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REAL SUBMANIFOLDS OF MAXIMUM COMPLEX TANGENT SPACE

AT A CR SINGULAR POINT, I

XIANGHONG GONG AND LAURENT STOLOVITCH

Abstract. We study a germ of real analytic n-dimensional submanifold of Cn that has
a complex tangent space of maximal dimension at a CR singularity. Under some assump-
tions, we show its equivalence to a normal form under a local biholomorphism at the
singularity. We also show that if a real submanifold is formally equivalent to a quadric,
it is actually holomorphically equivalent to it, if a small divisors condition is satisfied.
Finally, we investigate the existence of a complex submanifold of positive dimension in C

n

that intersects a real submanifold along two totally and real analytic submanifolds that
intersect transversally at a possibly non-isolated CR singularity.
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1. Introduction and main results

1.1. Introduction. We are concerned with the local holomorphic invariants of a real an-
alytic submanifold M in Cn. The tangent space of M at a point x contains a maximal
complex subspace of dimension dx. When dx is constant, M is called a Cauchy-Riemann
(CR) submanifold. The CR submanifolds have been extensively studied since E. Cartan
[Car32], [Car33], Tanaka [Tan62], and Chern-Moser [CM74].

We say that a point x0 in a real submanifold M in Cn is a CR singularity, if the complex
tangent spaces TxM ∩ JxTxM do not have a constant dimension in any neighborhood of
x0. A real submanifold with a CR singularity must have codimension at least 2. The study
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of real submanifolds with CR singularities was initiated by E. Bishop in his pioneering
work [Bis65]. He investigated a C∞ real submanifold M of which the complex tangent
space at a CR singularity is minimal, that is exactly one-dimensional. The very elementary
models of this kind of manifolds are the Bishop quadrics Qγ that depends on the Bishop
invariant 0 ≤ γ ≤ ∞, given by

Qγ ⊂ C2 : z2 = |z1|2 + γ(z21 + z21), 0 ≤ γ <∞; Q∞ : z2 = z21 + z21.

The complex tangent at the origin is said to be elliptic if 0 ≤ γ < 1/2, parabolic if γ = 1/2,
or hyperbolic if γ > 1/2. In [MW83], Moser and Webster studied the normal form problem
of a real analytic surfaceM inC2 which is the higher order perturbation of Q. They showed
that when 0 < γ < 1/2,M is holomorphically equivalent, near the origin, to a normal form
which is an algebraic surface that depends only on γ and two discrete invariants. We
mention that the Moser-Webster normal form theory, as in Bishop’s work, actually deals
with an n-dimensional real submanifold M in Cn, of which the complex tangent space has
(minimum) dimension 1 at a CR singularity.

The main purpose of this paper is to investigate an n-dimensional real analytic sub-
manifold M in Cn, which is totally real outside a proper analytic subset and of which the
complex tangent space has the largest possible dimension at a given CR singularity. We
shall say that the singularity is a (maximal) complex tangent. The dimension must be
p = n/2. Therefore, n = 2p is even. We are interested in the normal form problem, the
rigidity property, and the local analytic geometry of such real analytic manifolds.

In suitable holomorphic coordinates, a 2p-dimensional real analytic submanifold M in
C2p that has a complex tangent space of maximum dimension at the origin is given by

(1.1) M : zp+j = Ej(z
′, z′), 1 ≤ j ≤ p,

where z′ = (z1, . . . , zp) and

Ej(z
′, z′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3).

Moreover, each hj(z
′, z′) is a homogeneous quadratic polynomial in z′, z′ without holomor-

phic or anti-holomorphic terms, and each qj(z
′) is a homogeneous quadratic polynomial in

z′. One of our goals is to seek suitable normal forms of perturbations of quadrics at the
CR singularity (the origin).

1.2. Basic invariants. To study M , we consider its complexification in C2p×C2p defined
by

M :

{
zp+i = Ei(z

′, w′), i = 1, . . . , p,

wp+i = Ei(w
′, z′), i = 1, . . . , p.

It is a complex submanifold of complex dimension 2p with coordinates (z′, w′) ∈ C2p. Let
π1, π2 be the restrictions of the projections (z, w) → z and (z, w) → w to M, respectively.
Note that π2 = Cπ1ρ0, where ρ0 is the restriction to M of the anti-holomorphic involution
(z, w) → (w, z) and C is the complex conjugate.

Our basic assumption is the following condition.

Condition B. q(z′) = (q1(z
′), . . . , qp(z

′)) satisfies q−1(0) = {0}.



3

When p = 1, condition B corresponds to the non-vanishing of the Bishop invariant γ.
When γ = 0, Moser [Mos85] obtained a formal normal form that is still subject to further
formal changes of coordinates. In [HY09a], Huang and Yin obtained a formal normal
form and a complete holomorphic classification for real analytic surfaces with γ = 0.
The formal normal forms for co-dimension two real submanifolds in Cn have been further
studied by Huang-Yin [HY12] and Burcea [Bur13]. Coffman [Cof06] showed that any m
dimensional real analytic submanifold in Cn of one-dimensional complex tangent space at
a CR singularity satisfying certain non-degeneracy conditions is locally holomorphically
equivalent to a unique algebraic submanifold, provided 2(n+ 1)/3 ≤ m < n.

WhenM is a quadric, i.e. all Ej in (1.1) are quadratic polynomials, our basic condition B
is equivalent to π1 being a 2p-to-1 branched covering. Since π2 = Cπ1ρ0, then π2 is also a
2p-to-1 branched covering. We will see that the CR singularities of the real submanifolds
are closely connected with these branched coverings and their deck transformations.

We now introduce our main results. Some of them are analogous to the Moser-Wester
theory. We will also describe new situations which arise with the maximum complex
tangency.

1.3. Branched coverings and deck transformations. In section 2, we study the exis-
tence of deck transformations for π1. We show that they must be involutions generating
an abelian group of order 2k for some 0 ≤ k ≤ p. The latter is a major difference with
the case p = 1. Indeed, in the Moser-Webster theory, the group of deck transformations
is generated by a unique non-trivial involution τ1. Therefore, we will impose the following
condition.

Condition D. M satisfies condition B and the branched covering π1 of M admits the
maximum 2p deck transformations.

Condition D gives rise to two families of commuting involutions {τi1, . . . , τi2p} intertwined
by the anti-holomorphic involution ρ0 : (z

′, w′) → (w′, z′) such that τ2j = ρ0τ1jρ0 (1 ≤
j ≤ 2p) are deck transformations of π2. We will call {τ11, . . . , τ12p , ρ0} the set of Moser-
Webster involutions. We will show that there is a unique set of p generators for the deck
transformations of π1, denoted by τ11, . . . , τ1p, such that each τ1j fixes a hypersurface in M
pointwise. Then

τ1 = τ11 ◦ · · · ◦ τ1p
is the unique deck transformation of which the fixed-point set has the smallest dimension
p. Let τ2 = ρ0τ1ρ0 and

σ = τ1τ2.

Then σ is reversible by τj and ρ0, i.e. σ
−1 = τjστ

−1
j and σ−1 = ρ0σρ0.

As in the Moser-Webster theory, we will show that the existence of such 2p deck trans-
formations transfers the normal form problem for the real submanifolds into the normal
form problem for the sets of involutions {τ11, . . . , τ1p, ρ0}.

In this paper we will make the following assumption.

Condition J.M satisfies condition D andM is diagonalizable, i.e. σ′(0) is diagonalizable.

Note that the condition excludes the higher dimensional analogous complex tangency
of parabolic type, i.e. of γ = 1/2. The normal form problem for the parabolic complex
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tangents has been studied by Webster [Web92], and in [Gon96] where the normalization
is divergent in general. In [AG09], Ahern and Gong constructed a moduli space for real
analytic submanifolds that are formally equivalent to the Bishop quadric with γ = 1/2.

1.4. Product quadrics. In this paper, the basic model for quadric manifolds with a CR
singularity satisfying condition J is a product of 3 types of quadrics defined by

Qγe ⊂ C2 : z2 = (z1 + 2γez1)
2;(1.2)

Qγh ⊂ C2 : z2 = (z1 + 2γhz1)
2, 1/2 < γh <∞; Q∞ : z2 = z21 + z21;(1.3)

Qγs ⊂ C4 : z3 = (z1 + 2γsz2)
2, z4 = (z2 + 2(1− γs)z1)

2.(1.4)

Here γs ∈ C and

(1.5) 0 < γe < 1/2, 1/2 < γh ≤ ∞, Re γs ≤ 1/2, Im γs ≥ 0, γs 6= 0, 1/2.

Note that Qγe , Qγh are elliptic and hyperbolic Bishop quadrics, respectively. Realizing a
type of pairs of involutions introduced in [Sto07], we will say that the complex tangent of
Qγs at the origin is complex. We emphasize that this last type of quadric is new as it is not
holomorphically equivalent to a product of two Bishop surfaces. A product of the above
quadrics will be called a product of quadrics, or a product quadric. We denote by e∗, h∗, 2s∗
the number of elliptic, hyperbolic and complex coordinates, respectively. We remark that
the complex tangent of complex type has another basic model Qγs with γs = 1/2, which is
excluded by condition J (see Proposition 2.10).

This is the first part of two papers devoted to the local study of real analytic manifold
at maximal complex tangent point. To limit its scope, we have to leave the complete
classification of quadratic submanifolds of maximum deck transformations to the second
paper [GS15] (see Theorem 1.1 therein), showing that there are quadratic manifolds which
are not holomorphically equivalent to a product quadric. In [GS15], we also show that all
Poincaré-Dulac normal forms of the σ of a general higher order perturbation of a product
quadric are divergent when p > 1. With the divergent Poincaré-Dulac normal forms at our
disposal, we seek types of CR singularities that ensure the convergent normalization and the
analytic structure of the hull of holomorphy associated with the types of CR singularities.

We now introduce our main geometrical and dynamical results for analytic higher order
perturbations of product quadric. We first turn to a holomorphic normalization of a real
analytic submanifold M with the so-called abelian CR singularity. This will be achieved
by studying an integrability problem on a general family of commuting biholomorphisms
described below. The holomorphic normalization will be used to construct the local hull of
holomorphy of M . We will also study the rigidity problem of a quadric under higher order
analytic perturbations, i.e. the problem if such a perturbation remains holomorphically
equivalent to the quadric if it is formally equivalent to the quadric. The rigidity problem
is reduced to a theorem of holomorphic linearization of one or several commuting diffeo-
morphisms that was devised in [Sto15]. Finally, we will study the existence of holomorphic
submanifolds attached to the real submanifold M . These are complex submanifolds of
dimension p intersecting M along two totally real analytic submanifolds that intersect
transversally at a CR singularity. Attaching complex submanifolds has less constraints
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than finding a convergent normalization. A remarkable feature of attached complex sub-
manifolds is that their existence depends only on the existence of suitable (convergent)
invariant submanifolds of σ.

1.5. Normal form of commuting biholomorphisms.

Definition 1.1. Let F = {F1, . . . , Fℓ} be a finite family of germs of biholomorphisms ofCn

fixing the origin. Let Dm be the linear part of Fm at the origin. We say that the family F
is (resp. formally) completely integrable, if there is a (resp. formal) biholomorphic mapping

Φ such that {Φ−1FmΦ: 1 ≤ m ≤ ℓ} = {F̂m : 1 ≤ m ≤ ℓ} satisfies

(i) F̂m(z) = (µm1(z)z1, . . . , µmn(z)zn) where µmj are germs of holomorphic (resp. for-
mal) functions such that µmj ◦ Dm′ = µmj for 1 ≤ m,m′ ≤ ℓ and 1 ≤ j ≤ n. In

particular, F̂m commutes with Dm′ for all 1 ≤ m,m′ ≤ ℓ.
(ii) For each j and each Q ∈ Nn with |Q| > 1, µQ

m(0) = µmj(0) hold for all m if and
only if µQ

m(z) = µmj(z) hold for all m.

A necessary condition for F to be formally completely integrable is that F1, . . . , Fℓ com-
mute pairwise. The main result of section 4 is the following.

Theorem 1.2. Let F be a family of finitely many germs of biholomorphisms at the origin.
If F is formally completely integrable and its linear part D has the Poincaré type, then it
is holomorphically completely integrable.

The definition of Poincaré type is in Definition 4.11. Such a formal integrability condi-
tion can hold under some geometrical properties. For instance, for a single germ of real
analytic hyperbolic area-preserving mapping, the result was due to Moser [Mos56], and
for a single germ of reversible hyperbolic holomorphic mapping σ = τ1τ2 of which τ1 fixes
a hypersurface, this result was due to Moser-Webster [MW83]. Such results for commut-
ing germs of vector fields were obtained in [Sto00, Sto05] under a collective small divisors
Brjuno-type condition. Our result is inspired by these results.

1.6. Holomorphic normalization for the abelian CR singularity. In section 5, we
obtain the convergent normalization for an abelian CR singularity which we now define. We
first consider a product quadric Q which satisfies condition J. So the deck transformations
of π1 for the complexification of Q are generated by p involutions of which each fixes a
hypersurface pointwise. We denote them by T11, . . . , T1p. Let T2j = ρT1jρ. It turns out
that each T1j commutes with all Tik except one, T2kj for some 1 ≤ kj ≤ p. When we
formulate Sj = T1jT2kj for 1 ≤ j ≤ p, the S1, . . . , Sp commute pairwise. Consider a general
M that is a third-order perturbation of product quadric Q and satisfies condition J. We
define σj = τ1jτ2kj . In suitable coordinates, Tij (resp. Sj) is the linear part of τij (resp. σj)
at the origin. We say that the complex tangent of a third order perturbationM of a product
quadric at the origin is of abelian type, if σ1, . . . , σp commute pairwise. If each linear part Sj

of σj has exactly two eigenvalues µj, µ
−1
j that are different from 1, then S := {S1, . . . , Sp}

is of Poincaré type if and only if |µj| 6= 1 for all j. As mentioned previously, Moser and
Webster actually dealt with n-dimensional real submanifolds in Cn that have the minimal
dimension of complex tangent subspace at a CR singular point. In their situation, there
is only one possible composition, that is σ = τ1τ2. When the complex tangent has an
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elliptic but non-vanishing Bishop invariant, σ has exactly two positive eigenvalues that are
separated by 1, while the remaining eigenvalues are 1 with multiplicity n− 2.

As an application of Theorem 1.2, we will prove the following convergent normalization.

Theorem 1.3. Let M be a germ of real analytic submanifold in C2p that is a third order
perturbation of a product quadric given by (1.2)-(1.5) with an abelian CR singularity. Sup-
pose that M has all eigenvalues of modulus different from one, i.e. it has no hyperbolic
component (h∗ = 0) while each γs in (1.4) satisfies Re γs < 1/2 additionally. Then M is
holomorphically equivalent to

M̂ : zp+j = Λ1j(ζ)ζj, Λ1j(0) = λj, 1 ≤ j ≤ p,

where ζ = (ζ1, . . . , ζp) are the solutions to

ζe = Ae(ζ)zeze −Be(ζ)(z
2
e + z2e), 1 ≤ e ≤ e∗,

ζs = As(ζ)zszs+s∗ −Bs(ζ)(z
2
s + Λ2

1s(ζ)z
2
s+s∗), e∗ < s ≤ e∗ + s∗,

ζs+s∗ = As+s∗(ζ)zszs+s∗ − Bs+s∗(ζ)(z
2
s+s∗ + Λ2

1(s+s∗)(ζ)z
2
s),

while Λ1j satisfies (5.6)-(5.7), and Aj , Bj are rational functions in Λ1j defined by (5.16)-
(5.17).

There are many non-product real submanifolds of abelian CR singularity.

Example 1.4. Let 0 < γi <∞. Let R(z1, z1) = |z1|2+ γ1(z
2
1 + z21) +O(3) be a real-valued

power series in z1, z1 of real coefficients. Then the origin is an abelian CR singularity of

M : z3 = R(z1, z1), z4 = (z2 + 2γ2z2 + z2z3)
2.

We will also present a more direct proof of Theorem 1.3 by using a convergence theorem of
Moser and Webster [MW83] and some formal results from section 4. The above Λ11, . . . ,Λ1p

satisfy conditions Λ1j(0) = λj and (5.6)-(5.7) and are otherwise arbitrary convergent power
series. The Λ11, . . . ,Λ1p may be subjected to further normalization. In [GS15], we find
a unique holomorphic normal form by refining the above normalization for M satisfying
a non resonance condition and a third order non-degeneracy condition (see Theorem 5.6
in [GS15]); in particular, it shows the existence of infinitely many formal invariants and
non-product structures of the manifolds when p > 1.

As an application of Theorem 1.3, we will prove the following flattening result.

Corollary 1.5. Let M be as in Theorem 1.3. In suitable holomorphic coordinates, M is
contained in the linear subspace defined by zp+e = zp+e and zp+s = zp+s+s∗ where 1 ≤ e ≤ e∗
and e∗ < s ≤ e∗ + s∗.

1.7. Analytic hull of holomorphy. One of significances of the Bishop quadrics is that
their higher order analytic perturbation at an elliptic complex tangent has a non-trivial
hull of holomorphy. As another application of the above normal form, we will construct
the local hull of holomorphy of M via higher dimensional non-linear analytic polydiscs.

Corollary 1.6. Let M be as in Theorem 1.3. Suppose that M has only elliptic component
of complex tangent. Then in suitable holomorphic coordinates, Hloc(M), the local hull of
holomorphy of M , is filled by a real analytic family of analytic polydiscs of dimension p.
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For a precise statement of the corollary, see Theorem 5.5. The hulls of holomorphy for
real submanifolds with a CR singularity have been studied extensively, starting with the
work of Bishop. In the real analytic case with minimum complex tangent space at an
elliptic complex tangent, we refer to Moser-Webster [MW83] for γ > 0, and Krantz-Huang
[HK95] for γ = 0. For the smooth case, see Kenig-Webster [KW82, KW84], Huang [Hua98].
For global results on hull of holomorphy, we refer to [BG83, BK91].

1.8. Rigidity of quadrics. In Section 6, we prove the following theorem.

Theorem 1.7. LetM be a germ of analytic submanifold that is an higher order perturbation
of a product quadric Q in C2p given by (1.2)-(1.5). Assume that M is formally equivalent to
Q. Suppose that each hyperbolic component has an eigenvalue µh which is either a root of
unity or satisfies Brjuno condition, and each complex component has an eigenvalue µs is not
a root of unity and satisfies the Brjuno condition. Then M is holomorphically equivalent
to the product quadric.

We emphasize that condition (1.5) ensure that M is diagonalizable (condition J). It
is plausible that theorem remains valid when M satisfies condition J and µs satisfy the
Brjuno condition or are roots of unity; however, the resonance condition requires some
tedious changes of computation in section 6. The proof uses a theorem of linearization
of holomorphic mappings in [Sto15]. Brjuno small divisors condition is defined by (7.37),
with ν = µh and p = 1. When p = 1, the result under the stronger Siegel condition is
in [Gon94]. This last statement requires a small divisors condition to be true as shown in
[Gon04]. When p = 1 with a vanishing Bishop invariant, such rigidity result was obtained
by Moser [Mos85] and by Huang-Yin [HY09b] in a more general context.

1.9. Attached complex submanifolds. We now describe convergent results for attached
complex submanifolds. The results are for a general M , including the one of which the
complex tangent might not be of abelian type.

We say that a formal complex submanifold K is attached to M if K ∩M contains at
least two germs of totally real and formal submanifolds K1, K2 that intersect transversally
at a given CR singularity. In [Kli85], Klingenberg showed that when M is non-resonant
and p = 1, there is a unique formal holomorphic curve attached to M with a hyperbolic
complex tangent. He also proved the convergence of the attached formal holomorphic curve
under a Siegel small divisors condition. When p > 1, we will show that generically there
is no formal complex submanifold that can be attached to M if the CR singularity has an
elliptic component. When p > 1 andM is a higher order perturbation of a product quadric
of Qγh , Qγs , we will encounter various interesting situations.

By adapting Klingenberg’s proof for p = 1 and using a theorem of Pöschel [Pös86], we
will prove the following.

Theorem 1.8. LetM be a germ of analytic submanifold that is an higher order perturbation
of a product quadric Q in C2p without elliptic components. Assume that the eigenvalues
µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p of Dσ(0) are distinct. Let ǫ2h, ǫ
2
s = 1, νh := µǫh

h , νs := µ̄ǫs
s and

νs+s∗ := ν̄−1
s . Assume ν = (ν1, . . . , νp) is weakly non resonant and Diophantine in the

sense of Pöschel. Then M admits an attached complex submanifold Mǫ.
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Weak non resonance is defined in (7.34), while Diophantine condition in the sense of
Pöschel is defined in (7.37).

Finally, we prove the convergence of all attached formal submanifolds:

Theorem 1.9. Let M be as in Theorem 1.8. Suppose that the 2p eigenvalues of σ are
non-resonant. If the eigenvalues of σ satisfy a Bruno type condition, all attached formal
submanifolds are convergent.

The Brjuno-type condition, defined in (7.38), was introduced in [Sto15] for linearization
on ideals.

1.10. Notation. We denote the identity map by I and by LF the linear part at the origin
of a mapping F : (Cm, 0) → (Cn, 0). We also denote by DF (z) or F ′(z), the Jacobian
matrix of F at z. By an analytic (or holomorphic) function, we mean a germ of analytic
function at a point (which will be defined by the context) otherwise stated. We denote by

On (resp. Ôn, Mn, M̂n) the space of germs of holomorphic functions of Cn at the origin
(resp. of formal power series in Cn, holomorphic germs, and formal germs vanishing at the
origin). If Q = (q1, . . . , qk) ∈ Nk, then |Q| = q1 + · · ·+ qk and xQ = xq11 · · ·xqkk .

Acknowledgment. This joint work was completed while X.G. was visiting at SRC-GAIA
of POSTECH. He is grateful to Kang-Tae Kim for hospitality.

2. CR singularities and deck transformations

We consider a real submanifold M of Cn. Let T
(1,0)
x0 M be the space of tangent vectors

of M at x0 of the form
∑n

j=1 aj
∂
∂zj

. Let M have dimension n. In this paper, we assume

that T
(1,0)
x0 M has the largest possible dimension p = n/2 at a given point x0. In suitable

holomorphic affine coordinates, we have x0 = 0 and

(2.1) M : zp+j = Ej(z
′, z̄′), 1 ≤ j ≤ p.

Here we set z′ = (z1, . . . , zp) and we will denote z′′ = (zp+1, . . . , z2p). Also, the Ej together
with their first order derivatives vanish at 0. The tangent space T0M is then the z′-subspace.

The main purpose of this section is to obtain some basic invariants and a relation between
two families of involutions and the real analytic submanifolds which we want to normalize.

Note that M is totally real at (z′, z′′) ∈M if and only if C(z′, z′) 6= 0, where C(z′, z′) :=
det(∂Ei

∂zj
)1≤i,j≤p. We will assume that C(z′, z′) is not identically zero in any neighborhood

of the origin. Then the zero set of C on M , denoted by MCRsing, is called CR singular
set of M , or the set of complex tangents of M . We assume that M is real analytic. Then
MCRsing is a possibly singular proper real analytic subset of M that contains the origin.

2.1. Existence of deck transformations and examples. We first derive some qua-
dratic invariants. Applying a quadratic change of holomorphic coordinates, we obtain

(2.2) Ej(z
′, z′) = hj(z

′, z′) + qj(z
′) +O(|(z′, z′)|3).

Here we have used the convention that if x = (x1, . . . , xn), then O(|x|k) denotes a formal
power series in x without terms of order < k. A biholomorphic map f that preserves the
form of the above submanifoldsM and fixes the origin must preserve their complex tangent
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spaces at the origin, i.e. z′′ = 0. Thus if z̃ denote the old coordinates and z denote the
new coordinates then f has the form

z̃′ = Az′ +Bz′′ +O(|z|2), z̃′′ = Uz′′ +O(|z|2).
Here A and U are non-singular p× p complex matrices. Now f(M) is given by

Uz′′ = h(Az′,Az′) + q(Az′) +O(|z|3).
We multiply the both sides by U−1 and solve for z′′; the vectors of p quadratic forms
{h(z̃′, z̃′), q(z̃′)} are transformed into

(2.3) {ĥ(z′, z′), q̂(z′)} = {U−1h(Az′,Az′),U−1q(Az′)}.
This shows that ifM and M̂ are holomorphically equivalent, their corresponding quadratic
terms are equivalent via (2.3). Therefore, we obtain a holomorphic invariant

q∗ = dimC{z′ : q1(z′) = · · · = qp(z
′) = 0}.

We remark that when M, M̂ are quadratic (i.e. when their corresponding E, Ê are ho-

mogeneous quadratic polynomials), the equivalence relation (2.3) implies that M, M̂ are
linearly equivalent, Therefore, the above transformation of h and q via A and U deter-
mines the classifications of the quadrics under local biholomorphisms as wells as under
linear biholomorphisms. We have shown that the two classifications for the quadrics are
identical.

Recall thatM is real analytic. Let us complexify such a real submanifoldM by replacing
z̄′ by w′ to obtain a complex n-submanifold of C2n, defined by

M :

{
zp+i = Ei(z

′, w′),

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

We use (z′, w′) as holomorphic coordinates ofM and define the anti-holomorphic involution
ρ on it by

(2.4) ρ(z′, w′) = (w̄′, z̄′).

