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A possible consequence of forging in common steels is the apparition of a grain size gradient in the width
of the component. For railway axles in service, this microstructure gradient is superimposed to the stress
gradient introduced by the external load of rotatory bending imposed on the axle. To investigate the com-
bined effects of these gradients on the fatigue lifetime of a forged railway axle, a numerical investigation
of the effects of microstructure gradients inserted in a notched specimen is proposed, with respect to dif-
ferent fatigue indicators. In particular, the predictions of an approach based on the theory of critical dis-
tances seem to be very promising in this case.

1. Introduction

Ever since the Paris-Versailles accident in the 1840’s, railway
axles have been a major concern for researchers in the field of fati-
gue. Due to their loading in rotatory bending, which is in general
superimposed in the most critical areas to a local stress gradient
induced by notches, they are a typical application of fatigue in
the presence of gradients. In the case of forged axles, the macro-
scopic stress gradients resulting from the external load can be
superimposed to microstructural ones, for instance varying grain
size in the width of the axle.

Even in the more common case of a homogeneous microstruc-
ture, the design of such mechanical parts remains an open prob-
lem, as to the authors’ best knowledge, there is currently no
fatigue criterion that predicts these combined effects in a satisfac-
tory manner. In fact, some of the most frequently used fatigue cri-
teria employed for the design of structures undergoing multiaxial
loadings, such as Dang Van’s [1] and Crossland’s [2] criteria, fail
to accurately account for such gradients effects. A wide range of
approaches have been attempted to deal with this issue. Papado-
poulos et al. [3] proposed a non local-formulation of the Crossland
criterion, introducing the gradient of the hydrostatic pressure. This
approach was later extended to other criteria by Norberg and

co-workers [4], who underlined, in their case, the better pre-
dictability associated with probabilistic approaches. These
approaches, built on a weakest link framework [5–7] have gained
in popularity, thanks to excellent failure predictions with respect
to experiment.

The success of such approaches stems from their capacity to
address the random nature of the fatigue phenomenon. From a
physical perspective, this randomness is a direct result of hetero-
geneities present at the microstructure scale (e.g. grain disorienta-
tions, inclusions, grain boundaries, defects). However, in most
probabilistic approaches this aspect is often masked in macro-
scale distributions of fatigue probabilities. In recent years, the
emergence of constitutive laws taking into account physical defor-
mation mechanisms at the grain scale ([8,9], for instance) has led
to the development of an alternative approach: the statistical study
of the fatigue response of polycrystalline aggregates, with respect
to some fatigue indicator parameters (FIPs), as introduced by [10]
(see [11] for a review). In the case of gradient fatigue, this approach
has shown promising results: Bertolino et al. [12] have associated
the limitations of Dang Van’s criterion with the limited number of
grains actually undergoing critical stress in the case of gradient
fatigue, and [13] have proposed a statistically defined, microstruc-
ture sensitive fatigue notch factor based on numerous aggregates
simulations.

The latter category seems entirely indicated to deal with the
combined issues of gradient fatigue and heterogeneous underlying
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microstructure, for instance in the case of grain size gradients. For
steels, grain size can play an important role in the fatigue life. Some
authors [14,15] have found that the fatigue limit could be signifi-
cantly higher for smaller grain sizes, which they imputed to hard-
ening mechanisms similar to those encountered in monotonic
cases. Therefore, to efficiently tackle size effects, the constitutive
laws used at the grain scale must be able to reflect hardening
mechanisms related to grain size. The crystal plasticity constitutive
laws encountered in literature can be divided in two categories:
the so-called phenomenological approach, based on Cailletaud’s
[8] work and resting on heuristically defined hardening parame-
ters, and the so-called physically based approach [9], which harden-
ing mechanisms are governed by the evolution of parameters such
as dislocation densities. The first category is predominant in fati-
gue studies, and has accumulated significant results, such as the
relative importance of elastic anisotropy and crystal plasticity on
FIP distributions [16,17], or the importance of local grain cluster
effects [18] on individual grain responses. The second category is
less encountered in fatigue applications, due to a more difficult
identification of the constitutive parameters. Sweeney and co-
workers [19] however recently emphasized the relation between
local dislocation densities predicted by simulations and experi-
mentally observed crack nucleation on iron oligo-crystals.

Nevertheless, accounting for size effects in a physically consis-
tent manner requires to extend these formulations to non-local
descriptions, at a tremendous computational cost. To this day, this
approach is mostly limited to simplified microstructures with
reduced number of grains [20]. In the case where a macroscopic
stress gradient is superimposed to a grain size gradient, over the
same characteristic length scale (i.e. covering several hundreds/
thousands grains for usual grain sizes, which is the case in a forged
railway axle), implementing such non-local constitutive laws
remains challenging. The present study aims to circumvent this
difficulty by modeling the micro plasticity and hardening mecha-
nisms occurring at the grain scale in a qualitative manner. The pro-
posed approach is to describe individual grain behavior by
macroscopic von Mises plasticity models taking the grain size into
account to qualitatively reflect grain size effects. This simplifica-
tion, further discussed in the following sections, seems acceptable
if the number of grains involved is sufficiently important.

