linearization of the o;’s
on the resonant ideal, i.e. the ideal Z generated by &im1, ..., &pn,. Define with Do;(0) :=

diag(fei1s - - - s Him),
(7.38) wsz(k) = inf{{gzz{lmg —pij| #0: 2<|Q| <281 <j<n,Q e N" 29 QI}

where p? = iy - piy,. As in [Stold], we say that the family S is Diophantine on Z, if
the sequence of numbers (7.38) satisfies (7.37).
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Theorem 7.6. Let M be as in Theorem 7.5, given by (7.26). Assume furthermore that
M is non resonant. Suppose that S is Diophantine on I or that M has an abelian CR
singularity of pure complex type. Then all attached formal submanifolds are convergent.
Moreover, the complex submanifolds K; attached to pairs of antiholomorphic involutions

{pj1, pj2} have the form
(7.3 Kyt 2 = (L2, 70(2)) + B ()% 1<i<p

Proof. When M has an abelian CR singularity of pure complex type, from the normal form
of 7;; in Theorem 5.3 we know that all invariant submanifolds of o that are tangent to (7.35)
are convergent. The non-abelian CR singularity case is a consequence of the theorem of
simultaneous linearization of the ¢;’s along the resonant ideal Z [Stol5|[theorem 2.1] and
Theorem 7.4. Since, in good holomorphic coordinates, ¢ is linear on the zero set of the
resonant ideal, the solutions {p;, 7y} to (7.27)-(7.32) are linear and there are 2"+*5~1 pairs
{Pj1, P2} of solutions. The equation (7.39) is derived in (7.10) for a general situation. [
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