Occasionally we will also denote the above ρ by ρ0 for clarity. We will identify M with
a totally real and real analytic submanifold of M via embedding z → (z, z). We have
M = M∩ Fix(ρ) where Fix(ρ) denotes the set of fixed points of ρ. Let π1 : M 7→ Cn be
the restriction of the projection (z, w) → z and let π2 be the restriction of (z, w) → w. It
is clear that π2 = π1ρ on M. Throughout the paper, π1, π2, ρ are restricted on M unless
stated otherwise.

Condition B that q∗ = 0, introduced in section 1, ensures that π1 is a branched covering.
A necessary condition for q∗ = 0 is that functions q1(z

′), q2(z
′), . . . , qp(z

′) are linearly
independent, since the intersection of k germs of holomorphic hypersurfaces at 0 in Cp has
dimension at least p− k. (See [Chi89], p. 35; [Gun90][Corollary 8, p. 81].)

When π1 : M → C2p is a branched covering, we define a deck transformation on M for
π1 to be a germ of biholomorphic mapping F defined at 0 ∈ M that satisfies π1 ◦ F = π1.
In other words, F (z′, w′) = (z′, f(z′, w′)) and

Ei(z
′, w′) = Ei(z

′, f(z′, w′)), i = 1, . . . , p.
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Lemma 2.1. Suppose that q∗ = 0. Then MCRsing is a proper real analytic subset of M and
M is totally real away from MCRsing, i.e. the CR dimension of M is zero. Furthermore,
π1 is a 2p-to-1 branched covering. The group of deck transformations of π1 consists of 2ℓ

commuting involutions with 0 ≤ ℓ ≤ p.

Proof. Since q−1(0) = {0}, then z′ → q(z′) is a finite holomorphic map; see [Chi89], p. 105.
Hence its Jacobian determinant is not identically zero. In particular, det(∂Ei

∂zj
)1≤i,j≤p is not

identically zero. This shows that M has CR dimension 0.
Since w′ → q(w′) is a homogeneous quadratic mapping of the same space which vanishes

only at the origin, then

|q(w′)| ≥ c|w′|2.
We want to verify that π1 is a 2p–to–1 branched covering. Let ∆r = {z ∈ C : |z| < r}. We
choose C > 0 such that π1(z, w) = (z′, E(z′, w′)) defines a proper and onto mapping

(2.5) π1 : M1 := M∩ ((∆p
δ ×∆p

δ2)× (∆p
Cδ ×∆p

Cδ2)) 7→ ∆p
δ ×∆p

δ2 .

By Sard’s theorem, the regular values of π1 have the full measure. For each regular value
z, π−1

1 (z) has exactly 2p distinct points (see [Chi89], p. 105 and p. 112). It is obvious that
M1 is smooth and connected. We fix a fiber Fz of 2p points. Then the group of deck
transformations of π1 acts on Fz in such a way that if a deck transformation fixes a point
in Fz, then it must be the identity. Therefore, the number of deck transformations divides
2p and each deck transformation has period 2ℓ with 0 ≤ ℓ ≤ p.

We first show that each deck transformation f of π1 is an involution. We know that f is
periodic and has the form

z′ → z′, w′ → Aw′ +Bz′ +O(2),

where A,B are matrices. Assume that f has period m. Then f̂(z′, w′) = (z′,Aw′ +Bz′)

satisfies f̂m = I and f is locally equivalent to f̂ ; indeed f̂ gf−1 = g for

g =

m∑

i=1

(f̂ i)−1 ◦ f i.

Therefore, it suffices to show that f̂ is an involution. We have

f̂m(z′, w′) = (z′,Amw′ + (Am−1 + · · ·+A+ I)Bz′).

Since f is a deck transformation, then E(z′, w′) is invariant under f . Recall from (2.2) that
E(z′, z′) starts with quadratic terms of the form h(z′, z′) + q(z′). Comparing quadratic

terms in E(z′, w′) = E ◦ f̂(z′, w′), we see that the linear map f̂ has invariant functions

z′′ = h(z′, w′) + q(w′).

We know that Am = I. By the Jordan normal form, we choose a linear transformation
w̃′ = Sw′ such that SAS−1 is the diagonal matrix diag a with a = (a1, . . . , ap). In (z′, w̃′)

coordinates, the mapping f̂ has the form (z′, w̃′) → (z′, (diag a)w̃′ + SBz′). Now

h̃j(z
′, w̃′) + q̃j(w̃

′) := hj(z
′,S−1w̃) + qj(S

−1w̃′)



11

are invariant under f̂ . Hence q̃j(w̃
′) are invariant under w̃′ 7→ (diag a)w̃′. Since the common

zero set of q1(w
′), . . . , qp(w

′) is the origin, then

V = {w̃′ ∈ Cp : q̃(w̃′) = 0} = {0}.
We conclude that q̃(w̃1, 0, . . . , 0) is not identically zero; otherwise V would contain the
w̃1-axis. Now q̃((diag a)w̃′) = q̃(w̃′), restricted to w̃′ = (w̃1, 0, . . . , 0), implies that a1 = ±1.
By the same argument, we get aj = ±1 for all j. This shows that A2 = I. Let us combine
it with

Am = I, (Am−1 + · · ·+A+ I)B = 0.

If m = 1, it is obvious that f̂ = I. If m = 2ℓ > 1, then (A + I)B = 0. Thus f̂ 2(z′, w′) =
(z′,A2w′ + (A + I)Bz′) = (z′, w′). This shows that every deck transformation of π1 is an
involution.

For any two deck transformations f and g, fg is still a deck transformation. Hence
(fg)2 = I implies that fg = gf . �

Before we proceed to discussing the deck transformations, we give some examples. The
first example turns out to be a holomorphic equivalent form of a real submanifold that
admits the maximum number of deck transformations and satisfies other mild conditions.

Example 2.2. Let B = (bjk) be a non-singular p× p matrix. Let M be defined by

(2.6) zp+j =

(∑

k

bjkzk +Rj(z
′, z′)

)2

, 1 ≤ j ≤ p,

where each Rj(0, z
′) starts with terms of order at least 2. Then M admits 2p deck transfor-

mations for π1. Indeed, let E1, . . . ,E2p be the set of diagonal p× p matrices with E2
j = I,

and let R be the column vector (R1, . . . , Rp)
t. For each Ej let us show that there is a deck

transformation (z′, w′) → (z′, w̃′) satisfying

(2.7) Bw̃′ +R(z′, w̃′) = Ej(Bw
′ +R(z′, w′)).

Since B is invertible, it has a unique solution

w̃′ = B−1EjBw
′ +O(|z′|) +O(|w′|2).

Finally, (z′, w′) → (z′, w̃′) is an involution, as if (z′, w′, w̃′) = (z′, w′, f(z′, w′)) satisfy (2.7)
if and only if (z′, f(z′, w′), w′), substituting for (z′, w′, w̃′) in (2.7), satisfy (2.7).

We now present an example to show that the deck transformations can be destroyed by
perturbations when p > 1. This is the major difference between real submanifolds with
p > 1 and the ones with p = 1. The example shows that the number of deck transformations
can be reduced to any number 2ℓ by a higher order perturbation.

Example 2.3. Let Nγ,ǫ be a perturbation of Qγ defined by

zp+j = zjzj + γjz
2
j + ǫj−1z

3
j−1, 1 ≤ j ≤ p.

Here ǫj 6= 0 for all j, ǫ0 = ǫp and z0 = zp. Let τ be a deck transformation of Nγ,ǫ for π1.
We know that τ has the form

z′j = zj , w′
j = Aj(z

′, w′) +Bj(z
′, w′) +O(|(z′, w′)|3).
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Here Aj are linear and Bj are homogeneous quadratic polynomials. We then have

zjAj(z
′, w′) + γjA

2
j (z

′, w′) = zjwj + γjw
2
j ,(2.8)

zjBj(z
′, w′) + 2γj(AjBj)(z

′, w′) + ǫj−1A
3
j−1(z

′, w′) = ǫj−1w
3
j−1.(2.9)

We know that Lτ is a deck transformation for Qγ . Thus aj(w
′) := Aj(0, w

′) = ±wj . Set
zj = 0 in (2.9) to get aj(w

′)|ǫj−1(w
3
j−1 − a3j−1(w

′)). Thus aj−1(w
′) = wj−1. Hence, the

matrix of Lτ is triangular and its diagonal entries are 1. Since Lτ is periodic then Lτ = I.
Since τ is periodic, then τ = I.

Based the above example, we impose the basic condition D that the branched covering
π1 of M admits the maximum 2p deck transformations.

We first derive some properties of real submanifolds under condition D.

2.2. Real submanifolds and Moser-Webster involutions. The main result of this
subsection is to show the equivalence of classification of the real submanifolds satisfying
condition D with that of families of involutions {τ11, . . . , τ1p, ρ}. More precisely, condition
J is not imposed. The relation between two classifications plays an important role in the
Moser-Webster theory for p = 1. This will be the base of our approach to the normal form
problems.

Let F be a family of holomorphic maps in Cn with coordinates z. Let LF denote the
set of linear maps z → f ′(0)z with f ∈ F . Let OF

n denote the set of germs of holomorphic
functions h at 0 ∈ Cn so that h ◦ f = h for each f ∈ F . Let [Mn]

LF
1 be the subset of linear

functions of MLF
n .

Lemma 2.4. Let G be an abelian group of holomorphic (resp. formal) involutions fixing 0 ∈
Cn. Then G has 2ℓ elements and they are simultaneously diagonalizable by a holomorphic
(resp. formal) transformation. If k = dimC[Mn]

LG
1 then ℓ ≤ n − k. Assume furthermore

that ℓ = n − k. In suitable holomorphic (z1, . . . , zn) coordinates, the group G is generated
by Zk+1, . . . , Zn with

(2.10) Zj : z
′
j = −zj , z′i = zi, i 6= j, 1 ≤ i ≤ n.

In the z coordinates, the set of convergent (resp. formal) power series in z1, . . . , zk,

z2k+1, . . . , z
2
n is equal to OG

n (resp. ÔG
n ), and with Z = Zn−k · · ·Zn,

(2.11) [Mn]
G
1 = [Mn]

Z
1 , Fix(Z) =

n⋂

j=k+1

Fix(Zj).

Proof. We first want to show that G has 2ℓ elements. Suppose that it has more than one
element and we have already found a subgroup of G that has 2i elements f1, . . . , f2i . Let
g be an element in G that is different from the 2i elements. Since g is an involution and
commutes with each fj , then

f1, . . . , f2i, gf1, . . . , gf2i

form a group of 2i+1 elements. We have proved that every finite subgroup of G has exactly
2ℓ elements. Moreover, if G is infinite then it contains a subgroup of 2ℓ elements for every
ℓ ≥ 0. Let {f1, . . . , f2ℓ} be such a subgroup of G. It suffices to show that ℓ ≤ n−k. We first
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linearize all fj simultaneously. We know that Lf1, . . . , Lf2ℓ commute pairwise. Note that
I+f ′

1(0)
−1f1 linearizes f1. Assume that f1 is linear. Then f1 = Lf1 and Lf2 commute, and

I+f ′
2(0)

−1f2 commutes with f1 and linearizes f2. Thus fj can be simultaneously linearized
by a holomorphic (resp. formal) change of coordinates. Without loss of generality, we may
assume that each fj is linear. We want to diagonalize all fj simultaneously. Let E 1

i and
E−1

i be the eigenspaces of fi with eigenvalues 1 and −1, respectively. Since fi = f−1
j fifj ,

each eigenspace of fi is invariant under fj. Then we can decompose

(2.12) Cn =
⊕

(i1,...,is)

Ei1
1 ∩ · · · ∩ Eis

s , s = 2ℓ.

Here (i1, . . . , is) runs over {−1, 1}s with subspaces E(i1,...,is) := Ei1
1 ∩ · · · ∩ Eis

s . On each of
these subspaces, fj = I or −I. We are ready to choose a new basis for Cn whose elements
are in the subspaces. Under the new basis, all fj are diagonal.

Let us rewrite (2.12) as Cn = V1 ⊕ V2 ⊕ · · · ⊕ Vd. Here Vj = EIj and I1 = (1, . . . , 1).
Also, Ij 6= (1, . . . , 1) and dimVj > 0 for j > 1. We have dimC Fix(G) = dimC V1 =
dimC[Mn]

LG
1 = k. Therefore, d − 1 ≤ n − dimC V1 ≤ n − k. We have proved that in

suitable coordinates G is contained in the group generated by Zk+1, . . . , Zn. The remaining
assertions follow easily. �

We will need an elementary result about invariant functions.

Lemma 2.5. Let Zk+1, . . . , Zn be defined by (2.10). Let F = {fk+1, . . . , fn} be a family
of germs of holomorphic mappings at the origin 0 ∈ Cn. Suppose that the family F is
holomorphically equivalent to {Zk+1, . . . , Zn}. Let b1(z), . . . , bn(z) be germs of holomorphic
functions that are invariant under F . Suppose that for 1 ≤ j ≤ k, bj(0) = 0 and the linear

part of bj at the origin is b̃j. Suppose that for i > k, bi(z) = O(|z|2) and the quadratic part

of bi at the origin is b∗i . Suppose that b̃1, . . . , b̃k are linear independent, and that b∗k+1, . . . , b
∗
n

are linearly independent modulo b̃1, . . . , b̃k, i.e.∑
cib

∗
i (z) =

∑
dj(z)b̃j(z) +O(|z|3)

holds for some constants ci and formal power series dj, if and only if all ci are zero.
Then invariant functions of F are power series in b1, . . . , bn. Furthermore, F is uniquely
determined by b1, . . . , bn. The same conclusion holds if F and bj are given by formal power
series.

Proof. Without loss of generality, we assume that F is {Zk+1, . . . , Zn}. Hence, for all j,
there is a formal power series aj such that bj(z) = aj(z1, . . . , zk, z

2
k+1, . . . , z

2
n). Let us show

that the map w → a(w) = (a1(w), . . . , an(w)) is invertible.

By Lemma 2.4, b̃1(z), . . . , b̃k(z) are linear combinations of z1, . . . , zk, and vice versa. By
Lemma 2.4 again, b∗k+1, . . . , b

∗
n are linear combinations of z2k+1, . . . , z

2
n modulo z1, . . . , zk.

This shows that

b∗i (z) =
∑

j>k

cijz
2
j +

∑

ℓ≤k

diℓ(z)b̃ℓ(z), i > k.

Since b∗k+1, . . . , b
∗
n are linearly independent modulo b̃1, . . . , b̃k. Then (cij) is invertible; so is

the linear part of a.
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To show that F is uniquely determined by its invariant functions, let F̃ be another such
family that is equivalent to {Zk+1, . . . , Zn}. Assume that F and F̃ have the same invariant
functions. Without loss of generality, assume that F̃ is {Zk+1, . . . , Zn}. Then z1, . . . , zk
are invariant by each Fj , i.e. the ith component of Fj(z) is zi for i ≤ k. Also F 2

j,ℓ(z) = z2ℓ
for ℓ > k. We get Fj,ℓ = ±zℓ. Since zℓ is not invariant by F̃ , then it is not invariant by
F either. Then Fjℓ,ℓ(z) = −zℓ for some ℓj > k. Since Fjℓ is equivalent to some Zi, the
set of fixed points of Fjℓ is a hypersurface. This shows that Fjℓ = Zℓ. So the family F is
{Zk+1, . . . , Zn}. �

We now want to find a special set of generators for the deck transformations and its basic
properties, which will be important to our study of the normal form problems.

Lemma 2.6. Let M be defined by (2.1) and (2.2) with q∗ = 0. Suppose that the group Ti

of deck transformations of πi : M → Cp has exactly 2p elements. Then the followings hold.

(i) T1 is generated by p distinct involutions τ1j such that Fix(τ11), . . . , Fix(τ1p) are
hypersurfaces intersecting transversally at 0. And τ1 = τ11 · · · τ1p is the unique
deck transformation of which the set of fixed points has dimension p. Moreover,
Fix(τ1) =

⋂
Fix(τ1j).

(ii) OT1
n (resp. ÔT1

n ) is precisely the set of convergent (resp. formal) power series in z′

and E(z′, w′). OT2
n (resp. ÔT2

n ) is the set of convergent (resp. formal) power series
in w′ and E(w′, z′). In particular, in (z′, w′) coordinates of M, T1 and T2 satisfy

[Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0},(2.13)

dimFix(τi) = p, Fix(τ1) ∩ Fix(τ2) = {0}.

Here [Mn]1 is the set of linear functions in z′, w′ without constant terms.

Proof. (i). Since z1, . . . , zp are invariant under deck transformations of π1, we have p′ =

dimC[On]
LT1
1 ≥ p. By Lemma 2.4, π1 has at most 22p−p′ deck transformations. Therefore,

p′ = p. By Lemma 2.4 again, we may assume that in suitable (ξ, η) coordinates, the deck
transformations are generated by Zp+1, . . . , Z2p defined by (2.10) in which z = (ξ, η). It
follows that Z = Zp+1 · · ·Z2p is the unique deck transformation of π1, of which the set of
fixed points has dimension p.

(ii). We have proved that in (ξ, η) coordinates the deck transformations are generated
by the above Zp+1, . . . , Z2p. Thus, the invariant holomorphic functions of Zp+1, . . . , Z2p are
precisely the holomorphic functions in ξ1, . . . , ξp, η

2
1, . . . , η

2
p. Since z1, . . . , zp and Ei(z

′, w′)
are invariant under deck transformations, then on M
(2.14) z′ = f(ξ, η21, . . . , η

2
p), E(z′, w′) = g(ξ, η21, . . . , η

2
p).

Since (z′, w′) are local coordinates of M, the differentials of z1, . . . , zp under any coordinate
system of M are linearly independent. Computing the differentials of z′ in variables ξ, η by
using (2.14), we see that the mapping ξ → f(ξ, 0) is a local biholomorphism. Expressing
both sides of the second identity in (2.14) as power series in ξ, η, we obtain

E(f(ξ, 0), w′) = g(ξ, η21, . . . , η
2
p) +O(|(ξ, η)|3).



15

We set ξ = 0, compute the left-hand side, and rewrite the identity as

g(0, η21, . . . , η
2
p) = q(w′) +O(|(ξ, η)|3).(2.15)

As coordinate systems, (z′, w′) and (ξ, η) vanish at 0 ∈ M. We now use (z′, w′) =
O(|(ξ, η)|). By (2.14), f(0) = g(0) = 0 and g(ξ, 0) = O(|ξ|2). Let us verify that the lin-
ear parts of g1(0, η), . . . , gp(0, η) are linearly independent. Suppose that

∑p
j=1 cjgj(0, η) =

O(|η|2). Replacing ξ, η by O(|(z′, w′)|) in (2.15) and setting z′ = 0, we obtain
p∑

j=1

cjqj(w
′) = O(|w′|3), i.e.

p∑

j=1

cjqj(w
′) = 0.

As remarked after condition B was introduced, q∗ = 0 implies that q1(w
′), . . . , qp(w

′) are
linearly independent. Thus all cj are 0. We have verified that ξ → f(ξ, 0) is biholomorphic
near ξ = 0. Also η → g(0, η) is biholomorphic near η = 0 and g(ξ, 0) = O(|ξ|2). Therefore,
(ξ, η) → (f, g)(ξ, η) is invertible near 0. By solving (2.14), the functions ξ, η21, . . . , η

2
p are

expressed as power series in z′ and E(z′, w′).
It is clear that z1, . . . , zp are invariant under τ1j . From linearization of T1, we know that

the space of invariant linear functions of LT1 is the same as the space of linear invariant
functions of Lτ1, which has dimension p. This shows that z1, . . . , zp span the space of linear
invariant functions of Lτ1. Also w1, . . . , wp span the space of linear invariant functions of

Lτ2. We obtain [Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}. We have verified (2.13).

In view of the linearization of T1 in (i), we obtain dimFix(τ1) = dimFix(T1) = p.
Moreover, Fix(τi) is a smooth submanifold of which the tangent space at the origin is
Fix(Lτi). We choose a basis u1, . . . , up for Fix(Lτ1). Let v1, . . . , vp be any p vectors such
that u1, . . . , up, v1, . . . , vp form a basis ofCn. In new coordinates defined by

∑
ξiui+ηivi, we

know that linear invariant functions of Lτ1 are spanned by ξ1, . . . , ξp. The linear invariant
functions in (ξ, η) that are invariant by Lτ2 are spanned by fj(ξ, η) =

∑
k(ajkξk + bjkηk)

for 1 ≤ j ≤ p. Since [Mn]
Lτ1 ∩ [Mn]

Lτ2 = {0}, then ξ1, . . . , ξp, f1, . . ., fp are linearly
independent. Equivalently, (bjk) is non-singular. Now Fix(Lτ2) is spanned by vectors∑

k(ajkuk+bjkvk). This shows that Fix(Lτ1)∩Fix(Lτ2) = {0}. Therefore, Fix(τ1) intersects
Fix(τ2) transversally at the origin and the intersection must be the origin. �

Note that the proof of the above lemma actually gives us a more general result.

Corollary 2.7. Let I be a group of commuting holomorphic (formal) involutions on Cn.

(i) Fix(LI) = {0} if and only if [Mn]
LI
1 has dimension 0.

(ii) Let Ĩ be another family of commuting holomorphic (resp. formal) involutions such

that [Mn]
LI ∩ [Mn]

LĨ = {0}. Then Fix(LI) ∩ Fix(LĨ) = {0}. Moreover, Fix(I) ∩
Fix(Ĩ) = {0} if I and Ĩ consist of convergent involutions.

In view of Lemma 2.6,we will refer to the family

T1 := {τ11, . . . , τ1p}, T2 := {τ21, . . . , τ2p}, ρ

as the Moser-Webster involutions, where τ2j = ρτ1jρ. The significance of the two sets
of involutions is the following proposition that transforms the normalization of the real
manifolds into that of two families of commuting involutions.

For clarity, recall the anti-holomorphic involution ρ0 : (z
′, w′) → (w′, z′).
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Proposition 2.8. Let M and M̃ be two real analytic submanifolds of the form (2.1) and

(2.2) that admit Moser-Webster involutions {T1, ρ0} and {T̃1, ρ0}, respectively. ThenM and

M̃ are holomorphically equivalent if and only if {T1, ρ0} and {T̃1, ρ0} are holomorphically
equivalent, i.e. if there is a biholomorphic map f commuting with ρ0 such that fτ1jf

−1 =
τ̃1ij for 1 ≤ j ≤ p. Here {i1, . . . , ip} = {1, . . . , p}.

Let T1 = {τ11, . . . , τ1p} be a family of p distinct commuting holomorphic involutions.
Suppose that Fix(τ11), . . . ,Fix(τ1p) are hypersurfaces intersecting transversely at the origin.
Let ρ be an anti-holomorphic involutions and let T2 be the family of involutions τ2j = ρτ1jρ
with 1 ≤ j ≤ p. Suppose that

(2.16) [Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}.

There exists a real analytic real n-submanifold

(2.17) M ⊂ C2p : zp+j = A2
j(z

′, z̄′), 1 ≤ j ≤ p

such that the set of Moser-Webster involutions {T̃1, ρ0} of M is holomorphically equivalent
to {T1, ρ}.
Proof. We recall from (2.5) the branched covering

π1 : M1 := M∩ ((∆p
δ ×∆p

δ2)× (∆p
Cδ ×∆p

Cδ2)) −→ ∆p
δ ×∆p

δ2 .

Here C ≥ 1. Let π1 be restricted to M1. Then π2 = π1 ◦ ρ is defined on ρ(M1). Note that

π2 : ρ(M1) −→ ∆p
δ ×∆p

δ2 .

We have π−1
1 (z)∩Fix(ρ) = {(z, z)} for z ∈M and π1(Fix(ρ)) =M . Let B0 ⊂ ∆p

δ ×∆p
δ2 be

the branched locus. Take B = π−1
1 (B0). We will denote by M̃1, B̃ and B̃0 the corresponding

data for M̃ . Here M̃1 is an analogous branched covering over π1(M̃1). We assume that

the latter contains f(π1(M1)) if M̃ is equivalent to M via f .

Assume that f is a biholomorphic map sending M into M̃ . Let f c be the restriction of
biholomorphic map f c(z, w) = (f(z), f(w)) to M. Let M be defined by z′′ = E(z′, z′) and

M̃ be defined by z′′ = Ẽ(z′, z′). By f(M) ⊂ M̃ , f = (f ′, f ′′) satisfies

f ′′(z′, E(z′, z′)) = Ẽ(f ′(z′, E(z′, z′)), f ′(z′, E(z′, z′))).

Using the defining equations for M, we get f c(M) ⊂ M̃ and ρf c = f cρ on M ∩ ρ(M).

We will also assume that f c(M1) is contained in M̃1. It is clear that f c sends a fiber

π−1
1 (z) onto the fiber π−1

1 (f(z)) for z ∈ Ω = π1(M1) \ (B0 ∪ f−1(B̃0)), since the two fibers
have the same number of points and f is injective. Thus f cτ1j = τ̃1ijf

c on π−1
1 (Ω). Here ij

is of course locally determined on π−1
1 (Ω). Since B has positive codimension in M1 then

M1 \ B is connected. Hence ij is well-defined on π−1
1 (Ω). Then f cτ1j = τ̃1ijf

c on M1 \ B.
This shows that f c conjugates simultaneously the deck transformations of M to the deck

transformations of M̃ for π1. The same conclusion holds for π2.
Conversely, assume that there is a biholomorphic map g : M → M̃ such that ρg = gρ and

gτ1i = τ̃1jig. Since τ11, . . . , τ12p are distinct and M1 \ B is connected, then
⋃

j 6=i{x ∈ M1 \
B : τ1i(x) = τ1j(x)} is a complex subvariety of positive codimension in M1 \ B. Its image
under the proper projection π1 is a subvariety of positive codimension in ∆p

δ×∆p
δ2 \B0. This
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shows that the latter contains a non-empty open subset ω such that {τ11(x), . . . , τ12p(x)} =
π−1
1 π1(x) has 2p distinct points for each π1(x) ∈ ω. Therefore, τ11, . . . , τ12p are all deck

transformations of π1 over ω. Hence they are all deck transformations of π1 : M1 \ B →
∆p

δ × ∆p
δ2 \ B0, too. This shows that π−1

1 (π1(x)) = {τ1j(x) : 1 ≤ j ≤ 2p} for x ∈ M1 \ B.
Now, g sends τ1j(x) to τ̃1ij (g(x)) for each j. Hence f(z) = π1gπ

−1
1 (z) is well-defined and

holomorphic for z ∈ ∆p
δ ×∆p

δ2 \ B0. By the Riemann extension for bounded holomorphic
functions, f extends to a holomorphic mapping, still denoted by f , which is defined near the
origin. We know that f is invertible and in fact the inverse can be obtained by extending
the mapping z → π1g

−1π1(z). If z = (z′, E(z′, w′)) ∈ M , then w′ = z′ and f(z) =
π1gπ

−1
1 (z) = π1g(z, z) with (z, z) ∈ Fix(ρ). Since ρg = gρ, then g(z, z) ∈ Fix(ρ). Thus

f(z) = π1g(z, z) ∈ M̃ .
Assume that {τ1j} and ρ are germs of involutions defined at the origin of Cn. As-

sume that they satisfy the conditions in the proposition. From Lemma 2.4 it follows that
τ11, . . . , τ1p generate a group of 2p involutions, while the p generators are the only elements
of which each fixes a hypersurface pointwise. To realize them as deck transformations of the
complexification of a real analytic submanifold, we apply Lemma 2.4 to find a coordinate
map (ξ, η) → φ(ξ, η) = (A,B)(ξ, η) such that invariant holomorphic functions of {τ1j} are
precisely holomorphic functions in

z′ = (A1(ξ, η), . . . , Ap(ξ, η)), z′′ = (B2
1(ξ, η), . . . , B

2
p(ξ, η)).

Note that Bj is skew-invariant under τ1j and is invariant under τ1i for i 6= j and A is
invariant under all τ1j . Set

w′
j = Aj ◦ ρ(ξ, η), w′′

j = B2
j ◦ ρ(ξ, η).

Since τ2j = ρτ1jρ, the holomorphic functions invariant under all τ2j are precisely the holo-
morphic functions in the above w′, w′′. We now draw conclusions for the linear parts of
invariant functions and involutions. Since φ is biholomorphic, then LA1, . . . , LAp are lin-
early independent. They are also invariant under Lτ1j . Since τ2j = ρτ1jρ, the p functions
LAi ◦ ρ are linearly independent and invariant under Lτ2j . Thus

LA1, . . . , LAp, LA1 ◦ ρ, . . . , LAp ◦ ρ
are linearly independent, since [Mn]

LT1
1 ∩ [Mn]

LT2
1 = {0}. This shows that the map (ξ, η) →

(z′, w′) = (A(ξ, η), A ◦ ρ(ξ, η)) has an inverse (ξ, η) = ψ(z′, w′). Define

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, z′).

The complexification of M is given by

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, w′), w′′ = (B

2

1, . . . , B
2

p) ◦ ψ(w′, z′).

Note that φ ◦ ψ(z′, w′) = (z′, B ◦ ψ(z′, w′)) is biholomorphic. In particular, we can write

B2
j ◦ ψ(z′, z′) = hj(z

′, z′) + qj(z
′) + bj(z

′) +O(|(z′, z′)|3).
Here qj(z

′) = q̃2j (z
′), and q̃(w′) is the linear part of w′ → B ◦ψ(0, w′). Therefore, |q(w′)| ≥

c|w′|2 and q∗ = 0. By Lemma 2.1, π1 : M → Cp is a 2p-to-1 branched covering defined near
0 ∈ M. Since B2 is invariant by τ1j , then z

′′ = B2◦ψ(z′, w′) is invariant by ψ−1τ1jψ(z
′, w′).

Also A is invariant under τ1j . Then z
′ = A ◦ ψ(z′, w′) is invariant by ψ−1τ1jψ(z

′, w′). This
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show that {ψ−1τ1jψ} has the same invariant functions as of the deck transformations of π1.
By Lemma 2.5, {ψ−1τ1jψ} agrees with the set of deck transformations of π1. For ρ0(z

′, w′) =
(w′, z′) we have ρ0ψ

−1 = ψ−1ρ. This shows that M is a realization for {τ11, . . . , τ1p, ρ}. �

Remark 2.9. We choose the realization in such a way that zp+j are square functions.
This particular holomorphic equivalent form of M will be crucial to study the asymptotic
manifolds in section 7.

Next we want to compute the deck transformations for a product quadric. We will first
recall the Moser-Webster involutions for elliptic and hyperbolic complex tangents. We will
then compute the deck transformations for complex tangents of complex type.

The Moser-Webster theory deals with the case p = 1 for a real analytic surface

z2 = |z1|2 + γ(z21 + z21) +O(|z1|3), or z2 = z21 + z21 +O(|z1|3).
Here γ ≥ 0 is the Bishop invariant of M . One of most important properties of the Moser-
Webster theory is the existence of the above mentioned deck transformations. When γ 6= 0,
there is a pair of Moser-Webster involutions τ1, τ2 with τ2 = ρτ1ρ such that τ1 generates the
deck transformations of π1. In fact, τ1 is the only possible non-trivial deck transformation
of π1. When γ 6= 1/2, in suitable coordinates their composition σ = τ1τ2 is of the form

τ : ξ′ = µξ +O(|(ξ, η)|2), η′ = µ−1η +O(|(ξ, η)|2).
Here ρ(ξ, η) = (η, ξ) when 0 < γ < 1/2, and ρ(ξ, η) = (ξ, η) when γ > 1/2. When the
complex tangent is elliptic and 0 < γ < 1/2, σ is hyperbolic with µ > 1; when the complex
tangent is hyperbolic, i.e. 1/2 < γ ≤ ∞, then σ is elliptic with |µ| = 1. When the complex
tangent is parabolic, the linear part of σ is not diagonalizable and 1 is the eigenvalue.

We will see later that with p ≥ 2, there is yet another simple model that is not in the
product. This is the quadric in C4 defined by

(2.18) Qγs : z3 = z1z2 + γsz
2
2 + (1− γs)z

2
1 , z4 = z3.

Here γs is a complex number. We will, however, exclude γs = 0 or equivalently γs = 1
by condition B. We also exclude γs = 1/2 by condition J. Note that γs = 1/2 does not
correspond to a product Bishop quadrics either, by examining the CR singular sets. Under
these mild non degeneracy conditions, we will show that γs is an invariant when it is
normalized to the range

(2.19) Re γs ≤ 1/2, Im γs ≥ 0, γs 6= 0.

In this case, the complex tangent is said of complex type.
We have introduced the types of the complex tangent at the origin. Of course a product

of quadrics, or a product quadric, can exhibit a combination of the above basic 4 types. We
will see soon that quadrics have other invariants when p > 1. Nevertheless, in our results,
the above invariants that describe the types of the complex tangent will play a major role
in the convergence or divergence of normalizations.

Let us first recall involutions in [MW83] where the complex tangents are elliptic (with
non-vanishing Bishop invariant) or hyperbolic. When γ > 0, the non-trivial deck transfor-
mations of

Qγ : z2 = |z1|2 + γ(z21 + z21)
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for π1, π2 are τ1, τ2, respectively. They are

(2.20) τ1 : z
′
1 = z1, w′

1 = −w1 − γ−1z1; τ2 = ρτ1ρ

with ρ being defined by (2.4). Here the formula is valid for γ = ∞ (i.e. γ−1 = 0). Note
that τ1 and τ2 do not commute and σ = τ1τ2 satisfies

σ−1 = τiστi = ρσρ, τ 2i = I, ρ2 = I.

When the complex tangent is not parabolic, the eigenvalues of σ are µ, µ−1 with µ = λ2

and γλ2−λ+ γ = 0. For the elliptic complex tangent, we can choose a solution λ > 1, and
in suitable coordinates we obtain

τ1 : ξ
′ = λη +O(|(ξ, η)|2), η′ = λ−1ξ +O(|(ξ, η)|2),(2.21)

τ2 = ρτ1ρ, ρ(ξ, η) = (η, ξ),

σ : ξ′ = µξ +O(|(ξ, η)|2), η′ = µ−1η +O(|(ξ, η)|2), µ = λ2.

When the complex tangent is hyperbolic, i.e. 1/2 < γ ≤ ∞, τi and σ still have the above
form, while |µ| = 1 = |λ| and

ρ(ξ, η) = (ξ, η).

When the complex tangent is parabolic, i.e. γ = 1/2, the pair of involutions still exists.
However, Lσ is not diagonalizable and 1 is its only eigenvalue. We recall from [MW83]
that

(2.22) γ =
1

λ+ λ−1
.

For the complex type, new situations arise. Such a quadric has the form

(2.23) Qγs : z3 = z1z2 + γsz
2
2 + (1− γs)z

2
1 , z4 = z3.

Here γs is a complex number. Let us first check that such a quadric is not the product of
two Bishop quadrics : Its CR singular set is defined by

(z1 + 2γsz2)(z2 + 2(1− γs)z1) = 0,

which is the union of a complex line and a real surface when γs = 0, 1, or a union of two
totally real surfaces. The CR singular set of a quadric defined by z3 = |z1|2 + γ1(z

2
1 + z21)

and z4 = |z2|2 + γ2(z
2
2 + z22) is given by

(z1 + 2γ1z1)(z2 + 2γ2z2) = 0.

It is the union of two Bishop surfaces when γ1 6= 1/2 and γ2 6= 1/2, and it contains a
submanifold of dimension 3 otherwise.

By condition B, we know that γs 6= 0, 1. Let us compute the deck transformations of
the complexification of (2.23). According to Lemma 2.6 (i), the deck transformations for
π1 are generated by two involutions

τ11 :





z′1 = z1,

z′2 = z2,

w′
1 = −w1 − (1− γs)

−1z2,

w′
2 = w2;

τ12 :





z′1 = z1,

z′2 = z2,

w′
1 = w1,

w′
2 = −w2 − γ−1

s z1.
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We still have ρ defined by (2.4). Let τ2j = ρτ1jρ. Then τ21, τ22 generate the deck transfor-
mations of π2. Note that

τ21 :





z′1 = −z1 − (1− γs)
−1w2,

z′2 = z2,

w′
1 = w1,

w′
2 = w2;

τ22 :





z′1 = z1,

z′2 = −z2 − γ−1
s w1,

w′
1 = w1,

w′
2 = w2.

Recall that τi = τi1τi2 is the unique deck transformation of πi that has the smallest dimen-
sion of the set of fixed-points among all deck transformations. They are

τ1 :





z′1 = z1,

z′2 = z2,

w′
1 = −w1 − (1− γs)

−1z2,

w′
2 = −w2 − γ−1

s z1;

τ2 :





z′1 = −z1 − (1− γs)
−1w2,

z′2 = −z2 − γ−1
s w1,

w′
1 = w1,

w′
2 = w2.

(2.24)

And τ1τ2 is given by

σs :





z′1 = −z1 − (1− γs)
−1w2,

z′2 = −z2 − γ−1
s w1,

w′
1 = (1− γs)

−1z2 + ((γs − γ2s)
−1 − 1)w1,

w′
2 = γ−1

s z1 + ((γs − γ2s )
−1 − 1)w2.

In contrast to the elliptic and hyperbolic cases, τ11 and ρτ11ρ commute; in other words,
τ11ρτ11ρ is actually an involution. And τ12 and ρτ12ρ commute, too. However, τ11 and τ22
do not commute, and τ12, τ21 do not commute either. Thus, we form compositions

σs1 = τ11τ22, σs2 = τ12τ21, σ−1
s2 = ρσs1ρ.

By a simple computation, we have

σs1 :





z′1 = z1,

z′2 = −z2 − γ−1
s w1,

w′
1 = (1− γs)

−1z2 + ((γs − γ2s)
−1 − 1)w1,

w′
2 = w2;

σs2 :





z′1 = −z1 − (1− γs)
−1w2,

z′2 = z2,

w′
1 = w1,

w′
2 = γ−1

s z1 + ((γs − γ2s )
−1 − 1)w2.

We verify that σs1σs2 = σs = τ1τ2. This allows us to compute the eigenvalues of σs1σs2
easily:

µs, µ−1
s , µ−1

s , µs,(2.25)

µs = γ−1
s − 1.(2.26)

In fact we compute them by observing that the first two in (2.25) and 1 with multiplicity
are eigenvalues of σs1, while the last two in (2.25) and 1 with multiplicity are eigenvalues of
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σs2. Note that σs is diagonalizable if and only if γs 6= 1/2. When γs < 1/2 and γs 6= 0, µs

and µ−1
s are eigenvalues of multiplicity two while condition J holds. Therefore, for γs 6= 1/2,

i.e. µs 6= 1, we can find a linear transformation of the form

ψ : (z1, w2) → (ξ2, η2) = φ(z1, w2), (z2, w1) → (ξ1, η1) = φ(w1, z2)

such that σs1, σs2, σs = σs1σs2 are simultaneously diagonalized as

(2.27)
σs1 : ξ′1 = µsξ1, η′1 = µ−1

s η1, ξ′2 = ξ2, η′2 = η2,
σs2 : ξ′1 = ξ1, η′1 = η1, ξ′2 = µ−1

s ξ2, η′2 = µsη2,
σs : ξ′1 = µsξ1, η′1 = µ−1

s η1, ξ′2 = µ−1
s ξ2, η′2 = µsη2.

Under the transformation ψ, the involution ρ, defined by (2.4), takes the form

(2.28) ρ(ξ1, ξ2, η1, η2) = (ξ2, ξ1, η2, η1).

Moreover, for j = 1, 2, we have τ2j = ρτ1jρ and

τ1j : ξ
′
j = λjηj, η′j = λ−1

j ξj; ξ′i = ξi, η′i = ηi, i 6= j;(2.29)

λ1 = λs, λ2 = λ
−1

s , µs = λ2s.(2.30)

Condition J on Qγs is equivalent to γs 6= 1/2. By a permutation of coordinates that
preserves ρ, we obtain a unique holomorphic invariant µs satisfying

(2.31) |µs| ≥ 1, Imµs ≥ 0, µs 6= 0,−1, 0 ≤ arg λs ≤ π/2, λs 6= 0, i.

Note that Re γs < 1/2 implies that |µs| 6= 1.
For later purpose, we summarize some facts for complex type in the following.

Proposition 2.10. Let Qγs ⊂ C4 be the quadric defined by (2.18) and (2.19) with γs 6= 0, 1.
Then π1 admits two deck transformations τ11, τ12 such that the set of fixed points of each
τ1j has dimension 3. Also, τ2j = ρτ1jρ are the deck transformations of π2 and

τ11τ21 = τ21τ11, τ12τ22 = τ22τ12.

Let σs1 = τ11τ22, σs2 = τ12τ21, τi = τi1τi2, and σs = τ1τ2. Then

σ = σs1σs2 = σs2σs1, σ−1
s2 = ρσs1ρ, σ−1

s = ρσsρ.

Assume further that γs 6= 1/2. In suitable coordinates σs1, σs2, σ, ρs are given by (2.27)-
(2.28), while σs has 4 (possibly repeated) eigenvalues given by (2.25)-(2.26). The σ has four
distinct eigenvalues if and only if Qγs can be holomorphically normalized so that Im γs > 0
and Re γs < 1/2.

In summary, we have found linear coordinates for the product quadrics such that the
normal forms of S, Tij , ρ of the corresponding σ, σj , τij , ρ0 are given by

S : ξ′j = µjξj, η′j = µ−1
j ηj ;(2.32)

Sj : ξ
′
j = µjξj, η′j = µ−1

j ηj , ξ′k = ξk, η′k = ηk, k 6= j;(2.33)

Tij : ξ
′
j = λijηj , η′j = λ−1

ij ξj, ξ′k = ξk, η′k = ηk, k 6= j;(2.34)

ρ :

{
(ξ′e, η

′
e, ξ

′
h, η

′
h) = (ηe, ξe, ξh, ηh),

(ξ′s, ξ
′
s+s∗, η

′
s, η

′
s+s∗) = (ξs+s∗ , ξs, ηs+s∗, ηs).

(2.35)
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Throughout the paper, the indices h, e, s have the ranges 1 ≤ e ≤ e∗, e∗ < h ≤ e∗ + h∗,
and e∗ + h∗ < s ≤ p− s∗. Notice that we can always normalize ρ0 into the above normal
form ρ.

The commutativity of σh, σe, σs1, σs2 will be important to understand the convergence of
normalization for the abelian CR singularity.

3. Formal deck transformations and centralizers

In section 2 we show the equivalence of the classification of real analytic submanifolds M
that admit the maximum number of deck transformations and the classification of the fam-
ilies of involutions {τ11, . . . , τ1p, ρ} that satisfy some mild conditions (see Proposition 2.8).
As a consequence we show that a real submanifold is formally equivalent to a quadric if
and only if its family of Moser-Webster involutions is formally linearizable.

3.1. Formal submanifolds. We first need some notation. Let I be an ideal of the ring
R[[x]] of formal power series in x = (x1, . . . , xN). Since R[[x]] is noetherian, then I and

its radical
√
I are finitely generated. We say that I defines a formal submanifold M of

dimension N − k if
√
I is generated by r1, . . . , rk such that at the origin all rj vanish and

dr1, . . . , drk are linearly independent. For such an M , let I(M) denote
√
I and let T0M

be defined by dr1(0) = · · · = drk(0) = 0. If F = (f1, . . . , fN) is a formal mapping with
fj ∈ R[[x]], we say that its set of (formal) fixed points is a submanifold if the ideal generated

by f1(x)−x1, . . . , fN(x)−xN defines a submanifold. Let I, Ĩ be ideals of R[[x]],R[[y]] and

let
√
I,
√
Ĩ define two formal submanifolds M, M̃ , respectively. We say that a formal map

y = G(x) maps M into M̃ if Ĩ ◦G ⊂
√
I. If M, M̃ are in the same space, we write M ⊂ M̃

if Ĩ ⊂
√
I. We say that a formal map F fixes M pointwise if I(M) contain each component

of the mapping F − I.

3.2. Formal deck transformations. Consider a formal (2p)-submanifold in C2p defined
by

(3.1) M : zp+j = Ej(z
′, z̄′), 1 ≤ j ≤ p.

Here Ej are formal power series in z′, z′. We assume that

(3.2) Ej(z
′, z̄′) = hj(z

′, z′) + qj(z
′) +O((|(z′, z′)|3)

and hj, qj are homogeneous quadratic polynomials. The formal complexification of M is
defined by {

zp+i = Ei(z
′, w′), i = 1, . . . , p,

wp+i = Ēi(w
′, z′), i = 1, . . . , p.

We define a formal deck transformation of π1 to be a formal biholomorphic map

τ : (z′, w′) → (z′, f(z′, w′)), τ(0) = 0

such that π1τ = π1, i.e. E ◦ τ = E. Recall that condition B says that q∗ = dim{z′ ∈
Cn : q(z′) = 0} is zero, i.e. q vanishes only at the origin in Cp.
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Lemma 3.1. Let M be a formal submanifold defined by (3.1)-(3.2). Suppose that M
satisfies condition B. Then formal deck transformations of π1 are commutative involutions.
Each formal deck transformation τ of π1 : M → Cp is uniquely determined by its linear part
Lτ in the (z′, w′) coordinates, while Lτ is a deck transformation for the complexification
for π1 : Q → Cp, where Q is the complexification of the quadratic part Q of M . If M is
real analytic, all formal deck transformations of π1 are convergent.

Proof. Let us recall some results about the quadric Q. We already know that q∗ = 0
implies that π1 for the complexification of Q is a branched covering. As used in the proof
of Lemma 2.1, π1 is an open mapping near the origin and its regular values are dense. In
particular, we have

(3.3) det ∂w′{h(z′, w′) + q(w′)} 6≡ 0.

Let τ be a formal deck transformation for M . To show that τ is an involution, we
note that its linear part at the origin, Lτ , is a deck transformation of Q. Hence Lτ is an
involution. Replacing τ by the deck transformation τ 2, we may assume that τ is tangent
to the identity. Write

τ(z′, w′) = (z′, w′ + u(z′, w′)).

We want to show that u = 0. Assume that u(z′, w′) = O(|(z′, w′)|k) and let uk be homoge-
neous and of degree k such that u(z′, w′) = uk(z

′, w′) +O(|(z′, w′)|k+1). We have

E(z′, w′ + u(z′, w′)) = E(z′, w′).

Comparing terms of order k + 1, we get

∂w′{h(z′, w′) + q(w′)}uk(z′, w′) = 0.

By (3.3), uk = 0. This shows that each formal deck transformation τ of π1 for M is an
involution. As mentioned above, Lτ is a deck transformation of π1 for Q. Also if τ, τ̃ are
commuting formal involutions then τ−1τ̃ is an involution and τ = τ̃ if and only if Lτ = Lτ̃ .

Assume now that M is real analytic. We want to show that each formal deck transfor-
mation τ is convergent. By a theorem of Artin [Art68] applied to the solution u, there
is a convergent τ̃(z′, w′) = τ(z′, w′) + O(|(z′, w′)|2) such that E ◦ τ̃ = E, i.e. τ̃ is a deck
transformation. Then τ̃−1τ is a deck transformation tangent to the identity. Since it is
a formal involution by the above argument, then it must be identity. Therefore, τ = τ̃
converges. �

Analogous to real analytic submanifolds, we say that a formal manifold defined by (3.1)-
(3.2) satisfies condition D if its formal branched covering π1 admits 2p formal deck trans-
formations.

Recall from section 2 that it is crucial to distinguish a special set of generators for the
deck transformations in order to relate the classification of real analytic manifolds to the
classification of certain {τ11, . . . , τ1p, ρ}. The set of generators is uniquely determined by
the dimension of fixed-point sets. We want to extend these results at the formal level.

Proposition 3.2. Let M, M̃ be formal p-submanifolds in Cn of the form (3.1)-(3.2). Sup-
pose that M, M̃ satisfy condition D. Then the following hold :

(i) M and M̃ are formally equivalent if and only if their associated families of involu-
tions {τ11, . . . , τ1p, ρ} and {τ̃11, . . . , τ̃1p, ρ} are formally equivalent.
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(ii) Let T1 = {τ11, . . . , τ1p} be a family of formal holomorphic involutions which com-
mute pairwise. Suppose that the tangent spaces of Fix(τ11), . . . ,Fix(τ1p) are hyper-
planes intersecting transversally at the origin. Let ρ be an anti-holomorphic formal
involution and let T2 = {τ21, . . . , τ2p} with τ2j = ρτ1jρ. Suppose that σ = τ1τ2 has
distinct eigenvalues for τi = τi1 · · · τip, and

[Mn]
LT1
1 ∩ [Mn]

LT2
1 = {0}.

There exists a formal submanifold defined by

(3.4) z′′ = (B2
1 , . . . , B

2
p)(z

′, z′)

for some formal power series B1, . . . , Bp such that M satisfies condition D. The set
of involutions {τ̃11, . . . , τ̃1p, ρ0} of M is formally equivalent to {τ11, . . . , τ1p, ρ}.

Proof. (i) LetM and M̃ be given by z′′ = E(z′, z′) and z̃′′ = Ẽ(z̃′, z̃′), respectively. Suppose
that f is a formal holomorphic transformation sending M into M̃ . We have

(3.5) f ′′(z′, E(z′, w′)) = Ẽ(f ′(z′, E(z′, w′)), f
′
(w′, E(w′, z′))).

Here f = (f ′, f ′′). Recall that ρ0(z
′, w′) = (w′, z′). Define a formal mapping (z′, w′) →

(z̃′, w̃′) = F (z′, w′) by

(3.6) F (z′, w′) := (f ′(z′, E(z′, w′)), f ′(w′, E(w′, z′))).

It is clear that Fρ0 = ρ0F . By Lemma 2.5, we know that z̃′ and z̃′′ = Ẽ(z̃′, w̃′) generate

invariant formal power series of {τ̃1j}. Thus, z̃′◦F (z′, w′) = f ′(z′, E(z′, w′)) and Ẽ◦F (z′, w′)
are invariant by F−1 ◦ τ̃1j ◦ F . By (3.5) and the definition of F ,

Ẽ ◦ F (z′, w′) = f ′′(z′, E(z′, w′)).

This shows that f(z′, E(z′, w′)) is invariant under F−1 ◦ τ̃1j ◦ F . Since f is invertible, then
z′ and E(z′, w′) are invariant under F−1 ◦ τ̃1j ◦ F . Therefore, {τ1j} and {F−1 ◦ τ̃1i ◦ F} are
the same by Lemma 2.5 as they have the same invariant functions.

Assume now that {τ1j} = {F−1 ◦ τ̃1i ◦ F} for some formal biholomorphic map F com-

muting with ρ0. Recall that z̃
′, z̃′′ are invariant by τ̃1j . Then z̃

′ ◦F and Ẽ ◦F are invariant
by {τ1j}. By Lemma 2.5, invariant power series of τ1j are generated by z′, E(z′, w′). Thus
we can write

z̃′ ◦ F (z′, w′) = f ′(z′, E(z′, w′)),

Ẽ ◦ F (z′, w′) = f ′′(z′, E(z′, w′))(3.7)

for some formal power series map f = (f ′, f ′′). Since ρ0F = Fρ0, then by (3.6)

F (z′, w′) = (f ′(z′, 0), f
′
(w′, 0)) +O(|(z′, w′)|2).

Since F is (formally) biholomorphic then z′ → f ′(z′, 0) is biholomorphic. Then

f ′′(0, E(0, w′)) = Ẽ(0, f
′
(w′, 0)) +O(|w′|3).

We have E(0, w′) = q(w′) + O(|w′|3) and Ẽ(0, w′) = q̃(w′) + O(|w′|3). Here q(w′), q̃(w′)
are quadratic. By condition q∗ = 0, we know that q̃1, . . . , q̃p and hence q̃1 ◦ L, . . . , q̃p ◦ L
are linearly independent. Here L is the linear part of the mapping w′ → f

′
(w′, 0), which

is invertible. This shows that the linear part of w′ → f ′′(0, w′) is biholomorphic. By (3.7),
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f ′′(z′, 0) = O(|z′|2). Hence f = (f ′, f ′′) is biholomorphic. By a simple computation, we

have f(M) = M̃ , i.e.

Ẽ(f ′(z), f ′(z)) = f ′′(z)

for z′′ = E(z′, z′).
(ii) Assume that {τ1j} and ρ are given in the (ξ, η) space. We want to show that a formal

holomorphic equivalence class of {τ1j , ρ} can be realized by a formal submanifold satisfying
condition D. The proof is almost identical to the realization proof of Proposition 2.8 and
we will be brief. Using a formal, instead of convergent, change of coordinates, we know
that invariant formal power series of {τ1j} are generated by

z′ = (A1(ξ, η), . . . , Ap(ξ, η)), z′′ = (B2
1(ξ, η), . . . , B

2
p(ξ, η)),

where Bj is skew-invariant by τ1j , and A,Bi are invariant under τ1j for i 6= j. Moreover,
φ(ξ, η) = (A,B)(ξ, η) is formally biholomorphic. Set

w′
j = Aj ◦ ρ(ξ, η), w′′

j = B2
j ◦ ρ(ξ, η).

Then (ξ, η) → (A(ξ, η), A ◦ ρ(ξ, η)) has an inverse ψ. Define

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, z′).

The complexification of M is given by

M : z′′ = (B2
1 , . . . , B

2
p) ◦ ψ(z′, w′), w′′ = (B

2

1, . . . , B
2

p) ◦ ψ(w′, z′).

Note that φ◦ψ(z′, w′) = (z′, B ◦ψ(z′, w′)). Since φψ is invertible, the linear part D of B ◦ψ
satisfies |D(0, w′)| ≥ |w′|/C. This shows that q∗ = 0. As in the proof of Proposition 2.8,
we can verify that M is a realization for {τ1j , ρ}. �

4. Normal forms of commuting biholomorphisms

In this section, we shall consider a family of commuting germs of holomorphic diffeo-
morphisms at a common fixed point, say 0 ∈ Cn. We shall give conditions that ensure
that the family can be transformed simultaneously and holomorphically to a normal form.
This means that there exists a germ of biholomorphism at the origin which conjugates each
germ of biholomorphism in the family to a mapping that commutes with the linear part of
every mapping of the family.

4.1. Centralizers and Decomposition.

Definition 4.1. Let F be a family of formal mappings on Cn fixing the origin. Let C(F)
be the centralizer of F , i.e. the set of formal holomorphic mappings g that fix the origin
and commute with each element f of F , i.e., f ◦ g = g ◦ f .

Let C2(F) be the “higher order formal centralizer” of F , that is

C2(F) = {H ∈ (M̂2
n)

n | H ◦ F = F ◦H, F ∈ F}.
We now deal with the following decomposition problem: Let C be a set of analytic

mappings. We want to decompose an arbitrary invertible mapping into the composition of
an element of a centralizer of C and an element which is normalized with respect to C. We
first prove a general convergence decomposition, which will be used several times. Let ej
denote the standard jth unit vector of Cn.
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Definition 4.2. Let A be a group of permutations of {1, . . . , n}. Then A acts on the

right (resp. on the left) on Ôn
n by permutation of variables z = (z1, . . . , zn) as follows: Let

F (z) =
∑

|Q|>0 FQz
Q be a formal mapping from Cn to Cn, and let ν, µ ∈ A; set

ν ◦ F ◦ µ(z) :=
∑

i

∑

Q∈Nn

Fν(i),µ−1(Q)z
Qei.

Define the components (AF )i, (FA)i, and consequently (AFA)i by

(AF )i(z) :=
∑

Q∈Nn

max
ν∈A

|Fν(i),Q|zQ, (FA)i(z) :=
∑

Q∈Nn

max
µ∈A

|Fi,µ−1(Q)|zQ,

(AFA)i(z) =
∑

Q∈Nn

max
(ν,µ)∈A2

|Fν(i),µ−1(Q)|zQ.

We see that FA is the smallest (w.r.t. ≺) power series mapping that majorizes F and
is right-invariant under A, while AF is the smallest power series mapping that majorizes
F and is left-invariant under A. In particular, if F,G are mappings without constant or
linear terms, then

A(F ◦ (I +G))A ≺ (AFA)(AIA+AGA),(4.1)

where the last relation holds if the composition is well-defined.
To simply our notation, we will take A to be the full permutation group of {1, . . . , n}.

We will denote
Fsym = AFA.

Lemma 4.3. Let Ĥ be a real subspace of (M̂2
n)

n. Let π : (M̂2
n)

n → Ĥ be a R linear pro-

jection (i.e. π2 = π) that preserves the degrees of the mappings and let Ĝ := (I−π)(M̂2
n)

n.
Suppose that there is a positive constant C such that

(4.2) π(E) ≺ CEsym

for any E ∈ (M̂2
n)

n. Let F be a formal map tangent to the identity. There exists a unique
decomposition

(4.3) F = HG−1

with G− I ∈ Ĝ and H − I ∈ Ĥ. If F is convergent, then G and H are also convergent.

Proof. If f is a formal mapping, we define the k-jet:

Jkf(z) =
∑

|Q|≤k

fQz
Q.

Write F = I + f , G = I + g and H = I + h. We need to solve FG = H , i.e to solve

h− g = f(I + g).

Since f ′(0) = 0, then for any k ≥ 2, the k-jet of f(I + g) depends only on the (k− 1)-jet of
g. Since π is linear and preserves degrees, (4.2) implies that Jk commutes with π. Hence
we can define, for all k ≥ 2,

−Jk(g) := π
(
Jk(f(I + g)

)
, Jk(h) := (I − π)

(
Jk(f(I + g)

)
.
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This solves the formal decomposition uniquely. Assume that F is a germ of holomorphic
mapping. Hence, we have

g ≺ C(f(I + g))sym ≺ Cfsym(Isym + gsym).

Since gsym is the smallest left and right A invariant power series that dominates g, we have

gsym ≺ Cfsym(Isym + gsym).

Therefore, gsym is dominated by the solution u to

u = Cfsym(Isym + u), u(0) = 0.

Notice that u is real analytic near the origin by the implicit function theorem. So, gsym is
convergent, and g, h = g + f(I + g) are convergent. �

Remark 4.4. Let A,B be two subgroups of permutations. Instead of using the full per-
mutations group, we could have used Gsym := AGB. We have

G ≺ AGB ≺ CA(F ◦ (I +G))B ≺ (AFA)(AIB+AGB).
4.2. Abelian family of biholomorphisms. Let Di := diag(µi1, . . . , µin) with 1 ≤ i ≤ ℓ
be diagonal invertible matrices of Cn. Let Di : x → Dix be the linear mappings. Let D
denote the family {Di}i=1,...ℓ of linear mappings.

Definition 4.5. We say that F = (f1, . . . , fn) is normalized with respect to D if it is
tangent to the identity and it does not have components along the centralizer of D, i.e. for
each Q with |Q| ≥ 2,

fj,Q = 0, if µQ
i = µij for all i.

Let Cc(D) denote the set of formal mappings normalized with respect to D. Let Cc

2(D) be

the set of all H ∈ (M̂2
n)

n satisfying I +H ∈ Cc(D).

Let us consider a family F := {Fi}ℓi=1 of germs of holomorphic diffeomorphisms of (Cn, 0)
of which the linear of Fi(x) at the origin is Di. Thus

Fi(x) = Dix+ fi(x), fi(0) = 0, Dfi(0) = 0.

The group of germs of (resp. formal) biholomorphisms tangent to identity acts on the
family F by Φ∗F := {Φ−1 ◦ Fi ◦ Φ: 1 ≤ i ≤ ℓ}.

Let {Fi}i=1,...ℓ be a family of commuting germs of biholomorphisms with ℓ < ∞.
Let us recall a result by M. Chaperon (see theorem 4 in [Cha86], page 132):

Proposition 4.6. If the family of diffeomorphisms is abelian then there exists a formal
diffeomorphism Φ, which is tangent to the identity, such that

F̂i(Djx) = DjF̂i(x), 1 ≤ i, j ≤ ℓ

where F̂i := Φ∗Fi, for 1 ≤ i ≤ ℓ. We call the family {F̂i} a formal normal form of the
family F (or a normalized family) with respect to the family D of linear maps.

For convenience, we restrict changes of holomorphic coordinates to the ones that are
tangent to the identity. Also Φ∗{Fi}ℓi=1 = {F̃i}ℓi=1 means that

Φ∗Fi = F̃i, 1 ≤ i ≤ ℓ.
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These restrictions will be removed by mild changes. For instance, if Φ transforms a family
F into a family F̂ that commutes with LF , the family of the linear part of the F , then
(LΦ)−1(LFi)LΦ = LF̂i. Therefore, Φ(LΦ)−1 is tangent to the identity and transforms F

into (LΦ)F̂ (LΦ)−1 which commutes with LF .

Let ÔD
n be the ring of formal invariants of the family D, that is

ÔD
n := {f ∈ Ôn | f(Dix) = f(x), i = 1, . . . , ℓ}.

If Q ∈ Nn, Q 6= 0, then xQ ∈ ÔD
n if and only if

µQ
i := µq1

i1 · · ·µqn
in = 1, ∀ 1 ≤ i ≤ ℓ.

If |Q| > 1, then xQej ∈ C2(D) if and only if µQ
i = µij, ∀ 1 ≤ i ≤ ℓ. With notation of

Definition 4.1, we have

Lemma 4.7. Any formal diffeomorphism Φ of (Cn, 0), tangent to identity, can be written
uniquely as Φ = Φ1 ◦ Φ−1

0 with Φ1 ∈ Cc(D) and Φ0 ∈ C(D). Furthermore, Φ0,Φ1 are
convergent when Φ is convergent.

Proof. This follows from Lemma 4.3, where Ĥ is replaced by C2(D) and π is defined by

π
(∑

fj,Qx
Qej

)
=
∑

j

∑

xQej 6∈C2(D)

fj,Qx
Qej . �

Lemma 4.8. Let F̂ := {F̂i} and F̃ := {F̃i} be two formal normal forms of the abelian
family of diffeomorphisms F := {Fi}. There exists a formal diffeomorphism Φ, tangent to

identity at the origin, such that Φ ∈ C(D) and Φ ◦ F̃i = F̂i ◦ Φ. Furthermore, there is a
unique Φ ∈ Cc(D) that transforms the family F into a normal form.

Proof. Since both F̂ and F̃ are normal forms of F , there exists a formal diffeomorphism
Φ, tangent to identity at the origin, such that F̃i ◦ Φ = Φ ◦ F̂i. According to Lemma 4.7,
we can decompose Φ = Φ1 ◦ Φ−1

0 where Φ0 ∈ C(D) and Φ1 ∈ Cc(D). Hence, we have

Φ−1
1 ◦ F̃i ◦ Φ1 = Φ−1

0 ◦ F̂i ◦ Φ0. Let us set Gi := Φ−1
0 ◦ F̂i ◦ Φ0. Then Gi is a formal

diffeomorphism satisfying Gi(x)−Dix ∈ C(D). Let us show by induction on N ≥ 2 that if
Φ1 = I +ΦN

1 +O(N + 1) with ΦN
1 being homogeneous of degree N , then ΦN

1 = 0. Indeed,
a computation shows that

{Gi}N = {F̂i}N +Di ◦ ΦN
1 − ΦN

1 ◦Di.

Express ΦN
1 as sum of monomial mappings. The monomial mappings are not in C(D),

while those of Fi and Gi are. We obtain ΦN
1 = 0.

To verify the last assertion, assume that Ψ∗F = F̂ and Ψ̃∗F = F̃ are in the normal
form. Suppose that Ψ, Ψ̃ are normalized. Then (Ψ−1Ψ̃)∗F̂ = Ψ̃∗(Ψ

−1)∗F̂ is in the normal

form. Write Ψ−1Ψ̃ = ψ1ψ
−1
0 with ψ1 ∈ Cc(D) and ψ0 ∈ C(D). Then (ψ1)∗F̂ is in a normal

form. From the above proof, we know that ψ1 = I. Now Ψ = Ψ̃ψ0, which implies that
Ψ = Ψ̃. �

Lemma 4.9. If a formal normal form of F is completely integrable so are all other normal
forms of F ; in particular, the unique Φ in Lemma 4.8 transforms F into a completely
integrable normal form.
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Proof. By Lemma 4.8, we transform a normal form {F̂i} into another one {F̃i} by applying

a transformation Φ that commutes with each Dj. Hence, we have F̂i := Φ−1 ◦ F̃i ◦Φ, for all
i = 1, . . . , ℓ. Let us write Φ(x) =

∑
Q∈Nn, 1≤j≤n φj,Qx

Qej. Suppose that {F̂i} is completely
integrable, then

Φ ◦ F̂i(x) =
∑

Q∈Nn

φj,Qµi(x)
QxQej.

Since Φ commutes with each Dj , then

Φ ◦ F̂i(x) = diag(µi1(x), . . . , µin(x)) · Φ(x).
The conjugacy equation leads to

µij(x) · Φj(x) = F̃ij(Φ(x)), 1 ≤ j ≤ n.

As a consequence, we have F̃i(x) = diag((µ̃i1(x), . . . , µ̃in(x)) · x with (µ̃ij ◦ Φ(x)) · Φj(x) =
µij(x) · Φj(x), i.e. µ̃ij = µij ◦ Φ−1.

Each function µ̃ij is an invariant function of D since

µ̃ij(Dkx) = µij ◦ Φ−1(Dkx) = µij ◦Dk(Φ
−1(x)) = µij ◦ Φ−1(x).

The second and third conditions of the definition of the complete integrability is obviously
satisfied by {F̃i} since µ̃ij = µij ◦ Φ−1. �

Lemma 4.10. If a formal normal form of F is linear so are all other normal forms of F .

Proof. According to Lemma 4.8, we transform a linear normal form {F̂i} into another one

{F̃i} by applying a transformation Φ that commutes with each Dj . Since F̂i(x) = Dix, we

have F̃i = Φ−1(DiΦ(x)), for all i = 1, . . . , ℓ. Since Φ commutes with each map x 7→ Dix,
then

F̃i = Φ−1(DiΦ(x)) = Φ−1(Φ(Dix)) = Dix. �

Definition 4.11. We say that the family D is of Poincaré type if there exist constants
d > 1 and c > 0 such that, for each (j, Q) ∈ {1, . . . , n} ×Nn that satisfies µQ

m − µmj 6= 0

for some m, there exists (i, Q′) ∈ {1, . . . , ℓ} × Nn such that µQ′

k = µQ
k for all 1 ≤ k ≤ ℓ,

µQ′

i − µij 6= 0, and

max
(
|µQ′

i |, |µ−Q′

i |
)
> c−1d|Q

′|, Q′ −Q ∈ Nn ∪ (−Nn).

Such a condition has appeared in the definition of the good set in [BHV10].

Definition 4.12. Let f =
∑

Q∈Nn fQx
Q and g =

∑
Q∈Nn gQx

Q be two formal power series.

We say that g majorizes f , written as f ≺ g, if gQ ≥ 0 and |fQ| ≤ gQ for all Q ∈ Nn. Set

f̄ :=
∑

Q∈Nn

|fQ|xQ.

Theorem 4.13. Let F be an abelian family of germs of holomorphic diffeomorphisms at
the origin of Cn. Assume that it is formally completely integrable and that its linear part
at the origin is of Poincaré type. Then F is holomorphically conjugated to a normal form
F̂ = {F̂1, . . . , F̂ℓ} so that each F̂i is defined by

x′j = µij(x)xj , j = 1, . . . , n
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where µij(x) are germs of holomorphic functions invariant under D and µij(0) = µij. In
fact, the unique normalized mapping Φ in Lemma 4.8 is convergent.

The primary example is the following Moser-Webster normal form of reversible mappings:

σ̂ : ξ′ =M1(ξη, ζ)ξ η′ =M−1
1 (ξη, ζ)η, ζ ′ = ζ.

where (ξ, η) ∈ C2, ζ ∈ Cn−2, and |M1(0)| > 1. Our convergence proof is inspired by the
proof in Moser-Webster [MW83].

Proof. The last assertion follows from Lemma 4.7 and Lemma 4.9. Let us conjugate,
simultaneously, each Fi = Dix+fi to F̂i := D̂i(x)x by the action of Φ(x) = x+φ(x) where

φ(0) = 0 and φ′(0) = 0. Here, D̂i(x) denotes the matrix diag(µ̂i1(x), . . . , µ̂in(x)) and each

µ̂ij(x) is a formal power series invariant under D, i.e. µ̂ij(x) ∈ ÔD
n . We can assume that

Φ does not have a non-zero component along the centralizer of D; indeed, by Lemma 4.9,
we can assume that Φ is normalized w.r.t D. Then, for each i = 1, . . . , ℓ, we have

Fi ◦ Φ(x) = Dix+ fi(Φ)(x) +Diφ(x), Φ ◦ F̂i(x) = D̂i(x)x+ φ(F̂i)(x).

Equation Fi ◦ Φ = Φ ◦ F̂i reads

(4.4)
(
φ(D̂i(x)x)−Diφ(x)

)
+
(
D̂i(x)−Di

)
x = fi(Φ)(x) i = 1, . . . , ℓ.

Our convergence proof is based on two conditions: the existence of a formal φ ∈ Cc(D) that
satisfies the above equation, and the Poincaré type condition on the linear part D. We
already know that φ is unique. We shall project equation (4.4) along the “non-resonant”
space (i.e. the space Cc(D) of normalized mappings w.r.t. D). The mapping φ also solves
this last equation and we shall majorize it using that projected equation.

Let us first decompose these equations along the “resonant” and “non-resonant” parts,
i.e. C2(D) and Cc

2(D). Since φ =
∑

Q∈Nn,|Q|≥2 φj,Qx
Qej is normalized then φj,Q = 0 for

some Q ∈ Nn, |Q| ≥ 2 and 1 ≤ j ≤ n, if we have µQ
m = µmj for all m. We recall that,

since each Di is a diagonal matrix, then a map belongs to the centralizer of D if and only
if each monomial map of its Taylor expansion at the origin belongs to this centralizer as
well. Since the µ̂ij is a formal invariant function then

φ(D̂i(x)x) =
∑

Q∈Nn,|Q|≥2

φj,Qµ̂
Q
i (x)x

Qej =:
∑

Q′∈Nn,|Q′|≥2

ψj,Q′xQ
′

ej .

The latter contains only non-resonant terms, that is that if µQ′

i = µij for all i, then ψj,Q′ = 0.

Indeed, µ̂Q
i (x) contains monomials of the form xP with µP

i = 1 for all 1 ≤ i ≤ ℓ. Hence,
ψj,Q′ is a linear combination of φj,Q such that Q′ = Q+P with µP

i = 1 for all i. Therefore,

if µQ′

i = µij for all i, then for all these Q’s, we have µQ
i = µQ′

i = µij for all i so that φj,Q = 0;
that is ψj,Q′ = 0.

Hence, the projection on the resonant mappings in C2(D) leads to

(4.5)
(
D̂i(x)−Di

)
x = {fi(Φ)(x)}res, i = 1, . . . , ℓ.
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Here for any formal mapping g(x) = O(|x|2) on Cn, we define the projection on C2(D) by

(4.6) (g(x))res =
∑

j

∑

∀i,µQ
i =µij

gj,Qx
Qej.

The projection g onto Cc

2(D) is defined as g(x)− (g(x))res, i.e. it is the projection of g on
the non-resonant mappings.

Let us consider the projection on the non-resonant mappings. We first need to decompose
power series according to a non-homogeneous equivalence relation on their coefficients. Let
us define the equivalence relation on {1, . . . , n} ×Nn by

(j, Q) ∼ (̃, Q̃), if µij − µ̂Q
i (x) = µi̃ − µ̂Q̃

i (x) for all 1 ≤ i ≤ ℓ.

Here the identities hold as formal power series. Let ∆ be the set of the equivalence classes
on the non-resonant multiindex set{

(j, Q) ∈ {1, . . . , n} ×Nn : (µQ
1 − µ1j, . . . , µ

Q
ℓ − µℓj) 6= 0, |Q| > 1

}
.

If µQ
k − µkj 6= 0 for some k, clearly µ̂Q

k − µkj is not identically zero. We can decompose
any formal power series map f along these equivalent classes and the resonant part of the
mapping. Let δ ∈ ∆ and f =

∑
Q=∈Nn,1≤j≤n fj,Qx

Qej with f = O(2). We can write

(4.7) fδ(x) :=
∑

(j,Q)∈δ
fj,Qx

Qej ,
∑

δ∈∆
fδ(x) ≺ f(x).

We denote by M̂
n
n,δ the vector space of such maps. To a given equivalence class δ, we

associate a representative (jδ, Qδ), and we shall identify an equation among n equations in
(4.4) for estimation. Since φ contains no resonant mappings, then

(4.8) φ =
∑

δ∈∆
φδ.

Let us decompose the projection onto non-resonant mappings in Cc

2(D) of equation (4.4)
along each equivalence class δ as follows. Using the definition of the equivalence class ∆,
we obtain

(4.9)
[
µ̂Qδ
i (x)− µijδ

]
φδ(x) = {fi(Φ)}δ (x), ∀i = 1, . . . , ℓ

where {f}δ denotes the projection of f on M̂
n
n,δ, defined by (4.7).

For each (jδ, Qδ) ∈ δ, we know that µQδ

k − µkjδ 6= 0 for some k. By the Poincaré type
condition, there exist i and Q′

δ ∈ Nn such that

(4.10) µ
Q′

δ
i − µijδ 6= 0; µ

Q′

δ
m = µQδ

m , ∀1 ≤ m ≤ ℓ; Q′
δ −Qδ ∈ Nn ∪ (−Nn)

and, furthermore, one of the following holds:

|µQ′

δ
i | ≤ cd−|Q′

δ|, or |µ−Q′

δ
i | ≤ cd−|Q′

δ|.(4.11)

Here, d > 1 does not depend on Qδ. So, let us use the ith equation of (4.9) to estimate φδ.
We have, for that i,

(4.12) φδ =
[
µ̂Qδ
i − µijδ

]−1

{fi(Φ)}δ .
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Therefore, we have established the uniqueness of φ under (4.8) and (4.12), and under the
condition that φ satisfies the equation when (4.4) is projected onto Cc(D). The existence
of φ is ensured by assumption. We now consider the convergence of φ. By (4.10) we obtain

µ̂
Q′

δ−Qδ

i = 1. This allows us to rewrite (4.12) as

(4.13) φδ =
[
µ̂
Q′

δ
i − µijδ

]−1

{fi(Φ)}δ .

We majorize this power series.
Recall that µ̂ij(0) = µij. Let us set Mij(x) := µ−1

ij µ̂ij(x). We have Mij(0) = 1 and we

decompose Mij(x) =
∑

Q∈Nn Mij,Qx
Q. Let us set µ∗ := maxij{|µij|, |µ−1

ij |}, and

mi =
∑

Q∈Nn

max
1≤j≤n

|Mij,Q|xQ, m =
∑

Q∈Nn

max
1≤i≤ℓ, 1≤j≤n

|Mij,Q|xQ.

Note that m(0) = 1. Then Mij ≺ m and

M−1
ij =

1

1 + (Mij − 1)
≺ 1

1− (m− 1)
=

1

2−m
.

Here and in what follows, if f(x) is a formal power series with f(0) = 0, then for any
number a 6= 0, 1

a−f(x)
stands for the formal power series in x for

1

a

{
1 +

∞∑

n=1

(a−1f(x))n

}
.

To simplify notation in (4.13), let us write Q for Q′
δ and j for jδ. We want to show that,

(4.14) (µ̂Q
i − µij)

−1 ≺ S(m− 1).

Here S(t) is a convergent power series independent of all (j, Q)′s of the form (jδ, Q
′
δ)

′s.

Fix d1 with 1 < d1 < d. We consider the first case that µ∗cd−|Q| > d
−|Q|
1 . Since d > d1,

we have only finitely many such Q′s (recall that each Q has the form Q′
δ). The function

Mi 7→ µij − µQ
i M

Q
i is holomorphic in Mi ∈ Cn at Mi = (1, . . . , 1) and does not vanish at

this point. Hence, the function

(µij − µ̂Q
i )

−1 = (µij − µQ
i M

Q
i )

−1

is also holomorphic at Mi = (1, . . . , 1). For all Q′s in the first case, we have

(µij − µ̂Q
i )

−1 ≺ C

1− C(M i1 − 1 + · · ·+M in − 1)
≺ C

1− nC(m− 1)
.

Consider the second case that µ∗cd−|Q| ≤ d
−|Q|
1 . For the first case in (4.11), we obtain

(µ̂Q
i − µij)

−1 = −µ−1
ij (1− µ−1

ij µ
Q
i M

Q
i )

−1 ≺ µ∗ [1− µ∗cd−|Q|m|Q|]−1

≺ µ∗
[
1− d

−|Q|
1 m|Q|

]−1

≺ µ∗ [1− d−1
1 m

]−1
.
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For the second case in (4.11), we have

(µ̂Q
i − µij)

−1 = −µ−Q
i M−Q

i

[
1− µijµ̂

−Q
i M−Q

i

]−1

≺ cd−|Q|(2−m)−|Q| [1− µ∗cd−|Q|(2−m)−|Q|]−1

≺ (µ∗)−1d
−|Q|
1 (2−m)−|Q|

[
1− d

−|Q|
1 (2−m)−|Q|

]−1

≺ (µ∗)−1
[
1− d−1

1 (2−m)−1
]−1

.

We have obtained the estimates for the second case. Therefore, we have shown that for
any Q = Q′

δ and j = jδ

(4.15) (µ̂Q
i − µij)

−1 ≺ S(m− 1).

Here S(t) is a convergent power series independent of all (j, Q)′s of the form (jδ, Q
′
δ)

′s.
Let us set

f ∗ :=
∑

Q∈Nn

max
1≤i≤ℓ, 1≤j≤n

|fij,Q|xQej .

By the definition of the equivalence relation on multiindices, we have

(4.16)
∑

δ∈∆
f ∗
δ ≺ f ∗.

According to (4.13) and (4.15), we have φδ ≺ S(m − 1)
{
f ∗(Φ̄)

}
δ
. Now (4.7) and (4.16)

imply

(4.17) φ ≺ S(m− 1)f ∗(Φ̄).

Let us project (4.5) onto the kth components of C2(D) as follows. For a power series
map g, we define

gres,k(x) =
∑

µQ=µk

gk,Qx
Q.

By the definition of gres in (4.6), gres = (gres,1, . . . , gres,n). We have

µik (Mi,k(x)− 1) xk = (µ̂ik(x)− µik)xk = {fik(Φ)}res,k(x).
Therefore, for all 1 ≤ k ≤ n,

(4.18) (m− 1)xk ≺ 1

mini,j |µi,j|
f ∗(Φ̄).

Let us set µ∗ :=
1

mini,j |µij | . We set x1 = t, . . . , xn = t in Φ(x) and m(x). Let φ(t), Φ(t), and

m(t) still denote φ(t, . . . , t), Φ(t, . . . , t), and m(t, . . . , t), respectively. Let

tW (t) := φ(t) + (m(t)− 1)t.

We have W (0) = 0, φ(t) ≺ tW (t), and (m(t) − 1) ≺ W (t). From estimates (4.17) and
(4.18), we obtain

(4.19) tW (t) ≺ µ∗f
∗(Φ̄(t)) + S(m(t)− 1)f ∗(Φ̄(t)).
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Since fij(x) = O(|x|2), there exists a constant c1 such that

f ∗(x) ≺
c1(
∑

j xj)
2

1− c1(
∑

j xj)
.

Hence, estimate (4.19) reads

tW (t) ≺ (µ∗ + S(m(t)− 1))
c1(n(t+ φ))2

1− c1n(t+ φ)
(4.20)

≺ (µ∗ + S(W (t)))
c1t

2(n(1 +W (t)))2

1− c1nt(1 +W (t))
.

Let us consider the equation in the unknown U with U(0) = 0 :

(4.21) U(t)(1 − c1nt(1 + U(t))) = (µ∗ + S(W (t))) c1t(n(1 + U(t)))2.

According to the implicit function theorem, there exists a unique germ of holomorphic
function U(t), solution to (4.21) with U(0) = 0. According to inequality (4.20), the function
W is dominated by U : W (t) ≺ U(t). This can be seen by induction on the degree of the
Taylor polynomials at the origin. Therefore, W converges at the origin. The theorem is
proved. �

5. Real manifolds with an abelian CR-singularity

Let us consider a real analytic manifold M with a CR-singularity at the origin, which is
an higher order perturbation of a product quadric. We assume that for its complexification
M, π1 has 2p deck transformations generated by {τ11, . . . , τ1p}. Let τ2j = ρ ◦ τ1j ◦ ρ.

Let us consider the following germs of holomorphic diffeomorphisms :

σi := τ1i ◦ τ2i, 1 ≤ i ≤ e∗ + h∗,(5.1)

σs := τ1s ◦ τ2(s∗+s), σs+s∗ = τ1(s+s∗) ◦ τ2s, e∗ + h∗ < s ≤ p− s∗.(5.2)

Notice that the above property holds for quadrics of the complex case by Proposition 2.10.
We assume that the linear parts Tij , Sj, S of τij , σj , σ and ρ are given by (2.32)-(2.35). The
family {σi} is reversible with respect to ρ. More precisely, we have the following relations

σ−1
i = ρσiρ, 1 ≤ i ≤ e∗ + h∗; σ−1

s+s∗ = ρσsρ, e∗ + h∗ < s ≤ p− s∗.

Definition 5.1. We say that the manifold M has an abelian CR-singularity at the
origin if its complexification M has the maximum number of deck transformation and if
the family {σ1, . . . , σp} of germs of biholomorphisms at the origin of C2p is abelian, i.e.

σiσj = σjσi.

The aim of this section is to show that such an analytic perturbation with an abelian
CR-singularity and no hyperbolic component is holomorphically conjugate to a normal
form. We shall give two proofs of this result. The first one rests on Moser-Webster result
[MW83][theorem 4.1] applied successively to each σi. It is to be emphasized that it is
fortunate that we can apply such a result to our situation including the new type of CR
singularity of complex type. The other one is based on the fact that the family {σi} is
formally completely integrable and their linear part is of Poincaré type. We then apply
Theorem 4.13.
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Before we apply the above theorem, let us first exhibit an example of real manifolds
with an abelian CR singularity. We start with a Bishop surface M0 ⊂ C2 defined by
z2 = R(z1, z1) with

(5.3) R(z1, z1) = z1z1 + γ1(z
2
1 + z1

2) +O(3), R(z1, z1) = R(z1, z1).

Let τ 01 , τ
0
2 be the Moser-Webster involutions ofM0. On the complexification M0 ofM0, the

z1 and z2 := R(z1, w1) are invariant by τ
0
1 . Condition (5.3) implies that w2 := R(w1, z1) = z2

is also invariant by τ 01 . Analogously, w1, w2 and z2 are invariant by τ 02 . We are ready to
verify the following

Proposition 5.2. Let R be given by (5.3) and let

(5.4) M : z3 = R(z1, z1), z4 = (z2 + 2γ2z2 + C(z2, z3, z2))
2,

where C(z2, R(z1, z1), z2) = O(3). Then M has an abelian CR singularity at 0.

Proof. Let τ11 be defined by (z′1, w
′
1) = τ 01 (z1, w1) and (z′2, w

′
2) = (z2, w2). Let us verify

that τ11 is a deck transformation of π1, i.e. all zj are invariant by it. Obviously, z2, w2 are
invariant by τ11. We know that z1, z3 = R(z1, w1) are invariant by τ 01 and hence by τ11.
On M, z4 = (z2 + 2γ2w2 + C(z2, z3, w2))

2 is then invariant by τ11. Therefore, τ11 is an
involution and it fixes a hypersurface in M. Let τ12 be defined by (z′1, z

′
2, w

′
1) = (z1, z2, w1)

and

z2 + 2γ2w
′
2 + C(z2, R(z1, w1), w

′
2) = −z2 − 2γ2w2 − C(z2, R(z1, w1), w2).

By the implicit function theorem, w′
2 = −γ−1

2 z2 − w2 + f(z2, R(z1, w1), w2) with f being
convergent. It is clear that τ12 leaves zj invariant and it fixes a hypersurface.

For the abelian property, we note that z2, w2 and R(z1, w1) are invariant by τ11, τ21. By
a straightforward computation, we verity that τ11 and τ21 commute with τ12. Now τ21 and
τ11 commute with τ22 = ρτ12ρ. This shows that τ11τ21 commutes with τ12τ22. �

5.1. Normal forms for abelian CR singularity.

Theorem 5.3. Let M be a germ of real analytic submanifold in Cn at an abelian CR-
singularity at the origin. Suppose thatM is a higher order perturbation of a product quadric
of which γ1, . . . , γp satisfy (1.5). Suppose that M does not have a hyperbolic component (i.e.
e∗ ≥ 0, s∗ ≥ 0, h∗ = 0) and Re γs < 1/2. Then there exists a germ of biholomorphism ψ
that commutes with ρ and such that, for 1 ≤ i ≤ p and k = 1, 2

ψ−1 ◦ σi ◦ ψ :





ξ′i =Mi(ξη)ξi

η′i =M−1
i (ξη)ηi

ξ′j = ξj

η′j = ηj , j 6= i,

ψ−1 ◦ τki ◦ ψ :





ξ′i = Λki(ξη)ηi

η′i = Λ−1
ki (ξη)ξi

ξ′j = ξj

η′j = ηj , j 6= i.

(5.5)

Moreover, Λ2j = Λ−1
1j and

Λ1e = Λ1e ◦ ρz, 1 ≤ e ≤ e∗; Λ−1
1s = Λ1(s+s∗) ◦ ρz, e∗ < s ≤ p− s∗,(5.6)

ρz : ζe → ζe, ζs → ζs+s∗, ζs+s∗ → ζs.(5.7)
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Proof. We will present two convergence proofs: one is based on a convergent theorem of
Moser and Webster and another is based on Theorem 4.13. We first use some formal results
obtained by Moser and Webster [MW83] and some results in section 4. The conditions of
the theorem imply that, for all i, |µi| 6= 1.

Since M is a higher order perturbation of a product quadric, there are linear coordinates
such that, for 1 ≤ i ≤ p and k = 1, 2, τki and σi are higher order perturbations of

Si :





ξ′i = µiξi

η′i = µ−1
i ηi

ξ′j = ξj

η′j = ηj , j 6= i,

Tki :





ξ′i = λkiηi

η′i = λ−1
ki ξi

ξ′j = ξj

η′j = ηj , j 6= i.

For elliptic coordinates, this was computed in [MW83] and recalled in (2.21). For complex
coordinates, this is computed in (2.27) and (2.29). Recall that σ1, . . . , σp are defined by
(5.1)-(5.2) Since |µ1| 6= 1, then by theorem 4.1 of Moser-Webster ([MW83]), there is a
unique convergent transformation ψ1 normalized w.r.t. S1 (see Definition 4.5) such that
σ∗
1 := ψ−1

1 ◦ σ1 ◦ ψ1 and τ ∗i1 := ψ−1
1 ◦ τi1 ◦ ψ1 are given by

σ∗
1 :





x′1 =M1(ξ, η)ξ1

η′1 =M−1
1 (ξ, η)η1

ξ′j = ξj

η′j = ηj , j 6= 1,

τ ∗k1 :





ξ′1 = Λk1(ξ, η)η1

η′1 = Λ−1
k1 (ξ, η)ξ1

ξ′j = ξj

η′j = ηj , j 6= 1.

(5.8)

Here k = 1, 2. It is a simple fact (e.g. see Lemma 4.9, D = {S1}) that there is a unique
φ1 ∈ Cc(S1) such that φ−1

1 σ1φ1 is in the centralizer of S1. Therefore, φ1 = ψ1 is also
convergent.

Furthermore, we have M1(ξ, η) = Λ11(ξ, η)Λ
−1
21 (ξ, η); and Λ11,Λ21,M1 are invariant by

S1. In the new coordinates, let us denote τim, σm by the same symbols for m > 1. However,
σ1 = σ∗

1 and τk1 = τ ∗k1. Since each σm commutes with σ1, then σm is in the centralizer
of S1. Indeed, according to [MW83][Lemma 3.1](or Lemma 4.7 with D = {S1}), we can
decompose σm = σ1

mσ
0
m where σ1

m is normalized w.r.t S1 and σ0
m is in the centralizer of S1.

Write σ1σm = σmσ1 as
(σ1

m)
−1σ1σ

1
m = σ0

mσ1(σ
0
m)

−1.

Since σ0
mσ1(σ

0
m)

−1 belongs to C(S1), so does (σ1
m)

−1σ1σ
1
m. Then applying the uniqueness of

ψ1 stated earlier to σ1
m, we conclude that σ1

m = I and σm = σ0
m is in the centralizer of S1.

Let us verify that σ0
m or in general each (formal) transformation ϕ in C(S1) preserves

the form of σ∗
1 and τ ∗i1. Indeed, ϕ

−1 commutes with S1 too. Thus ϕ−1σ∗
1ϕ commutes with

S1 and its linear part is S1. The linear part of ϕ must preserve the eigenspaces of S1 and
hence it is given by

ξ1 → aξ1, η1 → bη1, (ξ∗, η∗) → φ(ξ∗, η∗)

for ξ∗ = (ξ2, . . . , ξn) and η∗ = (η2, . . . , ηn). The linear part of τ ∗k1 is given by

ξ1 → λk1η1, η1 → λ−1
k1 ξ1, (ξ∗, η∗) → (ξ∗, η∗).

By a simple computation, the linear part of ϕ−1τ ∗k1ϕ still has this form with λk1
b
a
instead

of λk1. According to [MW83][lemma 3.2], there a unique normalized mapping Ψ that



37

normalizes ϕ−1σ∗
1ϕ and the ϕ−1τ ∗k1ϕ’s. According to the uniqueness property of Lemma 4.8,

Ψ = Id. Therefore, ϕ preserves the forms of τ ∗i1 and σ∗
1.

Let ψ2 be the unique biholomorphic map normalized w.r.t. S2 such that ψ−1
2 σ2ψ2 = σ∗

2

and ψ−1
2 τk2ψ2 = τ ∗k2 are in the normal form :

σ∗
2 :





ξ′2 =M2(ξ, η)ξ2
η′2 =M−1

2 (ξ, η)η2

ξ′j = ξj
η′j = ηj , j 6= 2,

τ ∗k2 :





ξ′2 = Λk2(ξ, η)η2
η′2 = Λ−1

k2 (ξ, η)ξ2

ξ′j = ξj
η′j = ηj , j 6= 2.

(5.9)

Here k = 1, 2, and M2 and Λk2 are invariant by S2. Since σ2 commutes with S1, we have

(S−1
1 ψ2S1)

−1 ◦ σ2 ◦ (S−1
1 ψ2S1) = S−1

1 σ∗
2S1.

Note that S−1
1 σ∗

2S1 (resp. S
−1
1 τ ∗k2S1) has the form (5.9) in which M2 (resp. Λk2) is replaced

by M2 ◦ S1 (resp. Λk2 ◦ S1). In other words S−1
1 σ∗

2S1 and S−1
1 τ ∗k2S1 are still of the form

(5.9). Since S1 is diagonal, then S
−1
1 ψ2S1 remains normalized w.r.t. S2. Applying the above

uniqueness on ψ2 for σ2, we conclude that ψ2 = S−1
1 ψ2S1. This shows that ψ2 preserves

the forms of τ ∗k1 and σ∗
1. By the same argument as above, we have σ∗

m ∈ C(S1, S2).
In summary, we have found holomorphic coordinates so that τij = τ ∗im and σm = σ∗

m

for m = 1, 2. As mentioned previously, we know that σ∗
1, σ

∗
2, σ3, . . . , σm commute with S1

and S2. In particular, M1,M2 are invariant by S1, S2. Repeating this procedure, we find
a holomorphic map φ so that all φ−1σjφ = σ∗

j and φ−1τkjφ = τ ∗kj are in the normal forms.
Furthermore, Mi and Λk,i are invariant by S = {S1, . . . , Sp}.

By Lemma 4.7, we decompose φ = φ1φ
−1
0 where φ1 is normalized w.r.t. S and φ0 is in

the centralizer of S. Then φ−1
1 σjφ1 = σ∗

j and φ−1
1 τijφ1 = τ ∗ij are in the normal forms, since

φ0 commutes with Sj. We want to show that φ1 commutes with ρ.
Note that σ−1

e = ρσeρ and σ−1
s+s∗ = ρσsρ. Thus (ρφ1ρ)

−1σj(ρφ1ρ) = σ̃∗
j where σ̃∗

e :=

ρ(σ∗
e)

−1ρ and σ̃∗
s := ρ(σ∗

s+s∗)
−1ρ. It is easy to see that ρφ1ρ is still normalized w.r.t. S

(see also Definition 6.4). By Lemma 4.8, we know that there is a unique normalized formal
mapping φ1 such that φ−1

1 σjφ1 are in the centralizer of S. Since σ̃∗
j belongs to the centralizer

of S, then we have ρφ1ρ = φ1.
Now, τ ∗2j = ρτ ∗1jρ follows from τ2j = ρτ1jρ. This shows that

Λ2e = Λ−1
1e ◦ ρz , Λ2s = Λ1(s+s∗) ◦ ρz, Λ2(s+s∗) = Λ1s ◦ ρz,

where 1 ≤ e ≤ e∗ and e∗ < s ≤ p− s∗. Let φ2 be defined by

ξ′j = (Λ
1/2
1j M

1/4
j )(ξη)ξj, η′j = (Λ

−1/2
1j M

−1/4
j )(ξη)ηj, 1 ≤ j ≤ p.

For a suitable choice of the roots, we have φ2ρ = ρφ2. Furthermore, φ2 preserves all
invariant functions of S. Hence, each φ−1

2 ◦ φ−1
1 ◦ τki ◦ φ1 ◦ φ2 has the form τ ∗kj stated in

Theorem 5.3.

We now present another proof by using the more general Theorem 4.13.
Note that the above proof is valid at the formal level without using the convergence

result of Moser and Webster. More specifically, if τij are given by formal power series with
σ1, . . . , σp commuting pairwise, there exists a formal map ψ that is tangent to the identity
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and commutes with ρ such that (5.5) holds. Since each µj is not a root of unity, then (5.5)
implies that the conjugate family {σ∗

m} is a completely integrable normal form.
Let σi be defined as above. Let Si be its linear part at the origin of Cn. The eigenvalues

{µij}1≤j≤n of Si are either µi, µ
−1
i or 1. More precisely, if Q ∈ Nn, |Q| ≥ 2 then

(5.10) µQ
m − µmj = µqm−qm+p

m −





µm if j = m

µ−1
m if j = m+ p

1 otherwise.

We need to verify the condition that the family of linear part {S1, . . . , Sp} is of the Poincaré
type. So we can apply Theorem 4.13.

Suppose that (j, Q) ∈ {1, . . . , 2p} ×N2p satisfies µQ
l − µlj 6= 0 for some 1 ≤ l ≤ 2p. Set

d = {minimax(|µi|, |µ−1
i |)}1/(2p). We define

Q′ = Q−
p∑

i=1

min(qi, qi+p)(ei + ei+p) := (q′1, . . . , q
′
2p).

Then µQ
i = µQ′

i for all i. Take i = l if |Q′| ≤ 2p. In this case, we easily get

(5.11) µQ′

i − µij 6= 0, |µQ′

i | > c−1d|Q
′|

by choosing a sufficiently large c. Assume that |Q′| > 2p. Take i such that

q′i + q′i+p = max
k

(q′k + q′k+p).

Then q′i + q′i+p ≥ |Q′|/p > 2. By (5.10), we get the first equality in (5.11). We note that
(q′i, q

′
i+p) = (qi, 0) or (0, qi+p). Thus

max(|µQ′

i |, |µ−Q′

i |) = (max(|µi|, |µi|−1))q
′

i+q′i+p ≥ d|Q
′|.

This shows that {Dσ1(0), . . . , Dσp(0)} is of the Poincaré type.
We now apply Theorem 4.13 as follows. We decompose ψ = ψ1ψ

−1
0 such that ψ1 ∈

Cc(S1, . . . , Sp) and ψ0 ∈ C(S1, . . . , Sp). Then each σ∗
i = ψ−1

1 σiψ1 still has the form in (5.5);
in particular, {σ∗

1 , . . . , σ
∗
p} is a completely integrable formal normal form. By Theorem 4.13,

ψ1 is convergent. Now, ψ−1
1 τkjψ1 = ψ−1

0 (ψ−1τkjψ)ψ0 are still of the form (5.5); however
(5.6) and Λ2jΛ1j = 1 might not hold. As in the first proof, we can verify that ψ1ρ = ρψ1.
Applying another change of coordinates that commutes with ρ and each Sj as before, we
achieve (5.5)-(5.6) and Λ2jΛ1j = 1. The proof of the theorem is complete. �

As a corollary of Theorem 5.3, we have the following normal form for real submanifolds.
In order to study the holomorphic flatness and hull of holomorphy, we choose a realization
similar to the case of Moser-Webster for p = 1.

Theorem 5.4. Let M be as in Theorem 5.3. Then M is holomorphically equivalent to

M̂ : zp+j = Λ1j(ζ)ζj, 1 ≤ j ≤ p,(5.12)



39

where ζ = (ζ1, . . . , ζp) are the convergent solutions to

ζe = Ae(ζ)|ze|2 − Be(ζ)(z
2
e + z2e),(5.13)

ζs = As(ζ)zszs+s∗ − Bs(ζ)(z
2
s + Λ2

1s(ζ)z
2
s+s∗),(5.14)

ζs+s∗ = As+s∗zszs+s∗ −Bs+s∗(ζ)(z
2
s+s∗ + Λ2

1(s+s∗)(ζ)z
2
s).(5.15)

Here Λ1j(ζ) = λj +O(ζ) (1 ≤ j ≤ p) satisfy (5.6) and

Ae =
1 + Λ2

1e

(1− Λ2
1e)

2
, Aj =

Λ1j + Λ3
1j

(1− Λ2
1j)

2
, j = s, s+ s∗,(5.16)

Bj =
Λ1j

(1− Λ2
1j)

2
, j = e, s, s+ s∗.(5.17)

In particular, M̂ is contained in zp+e = zp+e and zp+sΛ̃
2
1s(z

′′) = zp+s+s∗, where ζj =

zp+jΛ̃1j(z
′′), 1 ≤ j ≤ p, is the inverse mapping of zp+j = ζjΛ1j(ζ), 1 ≤ j ≤ p.

Proof. We use a realization which is different from (2.17). We assume that M already has
the normal form as in Theorem 5.3. Thus for j = 1, . . . , p, we have

(5.18) τ1j : ξ
′
j = Λ1j(ξη)ηj, η′j = Λ−1

1j (ξη)ξj, (ξ′k, η
′
k) = (ξk, ηk), k 6= j.

Let us define

fj(ξ, η) = ξj + ξj ◦ τ1j , gj = fj ◦ ρ, 1 ≤ j ≤ p.

The latter implies that the biholomorphic mapping ϕ(ξ, η) = (f(ξ, η), g(ξ, η)) transforms
ρ into the standard complex conjugation (z′, w′) → (w′, z′). Define

Fj(ξ, η) = ξj ◦ τ1j(ξ, η)ξj, 1 ≤ j ≤ p.

Using the expressions of τ1j given by (5.18), we verify that fj and Fj are invariant by τ1k.
Note that the linear part of fj(ξ, η) is ξj + λjηj for 1 ≤ j ≤ p, and the quadratic part of
Fj(ξ, η) is λjξ

2
j . By Lemma 2.5, f1, . . . , fp and F1, . . . , Fp generate all invariant functions

of {τ11, . . . , τ1p}.
Using Λ1e ◦ ρz = Λ1e and Λ1s ◦ ρz = Λ−1

1(s+s∗)
, rewrite zj = fj(ξ, η), wj = gj(ξ, η) as

ξe =
ze − Λ1e(ξη)we

1− Λ2
1e

, ηe =
we − Λ1e(ξη)ze

1− Λ2
1e

,

ξs =
zs − Λ2

1s(ξη)ws+s∗

1− Λ2
1s(ξη)

, ηs =
Λ1s(ξη)(ws+s∗ − zs)

1− Λ2
1s(ξη)

,

ξs+s∗ =
zs+s∗ − Λ2

1(s+s∗)
(ξη)ws

1− Λ2
1(s+s∗)

(ξη)
, ηs+s∗ =

Λ1(s+s∗)(ξη)(ws − zs+s∗)

1− Λ2
1(s+s∗)

(ξη)
.

Using the above formulas and wj = zj, we compute ζj = ξjηj to obtain (5.13)-(5.15).
Note that Fj(ξ, η) = ζjΛ1j(ζ). This shows that zp+j = Fj◦ϕ−1(z′, z′) have the form (5.12).

Again, we use the formula of τ1k to verify that z = (z′, z′′) are invariant by all ϕτ1kϕ
−1.

On the other hand, z = (z′, z′′) generate invariant functions of the deck transformations of

π1 for the complexification of M̂ given by (5.12). This shows that {ϕτ11ϕ−1, . . . , ϕτ1pϕ
−1}

and the deck transformations of π1, of which each family consists of commuting involutions,
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have the same invariant functions. By Lemma 2.5, we know that the two families must be
identical. This shows that (5.12) is a realization for {τ11, . . . , τ1p, ρ}.

To verify the last assertion of the theorem, we first note that by (5.6) the solutions
ζ1, . . . , ζp to (5.13)-(5.15) satisfy ζe = ζe and ζs+s∗ = ζs. By (5.6), on M we have zp+e =

Λ1e(ζ)ζe = zp+e. Also zp+s+s∗ = Λ1(s+s∗)(ζ)ζs+s∗ = Λ−1
1s (ζ)ζs = Λ−2

1s (ζ)zp+s. From (5.12),

solve ζj = Λ̃1j(z
′′)zp+j (1 ≤ j ≤ p) to obtain Λ−1

1j (ζ) = Λ̃1j(z
′′). The proof is complete. �

5.2. Hull of holomorphy for the abelian CR singularity. Let X be a subset of Cn.
We define the hull of holomorphy of X , denoted by H(X), to be the intersection of domains
of holomorphy in Cn that contain X . Let Bn

r be the ball in Cn of radius r and centered at
the origin.

By Theorem 5.4, we assume that M has pure elliptic type and it is equivalent to

M : zp+j = Λ1j(ζ)ζj, 1 ≤ j ≤ p,

where ζj = ζj(z
′) (j = 1, . . . , p) are the convergent real-valued solutions to (5.13). For

ζ ∈ Rp with small |ζ |, we know that Λ1j(ζ) > 1.
Near the origin in Rp, we define a real analytic diffeomorphism:

R : ζ → (Λ11(ζ)ζ1, . . . ,Λ1p(ζ)ζp) .

If ǫ is small enough, for each x′′ ∈ [0, ǫ]p, we can define ζ = R−1(x′′). Note that R sends
ζj = 0 into xp+j = 0 for each j. We can write

R−1(x′′) = (xp+1S1(x
′′), . . . , x2pSp(x

′′))

with Sj(0) > 0. Then M ∩ {z′′ = x′′} is given by (5.12)-(5.15). For x′′ ∈ [0, ǫ]p let Dj(x
′′)

be the compact set in the complex plane whose boundary is defined by the jth equation
in (5.12)-(5.15) where ζ = R−1(x′′). When xp+j > 0, the boundary of Dj(x

′′) is an ellipse
with

(5.19) Dj(x
′′) ⊂ B1

C1
√
xp+j

.

Here and in what follows constants will depend only on λ1, . . . , λp. Thus

D(x′′) := D1(x
′′)× · · · ×Dp(x

′′)× {x′′} ⊂ Cp ×Rp

is a product of ellipses and its dimension equals the number of positive numbers among
xp+1, . . . , x2p. We will call D(x′′) an analytic polydisc and

∂∗D(x′′) := ∂D1(x
′′)× · · · × ∂Dp(x

′′)× {x′′}
its distinguished boundary which is contained in M . Set D(0′′) = ∂∗D(0′′) = {0}. Thus,
M is foliated by ∂∗D(x′′) as x′′ vary in [0, ǫ]p and ǫ is sufficiently small. Specifying the ǫ
later, we will use this foliation and Hartogs’ figures in analytic polydiscs to find the local
hull of holomorphy of M at the origin.

As x′′ vary in [0, ǫ]p, let Mǫ be the union of ∂∗D(x′′), and Hǫ the union of D(x′′). Both
Hǫ and Mǫ are compact subsets in C2p. Note that

B2p
ǫ∗ +Mǫ := {a + b : a ∈ B2p

ǫ∗ , b ∈Mǫ}
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is contained in a given neighborhood ofMǫ, if ǫ∗ is sufficiently small. Analogously, B2p
ǫ∗ +Hǫ

is a connected open neighborhood of Hǫ. Let us first verify that a function that is holo-
morphic in a connected neighborhood of Mǫ in C2p extends holomorphically to a neigh-
borhood of Hǫ such that the extension agrees with the original function on a possibly
smaller neighborhood of Mǫ. Assume that f is holomorphic in a neighborhood U of
∂∗ǫD := ∪x′′∈[0,ǫ]p∂

∗D(x′′). Note that Hǫ is defined by

Aj(x
′′)|zj|2 − Bj(x

′′)(z2j + z2j ) ≤ xp+j, 1 ≤ j ≤ p;(5.20)

y′′ = 0, x′′ ∈ [0, ǫ]p(5.21)

with

Aj(x
′′) =

1 + Λ2
1j(R

−1(x′′))

Sj(x′′)(1− Λ2
1j(R

−1(x′′))2
, Bj(x

′′) =
Λ1j(R

−1(x′′))

Sj(x′′)(1− Λ2
1j(R

−1(x′′))2
.

Let δ be a small positive number. For x′′ ∈ [−δ, ǫ]p, let Dδ
j (x

′′) ⊂ C be defined by

Aj(x
′′)|zj |2 − Bj(x

′′)(z2j + z2j) ≤ xp+j + δ.

Let P δ
ǫ (resp. ∂∗P δ

ǫ ) be the set of z = (z′, z′′) such that y′′ ∈ [−δ, δ]p, x′′ ∈ [−δ, ǫ]p, and
zj ∈ Dδ

j (x
′′) (resp. zj ∈ ∂Dδ

j (x
′′)) for 1 ≤ j ≤ p. Let U δ

ǫ (resp. U δ1
ǫ ) be a small neighborhood

of P δ
ǫ (resp. P δ1

ǫ ). Assume that 0 < δ1 < δ and δ1 is sufficiently small. We may also assume
that U δ1

ǫ is contained in U δ
ǫ and ∂∗P δ

ǫ ⊂ U . Thus, for (z′, z′′) ∈ U δ1
ǫ , we can define

(5.22) F (z′, z′′) =
1

(2πi)p

∫

ζ1∈∂Dδ
1
(x′′)

· · ·
∫

ζp∈∂Dδ
p(x

′′)

f(ζ, z′′) dζ1 · · · dζp
(ζ1 − z1) · · · (ζp − zp)

.

When z is sufficiently small, F (z) = f(z) as f is holomorphic near the origin. Fix z0 ∈ U δ1
ǫ .

We want to show that F is holomorphic at z0. So F is a desired extension of f . By
continuity, when z = (z1, . . . , z2p) tends to z0, x

′′ tends to x′′0 and ∂D
δ
j (x

′′) tends to ∂Dδ
j (x

′′
0),

while zj ∈ Dδ
j (x

′′
0) when z is sufficiently close to z0. By Cauchy theorem, for z sufficiently

close to z0 we change the repeated integral for ζj ∈ ∂Dδ
j (x

′′
0), 1 ≤ j ≤ p. The domain of

integration is thus fixed. The integrand is holomorphic in z. Hence F is holomorphic at
z = z0.

Next we want to show that Hǫ is the hull of holomorphy of Mǫ in B
2p
ǫ0

for suitable ǫ, ǫ0
that can be arbitrarily small.

Let us first show that Hǫ is the intersection of domains of holomorphy in C2p. Recall
that Hǫ is defined by (5.20)-(5.21). Define for δ′ := (δ1, . . . , δp) with δj > 0

ρδ
′

j = Aj(x
′′)|zj|2 −Bj(x

′′)(z2j + z2j)− xp+j + (δ−1
1 + · · ·+ δ−1

p )

p∑

i=1

y2p+i

+
∑

i 6=j

δ−1
i

{
Ai(x

′′)|zi|2 −Bi(x
′′)(z2i + z2i )− xp+i

}
.
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When p = 1, the last summation is 0. The complex Hessian of ρδ
′

j is

2p∑

α,β=1

∂2ρδ
′

j

∂zαzβ
tαtβ = Aj(x

′′)|tj|2 +
δ−1
1 + · · ·+ δ−1

p

2

∑

i

|tp+i|2 +
∑

i 6=j

1

δi
Ai(x

′′)|ti|2

+ Re
∑

k

ajk(x
′′; zj)tjtp+k +

∑

k,ℓ

bj,kℓ(x
′′; zj)tp+ktp+ℓ

+ Re
∑

i 6=j

∑

k

1

δi
cj,ik(x

′′; zi)titp+k +
∑

i 6=j

∑

k,ℓ

1

δi
dj,kℓ(x

′′; zi)tp+ktp+ℓ.

Here ajk(x
′′; 0) = bj,kl(x

′′; 0) = cj,ik(x
′′; 0) = dj,kl(x

′′; 0) = 0, and i, j, k, ℓ are in {1, . . . , p}.
From the Cauchy-Schwarz inequality, it follows that for z ∈ B2p

e0 with ǫ0 > 0 sufficiently
small and 0 < δj < 1,

2

2p∑

α,β=1

∂2ρδ
′

j

∂zαzβ
tαtβ ≥ Aj(x

′′)|tj|2 +
δ−1
1 + · · ·+ δ−1

p

2

∑

j

|tp+j|2 +
∑

i 6=j

δ−1
i Ai(x

′′)|ti|2.

Therefore, each ρδ
′

j is strictly plurisubharmonic on |z| < ǫ0 for all 0 < δi < 1. Hence for
δ∗ = (δ0, . . . , δp) = (δ0, δ

′) ∈ (0, 1)p+1,

ρδ∗ǫ (z) = max
j

{ρδ′j , |y′′|2 − δ20, x
2
p+j − ǫ2}

is plurisubharmonic on B2p
ǫ0 . By (5.19), D(x′′) is contained in B2p

C2ǫ1/2
for x′′ ∈ [0, ǫ]p. We

now fix ǫ < (ǫ0/C2)
2 to ensure

(5.23) D(x′′) ⊂ B2p
ǫ0
, ∀x′′ ∈ [0, ǫ]p.

This shows that Hδ∗
ǫ := {z ∈ B2p

ǫ0 | : ρδ∗ǫ (z) < 0} is a domain of holomorphy.

Let us verify that Hǫ =
⋂

ǫ′>ǫ,δ0>0,...,δp>0Hδ∗
ǫ′ . Fix z ∈ Hǫ. From (5.23) we get z ∈ B2p

ǫ0
.

We have y′′ = 0. Hence (5.20) hold and x2p+j ≤ ǫ2. Clearly, ρδj(z) < 0 for each j and
δ ∈ (0, 1)p. This shows that z ∈ Hǫ is in the intersection. For the other inclusion, let us
assume that z is in the intersection. Then y′′ = 0. With ρδ∗j (z) < 0, we let δi tend to 0 for
i 6= j. We conclude

Ai(x
′′)|zi|2 − Bi(x

′′)(z2i + z2i ) ≤ xp+i

for all i 6= j, and hence for all i as p > 1. When p = 1 the above inequality can be obtained
directly from ρδ∗1 . We also see that 0 ≤ xp+j ≤ ǫ. We have verified (5.20) and (5.21). This
shows that z ∈ Hǫ.

In view of (5.20)-(5.21), the boundary of Hǫ is the union ∪p
j=1Hǫ

j with Hǫ
j being defined

by

Aj(x
′′)|zj|2 −Bj(x

′′)(z2j + z2j) = xp+j ,

Ai(x
′′)|zi|2 − Bi(x

′′)(z2i + z2i ) ≤ xp+i, 1 ≤ i ≤ p, i 6= j;

y′′ = 0, xp+i ≤ ǫ, 1 ≤ i ≤ p.

Therefore, we have proved the following theorem.
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Theorem 5.5. Let M be a germ of real analytic submanifold at an abelian CR singularity.
Assume that the complex tangent of M is purely elliptic at the origin. There is a base of
neighborhoods {Uj} of the origin in Cn which satisfies the following: For each Uj, the hull
of holomorphy H(M ∩ Uj) of M ∩ Uj is foliated by embedded complex submanifolds with
boundaries. Furthermore, near the origin H(M ∩ Uj) is the transversal intersection of p
real analytic submanifolds of dimension 3p with boundary. The boundary of H(M ∩ Uj)
contains M ∩ Uj; and two sets are the same if and only if p = 1.

Remark 5.6. The proof shows that the hull H(M ∩ Uj) is foliated by analytic polydiscs,
i.e. holomorphic embeddings of closed unit polydisc in Cp.

6. Rigidity of product quadrics

The aim of this section is to prove the following rigidity theorem: Let us consider a higher
order analytic perturbation of a product quadric. If this manifold is formally equivalent
to the product quadric, then under a small divisors condition, it is also holomorphically
equivalent to it. Notice that when p > 1, there are real submanifold M with a linearizable
σ such that M is not formally equivalent to the quadric, or equivalently, the {τ1j , ρ} is not
formally linearizable; see [GS15].

The proof goes as follows : Since the manifold is formally equivalent to the quadric, the
associated involutions {τ1i} and {τ2i} are simultaneously linearizable by a formal biholo-
morphism that commutes with ρ. In particular, σ1, . . . , σp, as defined by (5.1) and (5.2),
are formally linearizable and they commute pairwise. These are germs of biholomorphisms
with a diagonal linear part. According to [Sto15][theorem 2.1], this abelian family can be
holomorphically linearized under a collective Brjuno type condition (7.38). Furthermore,
the transformation commutes with ρ. Then, we linearize simultaneously and holomorphi-
cally both τ1 := τ11 ◦ · · · ◦ τ1p and τ2 := τ21 ◦ · · · ◦ τ2p by a transformation that commutes
with both ρ and S, the family of linear parts of the σ1, . . . , σp. Finally, we linearize si-
multaneously and holomorphically both families {τ1i} and {τ2i} by a transformation that
commutes with ρ, S, T1 and T2.

These last two steps will be obtained through a majorant method and the application of
a holomorphic implicit function theorem. This is obtained in Proposition 6.6. They first
require a complete description of the various centralizers and their associated normalized
mappings, i.e. suitable complements. This is a goal of Proposition 6.3.

Throughout this section, we do not assume that µ1, . . . , µp are non resonant in the sense
that µQ 6= 1 if Q ∈ Zp and Q 6= 0. In fact, we will apply our results to M which might be
resonant. However, we will retain the assumption that σ has distinct eigenvalues when we
apply the results to the manifolds.

6.1. Centralizers. We recall from (5.1) and (5.2), the definition and property of germs of
holomorphic diffeomorphisms : σi := τ1i◦τ2i, σ−1

i = ρσiρ, 1 ≤ i ≤ e∗+h∗; σs := τ1s◦τ2(s∗+s),
σs+s∗ := τ1(s+s∗) ◦ τ2s, σ−1

s+s∗ = ρσsρ, e∗ + h∗ < s ≤ p− s∗. Recall the linear maps

S : ξ′j = µjξj, η′j = µ−1
j ηj ;

Sj : ξ
′
j = µjξj, η′j = µ−1

j ηj , ξ′k = ξk, η′k = ηk, k 6= j;(6.1)

Tij : ξ
′
j = λijηj , η′j = λ−1

ij ξj, ξ′k = ξk, η′k = ηk, k 6= j;(6.2)
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while ρ is given by

ρ :

{
(ξ′e, η

′
e, ξ

′
h, η

′
h) = (ηe, ξe, ξh, ηh),

(ξ′s, ξ
′
s+s∗, η

′
s, η

′
s+s∗) = (ξs+s∗ , ξs, ηs+s∗, ηs).

(6.3)

Recall that indices e.h, s have the ranges 1 ≤ e ≤ e∗, e∗ < h ≤ e∗ + h∗, and e∗ + h∗ < s ≤
p− s∗. The basic conditions on µj = λ2j are the following:

(6.4) |µh| = 1, µs+s∗ = µ−1
s , µe > 1, |µs| ≥ 1, µk

s 6= 1, k = 1, 2, . . . .

In particular, a µj may be repeated and µh can be 1.
We need to introduce notation for the indices to describe various centralizers regarding

T1j , Sj and ρ. We first introduce index sets for the centralizer of S := {S1, . . . , Sp}, T1 :=
Ti1 ◦ · · · ◦ Tip, ρ. We recall that Ti := {Ti1, . . . , Tip}.

Let (P,Q) ∈ Np×Np and 1 ≤ j ≤ p. By definition, ξPηQej belongs to the centralizer of
S if and only if it commutes with each Si. In other words, ξPηQej ∈ C(S) if and only if

(6.5) µpk−qk
k = 1, ∀k 6= j; µ

pj−qj
j = µj .

Note that the same condition holds for ξQηPep+j to belong to C(S). This leads us to define
the set of multiindices

Rj := {(P,Q) ∈ N2p : µ
pj−qj
j = µj, µ

pi−qi
i = 1, ∀i 6= j}, 1 ≤ j ≤ p.

We observe that if (P,Q) ∈ Rj, then (6.4) implies that

pj = qj + 1, j 6= h; pi = qi, ∀i 6= j, h;

λph−qh
h = ±1, h 6= j; λ

pj−qj−1
j = ±1, j = h.(6.6)

Here we have used the assumption that µs are not root of unity, which simplifies greatly
the results and computation in this section.

For convenience, we define for P = (pe, ph, ps, ps+s∗) and Q = (qe, qh, qs, qs+s∗)

ρ(PQ) := (qe, ph, ps+s∗, ps, pe, qh, qs+s∗, qs),

ρa(PQ) := (qe, ph, ps+s∗, ps), ρb(PQ) := (pe, qh, qs+s∗, qs),(6.7)

f ρ(PQ) := (f ◦ ρ)PQ.(6.8)

Here pe = (p1, . . . , pe∗) denotes the “elliptic coordinates” of P . Hence,

(6.9) ρ(PQ) = (ρa(PQ), ρb(PQ)) = (ρb(QP ), ρa(QP )).

According to (6.5) and equation (6.3) of ρ, the restriction of ρ to Rh is an involution,
which will be denoted by ρh. Moreover, ρ is a bijection ρs from Rs onto Rs+s∗. We define
an involution on Re by

(6.10) ρe(PQ) := (ρb(PQ), ρa(PQ)) = (pe, qh, qs+s∗, qs, qe, ph, ph, ps+s∗, ps).

Note that ρe is not a restriction of ρ, and ρs is not an involution either.
Next, we introduce sets of indices to be used to compute the centralizers on T1, T2, ρ. Set

Nj := Rj ∩ {(P,Q) : pi ≥ qi, ∀i 6= j}, 1 ≤ j ≤ p.
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Since there is no restriction for p = 1, we have Nj = Rj for j = e or h. Let us set

Ajk(P,Q) := max{pk, qk}, k 6= j, Ajj(P,Q) = pj ;

Bjk(P,Q) := min{pk, qk}, k 6= j, Bjj(P,Q) = qj .

We define a mapping

(Aj , Bj) : Rj → Nj

with Aj := (Aj1, . . . , Ajp) and Bj := (Bj1, . . . , Bjp). For (P,Q) ∈ Nj with j = e, h, we have
Aj ◦ ρj(P,Q) = (pe, ph, ps+s∗, ps) and Bj ◦ ρj(P,Q) = (qe, qh, qs+s∗, qs). In other words, on
Nj for j = e or h, Aj ◦ ρj just interchanges the sth and the (s+ s∗)th coordinates for each
s, so does Bj ◦ ρj , while As+s∗ρs and Bs+s∗ρs have the same property on Ns. Furthermore,

(Ah, Bh)ρ = ρ(Ah, Bh) on Rh,(6.11)

(As+s∗, Bs+s∗)ρ = ρ(As, Bs) on Rs.(6.12)

Finally, with the convention that the product over an empty set is 1, we define, for
(P,Q) ∈ Rj :

νPQ :=

{∏
h′ λ

qh′−ph′
h′ , j 6= h,

λph−qh−1
h

∏
h′ 6=h λ

qh′−ph′
h′ , j = h;

(6.13)

ν+PQ :=

{∏
h′|qh′>ph′

λ
qh′−ph′
h′ , j 6= h;∏

h′ 6=h,qh′>ph′
λ
qh′−ph′
h′ , j = h.

(6.14)

Here e∗ < h′, h ≤ e∗ + h∗. For convenience, we however define

νQP := νPQ, (P,Q) ∈ Rj .

If p = 1 we set ν+PQ = 1.

Lemma 6.1. Let (P,Q) ∈ Rj. Then λ
−1
j λP−Q = νPQ, and

νPQ = ±1; ν+PQ = ±1; ν+PQ = 1, (P,Q) ∈ Nj;(6.15)

νρe(PQ) = νPQ, j = e; νρ(PQ) = νPQ;(6.16)

ν+ρe(PQ) = ν+PQνPQ, j = e; ν+ρ(PQ) = ν+PQ.(6.17)

Proof. The first identity follows from the definition of νPQ and Rj . From the definition of

Rj , we have (λpi−qi
i )2 = µpi−qi

i = 1 for i = h′ in (6.13)-(6.14). We also have µph−qh−1
h = 1

for terms in (6.13)-(6.14). Thus

λ
ph′−qh′
h′ = ±1, λph−qh−1

h = ±1.

Thus we obtain (6.15); the rest identities follow from the definition of ρe, ρ, and the above
identities. �
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Lemma 6.2. For all multiindices (P,Q), ξPηQ ◦ ρ = ξ
ρa(PQ)

ηρb(PQ). For all multiindices
(P,Q) ∈ Re ∪Rh, we have

λρa(P,Q)−ρb(P,Q) = λQ−P , µρb−ρa = µP−Q,(6.18)

ξPηQ ◦ ρ ◦ T1 = λQ−P ξ
ρb(PQ)

ηρa(PQ),(6.19)

ξPηQ ◦ ρ ◦ S−1 = µP−Qξ
ρa(PQ)

ηρb(PQ).(6.20)

Proof. Identity (6.18) follows from (6.7) and the fact that λe and µe are reals, λ−1
h = λh,

ps = qs, and ps+s∗ = qs+s∗. A direct computation shows that

ξPηQ ◦ ρ ◦ T1 = λ
ρa−ρb

ξ
ρb(PQ)

ηρa(PQ), ξPηQ ◦ ρ ◦ S−1 = µρb−ρaξ
ρa(PQ)

ηρb(PQ).

The result follows from (6.18). �

Finally we note that

(6.21) ιe : (P,Q) → (Ae, Be) ◦ ρe(PQ) = (Ae, Be)(ρb(P,Q), ρa(P,Q))

defines an involution on Ne. We now can describe the centralizers.

Proposition 6.3. Let S = {S1, . . . , Sp}, Ti = {Ti1, . . . , Tip} and ρ be given by (6.1)-(6.3).
Let ϕ = I + (U, V ) be a formal biholomorphic map that is tangent to the identity.

(i) ϕ ∈ C(S) if and only if

Uj,PQ = 0 = Vj,QP , ∀(P,Q) 6∈ Rj .(6.22)

Also, ϕ ∈ C(S, ρ) if and only if (6.22) holds and

Uh,PQ = Uh,ρ(PQ), (P,Q) ∈ Rh; Us+s∗,PQ = Us,ρ(PQ), (P,Q) ∈ Rs+s∗;(6.23)

Ve,QP = Ue,ρe(PQ), (P,Q) ∈ Re;(6.24)

Vh,QP = V h,ρ(QP ), (P,Q) ∈ Rh; Vs+s∗,QP = V s,ρ(QP ), (P,Q) ∈ Rs+s∗ .(6.25)

(ii) ϕ ∈ C(S, T1) if and only if (6.22) holds and

(6.26) Vj,QP = νPQUj,PQ, ∀(P,Q) ∈ Rj .

(iii) ϕ ∈ C(S, T1, ρ) if and only if (6.22), (6.23) and (6.26) hold, and

Ue,PQ = νPQUe,ρe(PQ), (P,Q) ∈ Re.(6.27)

(iv) Let p > 1. ϕ ∈ C(T1, T2) if and only if (6.22) and (6.26) hold, and

Uj,PQ = ν+PQUj,(Aj ,Bj)(P,Q), (P,Q) ∈ Rj \ Nj .(6.28)

Also, ϕ ∈ C(T1, T2, ρ) if and only if (6.22), (6.26) and (6.28) hold, and

Ue,PQ = U e,(Ae,Be)ρe(PQ), (P,Q) ∈ Ne,(6.29)

Uh,PQ = Uh,ρ(PQ), (P,Q) ∈ Nh,(6.30)

Us+s∗,PQ = U s,ρ(PQ), (P,Q) ∈ Ns+s∗.(6.31)

We remark that condition (6.28) holds trivially when (P,Q) ∈ Nj, in which case it
becomes Uj,PQ = Uj,PQ.
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Proof. To simplify notation, we abbreviate

ρa = ρa(PQ), ρb = ρb(PQ), Aj = Aj(P,Q), Bj = Bj(P,Q).

Recall that λe = λe, λh = λ
−1

h and λs+s∗ = λ
−1

s . By definition,

Se = T1eT2e, Sh = T1hT2h, Ss = T1sT2(s+s∗), Ss+s∗ = T1(s+s∗)T2s.

In the proof, we will use the fact that Sj is reversible by both involutions in the composition
for Sj . In particular,

(6.32) T1jSjT1j = S−1
j , ∀j.

However, we have T2(s+s∗)SsT2(s+s∗) = S−1
s and T2sSs+s∗T2s = S−1

s+s∗ . For simplicity, we will
derive identities by using (6.32) and

(6.33) S−1
e = ρSeρ, S−1

h = ρShρ, S−1
s+s∗ = ρSsρ.

Finally, we need one more identity. Recall that

T1eT2j = T2jT1e, j 6= e; T1hT2j = T2jT1h, j 6= h;

T1sT2j = T2jT1s, j 6= s+ s∗; T1(s+s∗)T2j = T2jT1(s+s∗), j 6= s.

Therefore, for any j we have the identity

(6.34) T1SjT1 = S−1
j .

In what follows, we will derive all identities by using (6.32), (6.33) and (6.34), as well as
SiSj = SjSi, T1iT1j = T1jT1i and T2 = ρT1ρ.

(i) The centralizer of S is easy to describe. Namely, ϕ ∈ C(S) if and only if

Uj ◦ Sj = µjUj , Uj ◦ Sk = Uj , k 6= j,

Vj ◦ Sj = µ−1
j Vj , Vj ◦ Sk = Vj , k 6= j.

For ϕρ = ρϕ, we need

Uh = Uh ◦ ρ, Us+s∗ = Us ◦ ρ,(6.35)

Ve = Ue ◦ ρ, Vh = Vh ◦ ρ, Vs+s∗ = Vs ◦ ρ.(6.36)

Hence, using (6.8)-(6.10), we have U e,PQ = Ve,ρ(PQ) = Ve,ρe(QP ). The other equalities are
obtained in the same way.

(ii) If ϕ ∈ C(S, T1) ⊂ C(S, T1), then it satisfies

Vj = λ−1
j Uj ◦ T1.(6.37)

This implies (6.26).
(iii) Assume furthermore that ϕ ∈ C(S, T1, ρ). Eliminating Ve from (6.37) and (6.36), we

obtain
Ue = λeUe ◦ ρ ◦ T1.

According to (6.19), we obtain (6.27) by

Ue,ρbρa = λeλ
Q−P

U e,PQ = νPQU e,PQ.

(iv) Let ϕ ∈ C(T1, T2). Then, in particular, we have

Uj = Uj(T1k), k 6= j; Vj = λ−1
j Uj ◦ T1.
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Let (P,Q) ∈ Rj \ Nj. We compose Uj successively by each T1k if qk > pk. We emphasize
that such a k is a hyperbolic index. The previous identity yields

(6.38) Uj,PQ = Lj,PQUj,AjBj
, Lj,PQ :=

∏

k 6=j,pk<qk

λqk−pk
k .

By the definition of ν+PQ, we conclude

(6.39) Lj,PQ = ν+PQ, (P,Q) ∈ Rj .

If (P,Q) ∈ Nj, then (Aj, Bj) = (P,Q) and we have Lj,PQ = ν+PQ = 1, so that the relation
(6.38) just becomes the identity Uj,PQ = Uj,PQ.

Assume now that ϕ ∈ C(T1, T2, ρ). In addition to the previous conditions, we have (6.35)
and (6.36). Hence, (6.23), (6.27) and (6.38) lead to:

νPQU e,ρe(PQ) = Ue,PQ = Le,PQUe,AeBe , (P,Q) ∈ Re;

Uh,ρh(PQ) = Uh,PQ = Lh,PQUh,AhBh
, (P,Q) ∈ Rh;

U s+s∗,ρ(PQ) = Us,PQ = Ls,PQUs,AsBs , (P,Q) ∈ Rs.

Since ρe, ρh are involutions on Re and Rh, respectively, and since ρ is a bijection from Rs

onto Rs+s∗, we obtain

νρe(PQ)U e,PQ = Le,ρe(PQ)Ue,(Ae,Be)◦ρe(PQ), (P,Q) ∈ Re;

Uh,PQ = Lh,ρh(AB)Uh,(Ah,Bh)◦ρh(PQ), (P,Q) ∈ Rh;

Us+s∗,PQ = Ls,ρ(AB)Us,(As,Bs)◦ρ(PQ), (P,Q) ∈ Rs+s∗ .

By (6.39), we copy the values Lj,ρ(PQ) = ν+ρ(PQ) from (6.17). We have

ν+ρj(PQ) = ν+PQ, if j 6= e, and (P,Q) ∈ Rj ;

ν+ρe(PQ) = νPQν
+
PQ, if (P,Q) ∈ Re;

νρe(PQ) = νPQ, if (P,Q) ∈ Re.

Finally, we obtain

Uj,PQ = ν+PQU j,(Aj ,Bj)◦ρj(PQ), (P,Q) ∈ Rj , j = e, h;

Us+s∗,PQ = ν+PQUs,(As,Bs)◦ρ(PQ), (P,Q) ∈ Rs+s∗.

Therefore, we have derived necessary conditions for the centralizers. Let us verify that
the conditions are also sufficient. Of course, the verification for (i) is straightforward.
Furthermore, that ϕ = I + (U, V ) commutes with S1, . . . , Sp is equivalent to Uj,PQ =
Vj,QP = 0 for all (P,Q) ∈ Rj, which is also trivial in cases (ii) and (iii).

For (ii), (6.22) and (6.26) imply that ϕ commutes with T1. We verify that ϕ commutes
with ρ. In other words, (6.24) and (6.25) hold. The latter follows immediately from (6.23)
and (6.26). For the former, take (P,Q) ∈ Re. By (6.26) and (6.27), we get Ve,QP =
νPQUe,PQ = Ue,ρe(PQ), which is (6.24).

For (iii), let us verify that (6.28), (6.22), and (6.26) are sufficient conditions for ϕ ∈
C(T1, T2). By (6.26), we get ϕT1 = T1ϕ. Also, for ϕ ∈ C(T1) it remains to show that for
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(P,Q) ∈ Rj

(6.40) (Uj ◦ T1k)PQ = Uj,PQ, k 6= j; (Uj ◦ T1j)QP = λjVj,QP .

We introduce (Pj, Qj) via ξPηQ ◦ T1j = λ
pj−qj
j ξPjηQj and also denote (Pj , Qj) by (P,Q)j.

We remark that (6.28) also holds for (P,Q) ∈ Nj . Therefore, we will use (6.28) for all
(P,Q) ∈ Rj .

For k 6= j, h, we have (Pk, Qk) = (P,Q). Thus in this case we immediately get the first
identity in (6.40). Using (6.28) twice, we obtain for j 6= h

(Uj ◦ T1h)PQ = λph−qh
h Uj,(PQ)h = λph−qh

h ν+(PQ)h
Uj,(Aj ,Bj)(P,Q)

= λph−qhν+(PQ)h
ν+PQUj,PQ = Uj,PQ.

Combining with the identities which we have proved, we get (Uj ◦ T1j)QP = (Uj ◦ T1)QP =
(λjVj)QP for j 6= h. This gives us all the identities in (6.40) for (P,Q) ∈ Rj. These identities
are trivial when (P,Q) is not in Rj . Therefore, we have shown that these conditions are
sufficient for ϕ ∈ C(T1, T2).

Finally, we need to verify that (6.22), (6.26), and (6.28)-(6.31) imply that ϕ and ρ
commute. In other words, we need to verify (6.23) and (6.27), by (iii). We have

(6.41) (AeBe) ◦ ρe ◦ (AeBe) = (AeBe) ◦ ρe on Re.

Let (P,Q) ∈ Re. By (6.28), (6.29), (6.41) and (6.28), we get

Ue,PQ = ν+PQUe,(Ae,Be)(P,Q) = ν+PQUe,(Ae,Be)ρe(P,Q) = ν+PQν
+
ρe(P,Q)U e,ρe(P,Q).

By (6.17), (6.15), ν+PQν
+
ρe(PQ) = νPQ. We obtain (6.27). Let us prove (6.23) with PQ ∈

Rs+s∗ . Using (6.28), (6.31) with PQ = (As+s∗Bs+s∗)(PQ),(6.12), (6.28) with PQ = ρ(PQ)
successively, we get

Us+s∗,PQ = ν+PQUs+s∗,As+s∗Bs+s∗(PQ) = ν+PQUs,ρ(As+s∗Bs+s∗(PQ))

= ν+PQU s,AsBs(ρ(PQ)) = ν+PQν
+
ρ(PQ)Us,ρ(PQ).

which gives us (6.23) by (6.17). To prove (6.23) for hyperbolic index, apply successively
from left to right, (6.28), (6.30) with PQ = (AhBh)(PQ), (6.11) and (6.28) with PQ =
ρh(PQ) :

ν+PQUh,PQ = Uh,(AhBh)(PQ) = Uh,ρh(AhBh)(PQ)

= Uh,(AhBh)ρh(PQ) = ν+ρh(PQ)Ūh,ρh(PQ).

By (6.17) again, we obtain (6.23). The proof is complete. �

6.2. Normalized mappings. We have described the conditions on centralizers. We now
determine complements of these conditions to define normalized mappings.

Definition 6.4. Let ϕ = I + (U, V ) be a formal mapping tangent to the identity.

(i) We say that ϕ is normalized with respect to S1, . . . , Sp if

Uj,PQ = 0 = Vj,QP , if (P,Q) ∈ Rj , ∀j.
Furthermore, ρϕρ is normalized w.r.t. S1, . . . , Sp if and only if ϕ is.
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(ii) We say that ϕ is normalized w.r.t. {S, T1}, if
(6.42) Vj,QP = −νPQUj,PQ, (P,Q) ∈ Rj .

(iii) We say that ϕ is normalized w.r.t. {S, T1, ρ} if

Uh,PQ = −Uh,ρ(PQ), ∀(P,Q) ∈ Rh;(6.43)

Us+s∗,PQ = −U s,ρ(PQ), ∀(P,Q) ∈ Rs+s∗;(6.44)

Ue,PQ = −νPQUe,ρe(PQ), ∀(P,Q) ∈ Re.(6.45)

(iv) Let p > 1. We say that ϕ is normalized w.r.t. {T1, T2} if

(6.46) Uj,PQ = 0, (P,Q) ∈ Nj .

We say that ϕ is normalized w.r.t. {T1, T2, ρ} if

Ue,PQ = −U e,(Ae,Be)◦ρe(P,Q), ∀(P,Q) ∈ Ne;(6.47)

Uh,PQ = −Uh,ρ(P,Q), ∀(P,Q) ∈ Nh;(6.48)

Us+s∗,PQ = −U s,ρ(P,Q), ∀(P,Q) ∈ Ns+s∗.(6.49)

The set of normalized mapping w.r.t. to a family F is denoted Cc(F).

Lemma 6.5. Let F be a formal map which is tangent to the identity. There exists a
unique formal decomposition F = HG−1 with G ∈ C(S, T1, ρ) (resp. C(T1, T2, ρ)) and H ∈
Cc(S, T1, ρ) (resp. Cc(T1, T2, ρ))). If F is convergent, then G and H are also convergent.

Proof. We will apply Lemma 4.3 as follows. Let Ĥ be the set of mappings in Cc

2(S, T1, ρ).

Note that Ĥ is a R-linear subspace of (M̂2
n)

n. We will define a R-linear projection π

from (M̂2
n)

n onto Ĥ such that π preserves the degree of F if F is homogeneous. We will

show that Ĝ = (I−π)Ĥ agrees with C2(S, T1, ρ). We will derive estimates on π stated in
Lemma 4.3, from which we conclude the convergence of H,G. The same argument will be
applied to the second case of C(T1, ρ) and Cc(T1, ρ).

For the first case, let us define a projection π : (M̂2
n)

n → Ĥ . We decompose

(U, V ) = (U ′ + U ′′, V ′ + V ′′), π(U, V ) = (U ′, V ′).

We first define

(6.50) U ′
j,PQ = Uj,PQ, V ′

j,PQ = Vj,PQ, U ′′
j,PQ = 0, V ′′

j,PQ = 0,

for (P,Q) 6∈ Rj . Suppose that (P,Q) ∈ Re. We have

Ue,PQ = U ′
e,PQ + U ′′

e,PQ, Ue,ρe(PQ) = U ′
e,ρe(PQ) + U ′′

e,ρe(PQ).

According to (6.45) and (6.27), we need to seek solutions that satisfy

(6.51) U ′
e,PQ + νPQU

′
e,ρe(PQ) = 0, U ′′

e,PQ − νPQU
′′
e,ρe(PQ) = 0.

Hence, for (P,Q) ∈ Re we choose

U ′
e,PQ =

1

2
(Ue,PQ − νPQUe,ρe(PQ)), U

′′
e,PQ =

1

2
(Ue,PQ + νPQU e,ρe(PQ)).
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We verify directly that the solutions satisfy (6.51) as follows:

U ′
e,PQ + νPQU

′
e,ρe(PQ) =

1

2
(Ue,PQ − νPQU e,ρe(PQ))

+
1

2
(νPQU e,ρe(PQ) − νPQνρe(PQ)U e,PQ) = 0.

Here we have used that ρe is an involution on Re and νρe(PQ)νPQ = 1 from (6.16).
For (P,Q) ∈ Rh, we achieve (6.43) and the first identity in (6.23) by taking

U ′
h,PQ =

1

2
(Uh,PQ − Uh,ρ(PQ)), U ′′

h,PQ =
1

2
(Uh,PQ + Uh,ρ(PQ)).

For (P,Q) ∈ Rs+s∗ , we achieve the second identity in (6.23) and (6.44) by taking

U ′
s+s∗,PQ =

1

2
(Us+s∗,PQ − Us,ρ(PQ)), U ′′

s+s∗,PQ =
1

2
(Us+s∗,PQ + U s,ρ(PQ)).

We have determined coefficients for U ′
j,PQ, U

′′
j,PQ with (P,Q) ∈ Rj . Let us set for (P,Q) ∈

Rj ,

V ′′
j,QP = λ−1

j λP−QU ′′
j,PQ,(6.52)

V ′
j,QP = Vj,QP − V ′′

j,QP .(6.53)

This fulfills the conditions on V ′
j and V ′′

j easily. Note that the first identity means that
(U ′′, V ′′) commutes with T1. We have obtained the required formal decomposition.

To prove the convergence, we start with

(6.54) λ−1
j λP−Q = νPQ = ±1

for (P,Q) ∈ Rj . So π is indeed an R-linear projection which preserves degrees. Since
|νPQ| = 1, we have that

|U ′
PQ| ≤ max

(P ′,Q′)
|UP ′Q′|.

Here (P ′, Q′) runs over all permutations of (P,Q) in 2p coordinates. The same holds for
V ′. Hence, with the notation of Lemma 4.3, we have

{π(U, V )}sym ≺ (U, V )sym.

The existence and uniqueness as well as the convergence also follow from Lemma 4.3.
We now consider the second case of C(T1, T2, ρ) by minor changes. Let us define a

projection π : ((M̂2
n)

n → Ĥ. Here Ĥ is the space associated with the mappings satisfying

the normalized conditions (6.46)-(6.49). Let Ĝ = (I−π)Ĥ. We decompose as above

(U, V ) = (U ′ + U ′′, V ′ + V ′′), π(U, V ) = (U ′, V ′).
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Recalling that ιe = (Ae, Be) ◦ ρe is an involution on Ne, we choose :

U ′′
j,PQ =

1

2
(Uj,PQ + U j,ρj(PQ)), (P,Q) ∈ Nh,(6.55)

U ′
j,PQ =

1

2
(Uj,PQ − U j,ρj(PQ)), (P,Q) ∈ Nh,(6.56)

U ′′
e,PQ =

1

2
(Ue,PQ + U e,ιe(PQ)), (P,Q) ∈ Ne,(6.57)

U ′
e,PQ =

1

2
(Ue,PQ − Ue,ιe(PQ)), (P,Q) ∈ Ne,(6.58)

U ′′
s+s∗,PQ =

1

2
(Us+s∗,PQ + U s,ρ(PQ)), (P,Q) ∈ Ns+s∗,(6.59)

U ′
s+s∗,PQ =

1

2
(Us+s∗,PQ − U s,ρ(PQ)), (P,Q) ∈ Ns+s∗.(6.60)

We still use (6.50) for (P,Q) 6∈ Rj . For (P,Q) ∈ Rj, define V
′′
j,QP by (6.52) and V ′

j,QP =
Vj,QP − V ′′

j,QP , after we set

(6.61) U ′′
j,PQ = ν+PQU

′′
j,(Aj ,Bj)(P,Q), U ′

j,PQ = Uj,PQ − U ′′
j,PQ, (P,Q) ∈ Rj \ Nj.

Let us verify that π(U, V ) = (U ′, V ′) is in Ĥ. To verify (6.47) for j = e, via (6.56) we
compute

U ′
e,PQ + U

′
e,(Ae,Be)◦ρe(PQ) =

1

2
(Ue,PQ − U e,ιe(PQ)) +

1

2
(Ue,ιe(PQ) − U e,PQ) = 0.

We also know that ρ is an involution on Nh and it is a bijection from Ns+s∗ onto Ns. Analo-
gously, we verify (6.48) and (6.49) via (6.56) and (6.60). Note that (P,Q) → (Aj, Bj)(P,Q)
is a projection on Nj. Analogously, we verify (6.46) via (6.61). This shows that π(U, V )

is in Ĥ. We can also verify that (U ′′, V ′′) = (I−π)(U, V ) satisfies the conditions on the

centralizer, i.e. it is in Ĝ.
As before, we have

|U ′
j,PQ|, |U ′′

j,PQ| ≤ Cmax
i

max
(P ′,Q′)permutation of (P,Q)

|Ui,P ′Q′|.

Equations (6.52) lead to the same inequality for V ′′ and hence for V ′ = V − V ′′. Hence,
again the result follows from Lemma 4.3. �

6.3. Convergence of linearizations.

Proposition 6.6. Assume that the family of involutions {T1, T2, ρ} is formally linearizable.
Assume further that σ1, . . . , σp defined by (5.1)-(5.2), are linear.

(i) There is a biholomorphic mapping in the centralizer of {S, ρ} which linearizes τ1
and τ2.

(ii) Assume further that τ1 = T1 and τ2 = T2. Then {τ11, . . . , τ1p, ρ} is holomorphically
linearizable.

Proof. (i) Suppose that Ψ is a formal mapping satisfying

Ψ−1τ1jΨ = T1ij , Ψρ = ρΨ.
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Then T1j = (LΨ) ◦ T1ij ◦ (LΨ)−1, and LΨ commutes with ρ. Replacing Ψ by Ψ ◦ LΨ−1,

we may assume that Ψ is tangent to the identity and ij = j. We decompose Ψ = Ψ1Ψ
−1
0 ,

where Ψ1 is normalized w.r.t. S, T1, ρ and Ψ0 is in the centralizer of S, T1, ρ. Since Ψ,Ψ0

commute with the Sj’s and ρ, then Ψ1 commutes with the Sj ’s and ρ too. We now let Ψ
denote Ψ1.

To be more specific, let us write

τ1 :

{
ξ′i = λiηi + fi(ξ, η) i = 1, . . . , p,

η′i = λ−1
i ξi + gi(ξ, η) i = 1, . . . , p,

and

Ψ:

{
ξ′i = ξi + Ui(ξ, η) i = 1, . . . , p,

η′i = ηi + Vi(ξ, η) i = 1, . . . , p.

Let us write that Ψ conjugates τ1 to

T1 : ξ
′
i = λiηi, η′i = λ−1

i ξi, i = 1, . . . , p.

We have Ψ ◦ T1 = τ1 ◦Ψ; that is

λiVi − Ui ◦ T1 = −fi ◦Ψ(ξ, η) i = 1, . . . , p,(6.62)

λ−1
i Ui − Vi ◦ T1 = −gi ◦Ψ(ξ, η) i = 1, . . . , p.(6.63)

Since Ψ is normalized with respect {S, T1, ρ}, it satisfies Definition 6.4 (iii). Since Ψ
commutes with each Sj, then Uj,PQ = Vj,QP = 0 for (P,Q) 6∈ Rj . Since it also commutes
with ρ, then by (6.23) and (6.43)-(6.44) we obtain Uj,PQ = 0 for (P,Q) ∈ Rj and j =
h, s, s+ s∗.

We need to majorize Ue,PQ, Ve,QP for (P,Q) ∈ Re. By (6.63) and (6.54), we obtain

Ue,PQ − ν−1
PQVe,QP = −λe{ge ◦Ψ}PQ.

Using (6.24) and (6.45), we obtain Ve,QP = Ue,ρe(PQ) = −ν−1
PQUe,PQ, and hence

Ue,PQ = −1

2
λe{ge ◦Ψ}PQ, Ve,QP =

1

2
νPQλe{ge ◦Ψ}PQ.

Therefore, we have

|Ve,QP |, |Ue,PQ| ≤ C |{gj ◦Ψ}PQ| .
The above holds for (P,Q) ∈ Re. It holds trivially for (P,Q) 6∈ Re. In view of (4.1), we
then have

ψsym ≺ Cgsym ◦Ψsym = gsym ◦ (Isym + ψsym).

Therefore, ψsym is convergent at the origin and so is Ψ.
(ii) Assume now that σ = S, τ1 = T1, τ2 = T2 are linear. Suppose that Ψ linearizes the

{τij} and commutes with ρ. We decompose Ψ = Ψ1Ψ
−1
0 with Ψ1 being normalized w.r.t.

T1, T2, ρ and with Ψ0 being in the centralizer of T1, T2, ρ. Since Ψ−1τijΨ = Tij , we have
Ψ−1

1 τijΨ1 = Ψ−1
0 TijΨ0 = Tij. Hence, Ψ1 linearizes the τij and is normalized w.r.t T1, T2, ρ.

Since Ψ,Ψ0 commute with S, T1 and ρ, so does Ψ1.
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We recall

T1j :





ξ′j = λjηj

η′j = λ−1
j ξj

ξ′k = ξk, k 6= j

η′k = ηk, k 6= j,

τ1j :





ξ′j = λjηj + fjj(ξ, η)

η′j = λ−1
j ξj + gjj(ξ, η)

ξ′k = ξk + fjk(ξ, η), k 6= j

η′k = ηk + gjk(ξ, η), k 6= j.

Since we have Ψ ◦ T1j = τ1j ◦Ψ, we obtain the following relations

(6.64)





λjVj − Uj ◦ T1j = −fjj ◦Ψ
λ−1
j Uj − Vj ◦ T1j = −gjj ◦Ψ
Uk − Uk ◦ T1j = −fjk ◦Ψ, k 6= j

Vk − Vk ◦ T1j = −gjk ◦Ψ, k 6= j.

Since Ψ ∈ C(S, T1, ρ), combining (6.23), (6.26) with the normalizing conditions (6.48),
(6.49), we find that Uj,PQ = 0 = Vj,QP for (P,Q) ∈ Nj and j = h, s, s+s∗. Using Ψρ = ρΨ,
we get Ve = Ue ◦ ρ. By the first equation above, we get

λeUe ◦ ρ ◦ T1e − Ue = −fee ◦ τ1e ◦Ψ.
For (P,Q) ∈ Ne, we have (λeUe ◦ ρ ◦ T1e)PQ = U e,AeBe(ρe(PQ)). By (6.47), we get

(6.65) Ue,PQ =
1

2
{fe,e ◦ τ1e ◦Ψ}PQ , Ve,QP = νPQUe,PQ, (PQ) ∈ Ne.

We now majorize Uj,PQ, Vj,QP for (P,Q) ∈ Rj \ Nj. Fix (P,Q) ∈ Rk \ Nk. Start with
some j such that pj < qj . In the second last identity in (6.64), let us compose on the right
by T1j′ with j

′ 6= k, j to get

Uk ◦ T1j′ − Uk ◦ T1j ◦ T1j′ = −fj,k ◦Ψ ◦ T1j′ = fj,k ◦ τ1j′ ◦Ψ.
Let {ℓ1, . . . , ℓd} be the set of i 6= k such that pi < qi. Composing successively with the
T1lj ’s and adding, we get

Uk − Uk ◦ T1ℓ1 ◦ · · ·T1ℓd = −
d∑

i=1

fℓi,k ◦ τ1ℓ1 ◦ · · · ◦ τ1ℓi−1
◦Ψ.

Hence, if PQ ∈ Rk \ Nk, then

Uk,PQ = {Uk ◦ T1ℓ1 ◦ · · · ◦ T1ℓd}PQ −
{

d∑

i=1

fℓi,k ◦ τ1ℓ1 ◦ · · · ◦ τ1ℓi−1
◦Ψ
}

PQ

.

The first term on the right-hand side, Uk,(Ak,Bk)(PQ), is either zero or majorized by (6.65).

The summations have finitely many combinations. This shows that Uk ≺ ak ◦Ψ. By (6.26),
we obtain Vj ≺ (Uj)sym. This shows that (U, V ) ≺ b ◦ (Isym + (U, V )sym) for some analytic
mapping b = O(2). Using Lemma 4.3, we obtain the convergence of Uk, Vk. �

Theorem 6.7. LetM be a germ of analytic submanifold that is an higher order perturbation
of a product quadric Q in C2p. Assume that M satisfies condition J and it is formally
equivalent to Q. Suppose that each hyperbolic component has an eigenvalue µh which is
either a root of unity or satisfies the Brjuno condition (7.38) in which I = 0, ℓ = 1, n =
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1, µi = µi,j = µh, and each µs is not a root of unity and satisfies the Brjuno condition.
Then M is holomorphically equivalent to the product quadric.

Proof. We first apply a theorem (with I = 0) in [Sto15] that linearize simultaneously and
holomorphically the σ1, . . . , σp. Note that the small divisor condition in this special case
is equivalent that each µh is either a root of unity or a Brjuno number. Then, we apply
successively the two assertions of Proposition 6.6. Hence, in good holomorphic coordinates,
{τ11, . . . , τ1p, ρ} are linear. Then, by Proposition 2.8, the manifold is holomorphically equiv-
alent to the quadric. �

As in the case of Theorem 5.3, we can also prove the first part of the above proof by
applying Rüssmann’s theorem [Rüs02] successively to each σi. This is due to the commu-
tativity property and the special type of the linear parts that lead to the relatively simpler
relations on C(Si) and Cc(Si) for each fixed i.

7. Existence of attached complex manifolds

We are interested in complex submanifolds K in C2p that intersect the real submanifold
M at the origin. Recall thatM has real dimension 2p. Generically, the origin is an isolated
intersection point if dimK = p. Let us consider the situation when the intersection has
dimension p. Without further restrictions, there are many such complex submanifolds; for
instance, we can take a p-dimensional totally real and real analytic submanifold K1 of M .
We then let K be the complexification of K1. To ensure the uniqueness or finiteness of the
complex submanifolds K, we therefore introduce the following.

Definition 7.1. Let M be a formal real submanifold of dimension 2p in C2p. We say that
a formal complex submanifold K is attached to M if K ∩M contains at least two germs of
totally real and formal submanifolds K1, K2 of dimension p that intersect transversally at
the origin. Such a pair {K1, K2} are called a pair of asymptotic formal submanifolds of M .

Before we present the details, let us describe the main steps to derive the results. We first
derive the results at the formal level. We then apply the results of [Pös86] and [Sto15]. The
proof of the co-existence of convergent and divergent attached submanifolds will rely on a
theorem of Pöschel on stable invariant submanifolds and Siegel’s small divisor technique.

We now describe the formal results. When p = 1, a non-resonant hyperbolic M admits a
unique attached formal holomorphic curve [Kli85]. When p > 1, new situations arise. First,
we show that there are obstructions to attach formal submanifolds. However, the formal
obstructions disappear when M admits the maximum number of deck transformations and
M is non-resonant. These two conditions allow us to express M in an equivalent form
(3.4). This equivalent form for M , which has not been used so far, will play an essential
role in our proof for p > 1.

We will consider a real submanifold M which is a higher order perturbation of a non-
resonant product quadrics. By adapting the proof of Klingenberg [Kli85] to the manifoldM
(3.4), we will show the existence of a unique attached formal submanifold for a prescribed
non-resonance condition. As in [Kli85], we also show that the complexification of K in M
is a pair of invariant formal submanifolds K1,K2 of σ. Furthermore, K is convergent if and
only if K1 is convergent.
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Let us first recall the values of the Bishop invariants. The types of the invariants play
an important role for the existence and the convergence of attached formal complex sub-
manifolds. From (2.22) and (2.26), we recall that

γ−1
e = λe + λ−1

e , γ−1
h = λh + λh, γ−1

s = 1 + λ
2

s,(7.1)

0 < γe < 1/2, γh > 1/2, γs ∈ (−∞, 1/2) + i(0,∞), γs+s∗ = 1− γs.(7.2)

Here we exclude the case that Re γs = 1/2 or γs < 1/2 as we will assume that σ has distinct
eigenvalues. We normalize

λe > 1, |λh| = 1, |λs| > 1, λs+s∗ = λ
−1

s ;(7.3)

arg λh ∈ (0, π/2), arg λs ∈ (0, π/2).(7.4)

Recall that µj = λ2j . By (7.1), we have

(7.5) γ2j =
µj

(1 + µj)2
, j = e, h; γsγs+s∗ =

µs

(1 + µs)
2
.

We first verify the following.

Lemma 7.2. Let γj, λj be given by (7.1)-(7.4). Let µj = λ2j . Assume that µ1, µ
−1
1 , . . .,

µp, µ
−1
p are distinct. Then γ2e , γ

2
h, γsγs+s∗, γsγs+s∗ are distinct p numbers. The latter is

equivalent to γ1, . . . , γp being distinct.

Proof. Note that x−1 + x and x−1 decrease strictly on (0, 1). So γ2e , γ
2
h are distinct. We

also have γsγs+s∗ = γs − γ2s . If a, b are complex numbers, then a− a2 = b− b2 if and only if
a = b or a+ b = 1. Since γs is not real, then γsγs+s∗ are different from γ2e and γ2h. For any
distinct complex numbers a1, a2 in (−∞, 1/2) + i(0,∞). We have 1 − a2 6= 1 − a1, a1, a2.
The lemma is proved. �

Let us first investigate the numbers of pairs of formal asymptotic submanifolds and
attached formal submanifolds.

Lemma 7.3. Let M be a formal submanifold that is a third order perturbation of a product
quadric Q in C2p. Assume that M has distinct eigenvalues

µ1, . . . , µp, µ−1
1 , . . . , µ−1

p .

(i) If M admits an attached formal submanifold, its CR singularity has no elliptic
component.

(ii) If Q has no elliptic components, then Q has at least 2h∗+s∗−1 pairs of asymptotic
totally real and real analytic submanifolds that are contained in a single attached
complex submanifold.

(iii) There is no formal submanifold attached to

M : z3 = (z1 + 2γ1z1)
2 + (z2 + 2γ2z2)

3, z4 = (z2 + 2γ2z2)
2.

Here M has a hyperbolic complex tangent at the origin.
(iv) Assume that M has no elliptic component and it admits the maximum number of

formal deck transformations. Given ǫh, ǫs = ±1, let ν = νǫ := (ν1, . . . , νp) with

(7.6) νh := µǫh
h , νs := µǫs

s , νs∗+s := µ−ǫs
s
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Suppose that

(7.7) νQ 6= ν−1
j , ∀Q ∈ Np, |Q| > 0, 1 ≤ j ≤ p.

Then M admits a unique pair of asymptotic formal submanifolds K1, K2 such that
each Ki is defined by z′ = ρi(z

′) for a formal anti-holomorphic involution ρi and
the linear part of ρ−1

2 ρ1 has eigenvalues ν1, . . . , νp. In particular, if (7.7) holds for
each ν of the form (7.6) then M admits exactly 2h∗+s∗−1 pairs of asymptotic formal
submanifolds.

Proof. (i) Let M be defined by

(7.8) zp+j = Qj(z
′, z′) +Hj(z

′, z′), 1 ≤ j ≤ p

where Hj(z
′, z′) = O(|z′|3) and each Qj is quadratic. Let {K1, K2} be a pair of asymptotic

formal submanifolds of M intersecting a formal complex submanifold K. We know that
the totally real spaces T0K1, T0K2 are contained in T0M , the z′-subspace. Let K ′

i be the
projection of Ki onto the z′-subspace, then K ′

1, K
′
2 are still totally real. Let K ′

1 be defined
by

K ′
1 : z

′ = Az′ +R(z′), AA = I, R(z′) = O(2)

such that ρ1(z
′) := Az′ + R(z′) defines an anti-holomorphic formal involution. Let K2 be

the (formal) fixed-point set of the anti-holomorphic involution ρ2(z
′) = Ãz′ + R̃(z′) with

R̃(z′) = O(2). Then K1, K2 intersect transversally at the origin if and only if det(Ã−A) 6=
0. Let us define holomorphic mappings

(7.9) ρi(z
′) := ρi(z′), i = 1, 2.

Then K is given by

(7.10) z′′p+j = Qj(z
′, ρi(z

′)) +Hj(z
′, ρi(z

′)), i = 1, 2, j = 1, . . . , p.

The two equations agree, if and only if

(7.11) Qj(z
′, ρ1(z

′)) +Hj(z
′, ρ1(z

′)) = Qj(z
′, ρ2(z

′)) +Hj(z
′, ρ2(z

′)), 1 ≤ j ≤ p.

Then the asymptotic totally real submanifolds {K1, K2} are defined by

(7.12) Ki : zp+j = Qj(z
′, z′) +Hj(z

′, z′), 1 ≤ j ≤ p, ρi(z
′) = z′.

Recall that

Qj(z
′, z) = (zj + 2γjzj)

2, j = e, h;

Qs(z
′, z′) = (zs+s∗ + 2γs+s∗zs)

2,

Qs+s∗(z
′, z′) = (zs + 2γszs+s∗)

2.

Let us first find necessary conditions on the linear parts of ρi for (7.11) to be solvable. Let

w′ = Az′ and w̃′ = Ãz′. Comparing the quadratic terms in (7.11) for i = 1, 2, we see that

(zj + 2γjwj)
2 = (zj + 2γjw̃j)

2,

(zs+s∗ + 2γs+s∗ws)
2 = (zs+s∗ + 2γs+s∗w̃s)

2,

(zs + 2γsws+s∗)
2 = (zs + 2γsw̃s+s∗)

2.
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Here γs+s∗ = 1 − γs, by (7.2). For each j, wj 6= w̃j. Otherwise, the fixed points of ρ1 and
ρ2 do not intersect transversally. Therefore, the above 3 identities can be written as

zj + 2γjwj = −(zj + 2γjw̃j),

zs+s∗ + 2γs+s∗ws = −(zs+s∗ + 2γs+s∗w̃s),

zs + 2γsws+s∗ = −(zs + 2γsw̃s+s∗).

In the matrix form, we get

(7.13) Ã = −γ
−1 −A, with γ :=




γe∗ 0 0 0

0 γh∗
0 0

0 0 0 γs∗

0 0 γ̃s∗ 0


 .

Here in matrices γ̃s∗ = Is∗ − γs∗. Let us express in block matrices

A =




Ae∗e∗ Ae∗h∗
Ae∗s∗ Ae∗(2s∗)

Ah∗e∗ Ah∗h∗
Ah∗s∗ Ah∗(2s∗)

As∗e∗ As∗h∗
As∗s∗ As∗(2s∗)

A(2s∗)e∗ A(2s∗)h∗
A(2s∗)s∗ A(2s∗)(2s∗)




where the diagonal block matrices are of sizes e∗×e∗, h∗×h∗, s∗×s∗, and s∗×s∗, respectively.
By AA = I, ÃÃ = I and (7.13) we get (ÃÃ − AA)γ = 0, i.e. γ

−1 + A + γ
−1Aγ = 0.

Recall that γ21 , . . . , γ
2
e∗+h∗

are real and distinct. It is easy to see that Ae∗h∗
= 0, Ah∗e∗ = 0,

and Ae∗e∗ ,Ah∗h∗
are diagonal. Also,

(7.14) Ae∗e∗ +Ae∗e∗ = −γ
−1
e∗ , Ah∗h∗

+Ah∗h∗
= −γ

−1
h∗

.

In block matrices, we obtain

γ
−1
j Aj(2s∗)γ̃s∗ = −Ajs∗, γ̃

−1
s∗ A(2s∗)jγj = −As∗j ;(7.15)

γ
−1
j Ajs∗γs∗ = −Aj(2s∗), γ

−1
s∗ As∗jγj = −A(2s∗)j ;(7.16)

γ̃
−1
s∗ A(2s∗)(2s∗)γ̃s∗ = −As∗s∗, γ̃

−1
s∗ A(2s∗)s∗γs∗ = −As∗(2s∗) − γ̃

−1
s∗ ,(7.17)

γ
−1
s∗ As∗(2s∗)γ̃s∗ = −A(2s∗)s∗ − γ

−1
s∗ , γ

−1
s∗ As∗s∗γs∗ = −A(2s∗)(2s∗).(7.18)

In the first 4 equations, we have j = e∗, h∗.
By Lemma 7.2, we know that γ2e , γ

2
h, and γsγs+s∗ are distinct. Thus, Ajs∗ = Aj(2s)∗ = 0

and As∗j = A(2s∗)j = 0 for j = e∗, h∗. Since γsγs+s∗ is different from all γs+s∗γs, then

As∗s∗ = A(2s∗)(2s∗) = 0 while As∗(2s∗), A(2s∗)s∗ are diagonal. Now AA = I implies that

(7.19) Ae∗e∗Ae∗e∗ = I, Ah∗h∗
Ah∗h∗

= I, As∗(2s∗)A(2s∗)s∗ = I.

Combining the first identities in (7.14) and (7.19), we know that the diagonal eth element
ae of Ae∗e∗ must satisfy ae + ae = −γ−1

e , aeae = 1. Since 0 < γe < 1/2, there is no such
solution ae if e∗ > 0. We have verified (i).

(ii) For the hyperbolic components, by (7.1) we have γ−1
h = λh + λh with |λh| = 1 By

the second identities in (7.14), (7.19), and by (7.13), we obtain (ah, ãh) = (−λh,−λ̄h) or
(−λ̄h,−λh). For the complex components, we use As∗(2s∗)A(2s∗)s∗ = I and multiply the
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second identity in (7.17) by the diagonal matrix As∗(2s∗). Thus the sth diagonal element
as of As∗(2s∗) satisfies as(as + γ̃−1

s ) + γ̃−1
s γs = 0. By the last identity in (7.5), we get

a2s + (1 + µ−1
s )as + µ−1

s = 0.

Obviously as = −1,−µ−1
s are solutions. By (7.13), we get (as, ãs) = (−1, 1 − γ̃−1

s ) =

(−1,−µ−1
s ) or (−µ−1

s , µ−1
s − γ̃−1

s ) = (−µ−1
s ,−1). Each tuple determines a tuple (bs, b̃s) by

(7.19), with bs being the diagonal entries of A(2s∗)s∗ . We verify that (bs, b̃s) = (a−1
s , ãs

−1
).

There are exactly 2h∗+s∗−1 solutions for A and Ã since we can only determine the pairs
{Ah∗h∗

, Ãh∗h∗
}, {As∗(2s∗), Ãs∗(2s∗)}. Indeed, we have

A =



diag(ah) 0 0

0 0 diag(as)
0 diag(bs) 0


 , Ã =



diag(ãh) 0 0

0 0 diag(ãs)

0 diag(b̃s) 0


 ,

diag ν := Ã−1A =



diag(ã−1

h ah) 0 0

0 diag(b̃−1
s bs) 0

0 0 diag(ã−1
s as)


 ,(7.20)

ν = µǫ = (µǫh
h , µ

ǫs
s , µ

−ǫs
s ), ǫ2h, ǫ

2
s = 1, νs+s∗ = ν−1

s ,(7.21)

where there are 2h∗+s∗ distinct combinations. Thus, we get exactly 2h∗+s∗−1 pairs {K1
ǫ , K

2
ǫ }

of asymptotic linear submanifolds indexed by ǫ = (ǫ1, . . . , ǫh∗+s∗) with ǫ2j = 1 for the
product quadric. The attached formal submanifolds associated to these linear asymptotic
submanifolds are unique and restricting to ǫi = 1 for all i, it is given by

zp+h = (1− 4γ2h)z
2
h, zp+s = (1− 2γs+s∗)

2z2s+s∗ , zp+s+s∗ = (1− 2γs)
2z2s .

Here we have used (1− 4γ2h) = (1− 2γhλh)
2.

In summary, we have shown that there are exactly 2h∗+s∗−1 pairs of linear anti-holomorphic
involutions {ρ1, ρ2}. In (iv) we show that under the non-resonant conditions on µ1, . . . , µp,
they are the only pairs of anti-holomorphic involutions. This finishes the proof of (ii).

(iii). Let us continue the computation for the perturbations. We have determined linear
parts of antiholomorphic involutions ρi. We expand components of R(z′) as Rj(z

′) =∑∞
k=2Rj;k(z

′). Here Rj;k are homogeneous terms of degree k. We expand R̃j analogously.

Suppose that terms of order up to k−1 in Rj , R̃j have been determined. For the hyperbolic
components, we need to solve the equations

4
√

1− 4γ2hzh(Rh;k(z
′) + R̃h;k(z

′)) = · · · ,(7.22)

where the right-hand side has been determined. Indeed, let us compute the terms of degree
k in (7.11) to obtain

(1− 2γjλj)
2z2j + 2(1− 2γjλj)zjRj;k = (1− 2γjλ

−1
j )2z2j + 2(1− 2γjλ

−1
j )zjR̃j;k +R

whereR is a polynomial that depends on R̃j;l, Rj;l, l < k. Since (1−2γjλj) = −(1−2γjλ
−1
j ),

we obtain (7.22).
When p > 1, the system of equations (7.22) cannot be solved even formally, unless the

right-hand side is divisible by zh. When p = 1, the equation (7.22) is clearly solvable.
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In fact, under the non-resonant condition on µ1, the formal anti-holomorphic involutions
{ρ1, ρ2} can be uniquely determined.

Let us keep the above notation and compute for the example stated in (iii). We need to
solve

(z1 + 2γ1w̃1)
2 + (z2 + 2γ2w̃2)

3 = (z1 + 2γ1w1)
2 + (z2 + 2γ2w2)

3,

(z2 + 2γ2w̃2)
2 = (z2 + 2γ2w2)

2.

Again w̃2 −w2 cannot be identically zero. Thus w̃2 = −w2 − γ−1
2 z2. Then we need to solve

(z1 + 2γ1w̃1)
2 = (z1 + 2γ1w1)

2 + 2(z2 + 2γ2w2)
3.

By (ii), we know that w1 = −λ1z1 + R1(z
′) and w2 = −λ2z2 + R2(z

′) with Ri(z
′) = O(2).

Also w̃1 = −λ1z1 + R̃1(z
′) and w̃2 = −λ2z2 + R̃2(z

′). Comparing the cubic terms implies
that z1 must divide 2(1− 2γ2λ2)

3z32 , which is a contradiction.
(iv) For a general M , following Klingenberg [Kli85] we reformulate the problem by con-

sidering the following equations

h(z′) = Q(z′, ρi(z
′)) +H(z′, ρi(z

′)), i = 1, 2,

h∗(ρi(z
′)) = Q(ρi(z

′), z′) +H(ρi(z
′), z′), i = 1, 2.

Here h, h∗, ρi are unknowns. Initially, we require that ρ1, ρ2 be arbitrary biholomorphic
maps, except their linear parts match with z′ → Az′ and z′ → Ãz′. This will ensure that
the solutions ρi are unique and they are involutions.

As demonstrated in (iii), in general there is no formal submanifold attached to M .
Thus we assume that M is a higher order perturbation of product quadric without elliptic
component and it admits the maximum number of deck transformation.

We may assume that

zp+h = (zh + 2γhzh + Eh(z
′, z′))2,(7.23)

zp+s = (zs + 2γszs+s∗ + Es(z
′, z′))2,(7.24)

zp+s+s∗ = (zs+s∗ + 2γs+s∗zs + Es+s∗(z
′, z′))2.(7.25)

For late references, we express the above in an abbreviated form:

(7.26) M ⊂ C2p : zp+j = (Lj(z
′, z′) + Ej(z

′, z′))2, 1 ≤ j ≤ p.

We fix linear parts of ρi such that

ρ1(z
′) = Az′ +R(z′), ρ2(z

′) = Ãz′ + R̃(z′).

For i = 1, 2 we then need to solve ρi from

zh + 2γhρih + Eh(z
′, ρi) = (−1)ifh(z

′),(7.27)

zs + 2γsρis+s∗ + Es(z
′, ρi) = (−1)ifs(z

′),(7.28)

zs+s∗ + 2γs+s∗ρis + Es+s∗(z
′, ρi) = (−1)ifs+s∗(z

′),(7.29)

2γhzh + ρih + Eh(ρi, z
′) = (−1)if ∗

h(ρi),(7.30)

2γszs+s∗ + ρis + Es(ρi, z
′) = (−1)if ∗

s (ρi),(7.31)

2γs+s∗zs + ρis+s∗ + Es+s∗(ρi, z
′) = (−1)if ∗

s+s∗(ρi).(7.32)
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Suppose that we have determined terms of Rj , R̃j, fj, f
∗
j of order < k. We have

ρ1(z
′) = Az′ +R(z′), ρ−1

1 (z′) = A−1z′ −A−1R′(A−1z′),

where the terms in R′ − R of order k depend only on terms of R of order < k. For terms
of order k, by eliminating fj, we need to solve

RjQ + R̃jQ = · · ·(7.33)

where the dots denote terms which have been determined. We compose from right in the
last 3 identities for i = 1 (resp. i = 2) by ρ−1

1 (resp. ρ−1
2 ). Eliminating f ∗ from the new

identities, we obtain

A−1R(A−1z′) + Ã−1R̃(Ã−1z′) = · · · .
Recall that Ã−1A = diag ν with ν := νǫ. Multiplying on the left by Ã, using ÃA−1 =
(diag ν)−1, and evaluating at z′ = Az̃′, we thus need to solve (7.33) and

ν−1
j Rj,Q + νQR̃j,Q = · · · .

This shows that Rj , R̃j are uniquely determined as

(7.34) νQ 6= ν−1
j , Q ∈ Np, |Q| > 1, 1 ≤ j ≤ p.

To verify that ρi are involutions, we compose by ρ−1
i from right in (7.27)-(7.29), and we

apply complex conjugate to the coefficients of the new identities. This results in (7.30)-

(7.32) in which (ρi, f
∗
j ) are replaced by ((ρi)

−1, f i). We can also start with (7.30)-(7.32) and

apply the same procedure to get (7.27)-(7.29), in which (ρi, fi) are replaced by ((ρi)
−1, f

∗
i ).

By the uniqueness of the solutions, we conclude that (ρi)
−1 = ρi as both sides have the

same linear part. We now have (ρi)
−1(z′) = ρi(z′). Hence, by (7.9), z′ = ρi(ρi(z

′)) = ρ2i (z
′).

This shows that each ρi is an involution. �

We now can prove the following theorem.

Theorem 7.4. Let M be a real analytic submanifold in C2p defined by (7.26) without
elliptic components. Assume that in (ξ, η) coordinates, Dσ(0) is diagonal and has distinct
eigenvalues µ1, . . . , µp, µ

−1
1 , . . . , µ−1

p . Let ν = νǫ be of the form (7.21) and satisfy (7.34).
Then M admits a unique pair of formal asymptotic submanifold {Kǫ

1, K
ǫ
2} such that the

complexification of Kǫ
1 in M is an invariant formal submanifold Hǫ of σ that is tangent to

(7.35) ∩ǫj=1{ηj = 0} ∩ ∩ǫj=−1{ξj = 0}.
Furthermore, the complexification of Kǫ

2 equals τ1Hǫ.

Proof. Let Ki = Kǫ
i . We will follow Klingenberg’s approach for p = 1, by using the

deck transformations. Suppose that K is an attached formal complex submanifold which
intersects with M at two totally real formal submanifolds K1, K2. We first embed K1 ∪K2

into M as M is embedded into M. Let Ki be the complexification of Ki in M. Since ρ
fixes Ki pointwise, then ρKi = Ki.

We want to show that τ1(K1) = K2; thus Ki is invariant under σ. We can see that Ki is
defined by

(7.36) ρi(z
′) = w′.



62

On K1, by (7.27) and (7.29) we have L̃(z′, w′) + E(z′, w′) = −f(z′). The latter defines a
complex submanifold of dimension p. Thus it must be K1. On M,

(L̃j(z
′, w′) + Ej(z

′, w′))2 = zp+j

are invariant by τ1. Thus each L̃j(z
′, w′)+Ej(z

′, w′) is either invariant or skew-invariant by
τ1. Computing the linear part, we conclude that they are all skew-invariant by τ1. Hence
τ1(K1) is defined by L̃(z′, w′) + E(z′, w′) = f(z′), which is the defining equations for K2.
We must identify the tangent space of K1 at the origin. Let us verify (7.35) for ǫj = 1 for
all j, while the general case is analogous. Let A, S be the linear parts of ρ1 and σ = τ1τ2.
Define e(z′, w′) = w′ − A(z′). The tangent space to K1 at the origin is {e(z′, w′) = 0}.
From the proof of Lemma 7.3 (ii), the matrix of A is

A =



diag(ah) 0 0

0 0 diag(as)
0 diag(bs) 0


 =



− diag(λh) 0 0

0 0 −I

0 −I 0


 .

Thus eh = wh+λhzh, es = ws+zs+s∗, and es+s∗ = ws+s∗+zs. Using the formulas (2.20) and
(2.24) of τ1, τ2 whenM is the product quadric, we can verify that es+s∗◦S = µses+s∗ , es◦S =
µ−1
s es, and eh ◦ S = µheh. Therefore, ej(z

′, w′) = cjηj .
Finally, if K1 is convergent, then (7.36) implies that ρ1 is convergent. Hence K1, the

fixed point set of ρ1, is convergent. �

We now study the convergence of attached formal submanifolds. Let us first recall a
theorem of Pöschel [Pös86]. Let ν and ǫ be as in (7.21). Define

ων(k) = min
1<|P |≤2k,P∈Np

min
1≤i≤p

{
|νP − νi|, |νP − ν−1

i |
}
.

Suppose that

(7.37) −
∑ log ων(k)

2k
<∞.

Then the unique invariant formal submanifold of σ that is tangent to the Hǫ defined by
(7.35) is convergent.

We now obtain a consequence of Theorem 7.4 and Pöschel’s theorem.

Theorem 7.5. Let M be as in Theorem 7.4. Let ν = µǫ be given by (7.21). Assume that
ν = (µǫ1

1 , . . . , µ
ǫp
p ) satisfy (7.37). Then M admits an attached complex submanifold.

To study the convergence of all attached formal manifolds, we use a theorem in [Sto15]
to conclude simultaneous convergence of all attached formal submanifolds. In fact the
conclusion is much more stronger. It is based on the simultaneous linearization of the σj ’s
on the resonant ideal, i.e. the ideal I generated by ξ1η1, . . . , ξpηp. Define with Dσi(0) :=
diag(µi,1, . . . , µi,n),

(7.38) ωS,I(k) = inf

{
max
1≤i≤l

|µQ
i − µi,j| 6= 0: 2 ≤ |Q| ≤ 2k, 1 ≤ j ≤ n,Q ∈ Nn, xQ 6∈ I

}

where µQ
i := µq1

i,1 · · ·µqn
i,n. As in [Sto15], we say that the family S is Diophantine on I, if

the sequence of numbers (7.38) satisfies (7.37).
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Theorem 7.6. Let M be as in Theorem 7.5, given by (7.26). Assume furthermore that
M is non resonant. Suppose that S is Diophantine on I or that M has an abelian CR
singularity of pure complex type. Then all attached formal submanifolds are convergent.
Moreover, the complex submanifolds Kj attached to pairs of antiholomorphic involutions
{ρj1, ρj2} have the form

(7.39) Kj : zp+i = (Li(z
′, ρj1(z

′)) + Ei(z
′, ρj1(z

′)))2, 1 ≤ i ≤ p.

Proof. WhenM has an abelian CR singularity of pure complex type, from the normal form
of τij in Theorem 5.3 we know that all invariant submanifolds of σ that are tangent to (7.35)
are convergent. The non-abelian CR singularity case is a consequence of the theorem of
simultaneous linearization of the σj ’s along the resonant ideal I [Sto15][theorem 2.1] and
Theorem 7.4. Since, in good holomorphic coordinates, σ is linear on the zero set of the
resonant ideal, the solutions {ρ1, ρ2} to (7.27)-(7.32) are linear and there are 2h∗+s∗−1 pairs
{ρj1, ρj2} of solutions. The equation (7.39) is derived in (7.10) for a general situation. �
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