The present paper is an attempt at characterizing the impact of
grain size gradients on the fatigue response of a component sub-
jected to a macroscopic stress gradient. First, a numerical model
of this configuration, implementing microstructure gradients on a
simplified, axle-representative specimen is proposed. A set of FIPs
is then chosen to evaluate the impact of three different microstruc-
ture gradients on the fatigue response of the specimen. The relative
relevance of these FIPs is then discussed in the final section, and
general conclusions on the impact of the microstructures are
drawn. In particular, a criterion based on Taylor’s theory of critical
distances [21] is proposed and reviewed through the prism of
aggregate calculations.

2. Numerical model

2.1. Model geometry and mesh

In order to qualitatively assess the mechanical response of poly-
crystalline aggregates under macroscopical stress gradients, a solu-
tion is to place the microstructural gradients at the root of a
notched specimen. For a forged axle steel, the microstructural gra-
dient support length is typically the whole width of the compo-
nent, that is to say, the same support length as the stress
gradient. The chosen geometry is then a two-scale model, consist-
ing of a 1 mm � 1 mm patch, inserted at the root of a notched spec-
imen (Fig. 1). The model is two dimensional, and the plane strain

formalism is adopted. The notch geometry, determined by the r
d

and D
d

ratios, is chosen to reproduce the stress concentration
observed on an average railway axle at the fillet joining the wheel
seat and the axle body (the previous ratios are identical for the axle
and the chosen geometry). On the notched specimen, r is the notch
radius, D the width of the specimen, and d the depth of the notch
(see Fig. 1). In practice, D is arbitrarily set to 50 mm, and r and d

values are deduced from the axle body diameter, wheel seat diam-
eter and fillet radius. For consistency with typical grain sizes
encountered in railway steels (about 25 lm), a realistic patch typ-
ically contains around 1500 grains.

In practice, the geometry of the specimen is generated exten-
sively with the SALOME Meca software [22], and the aggregate
geometry is generated using the Neper software [23]. The resulting
multi-scale geometry is then meshed using the netgen algorithm.
An example of a mesh produced by this procedure is presented
in Fig. 1, with a reduced amount of grains for illustration. The mesh
consists of linear triangular elements. For representative aggre-
gates (1500–2000 grains), the mesh contains approximately
150000 elements. Displacement boundary conditions are imposed
on the upper and lower surfaces.

This study is limited to two dimensional microstructures. Such
aggregates present limitations in the representation of actual
microstructures, because at the exception of thin film coatings, in
most materials out of plane grain interaction have to be taken into
account to model a realistic behavior. Comparison of the surface
response of 3D aggregates for different internal grain geometries
[24] have shown, however, that the surface strain response is only
slightly affected by the underlying microstructure. When consider-
ing averaged strain values per grain, the difference is found to be
negligible. As the goal here is not so much to try and confirm
experimental measurements as to draw general conclusions on
the aggregate behavior, limiting the study to 2D aggregates and
averaged quantities per grain seems an acceptable compromise.

2.2. Polycrystalline aggregates generation

A common tool of generating virtual microstructures is the use
of Voronoi polyhedra, or Voronoi tessellations [25]. Such a tessella-
tion fills the space with no overlaps and no gaps, similarly to a real
microstructure. Furthermore, for randomly distributed seeds, the
resulting grain size distribution typically exhibits a normal behav-
ior, which is frequently encountered on EBSD (electron backscatter
diffraction) cartographies of metallic microstructures [26]. In the
case of the axle steel, as a first approximation this kind of tessella-
tion is used.

Voronoi tessellations being completely determined by the posi-
tion of a given set of seeds, they offer a very easy way to create
microstructural gradients. A simple method is to assign each
region of the polycrystalline patch a chosen seed density, and to
distribute seeds randomly in each region according to this density
parameter. It is a simple and convenient way of controlling local
grain size while conserving the random geometries associated to
Poisson-Voronoi tessellations, and realistic grain geometries.

The chosen approach to distribute seeds can be summed up in
three steps:

1. Subdivide the 1 mm � 1 mm patch in a given number of vertical
bands where the local grain size will be homogeneous. Arbitrar-
ily, 10 regions are thus defined (defining 100 lm � 1 mm
bands, regions significant enough in surface with respect to
the average grain size of the considered steels, 30–50 lm).

2. Set a given seed density for each region.
3. Distribute seeds randomly in each region according to the pre-

viously determined seed density.
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Aggregates obtained through this procedure are presented in
Fig. 2, for grain sizes ranging from 10 to 100 lm. Note that the
aggregates are generated independently from the macroscopic
geometry, into which they are inserted afterwards.

2.3. Constitutive laws

In the chosen model, two scales intervene in the definition of
the material response. The macrosopic scale, that describes the
behavior of the homogeneous matrix in which the aggregates are
to be inserted, and the mesoscopic scale, that describes the individ-
ual response of each of the aggregate’s grain.

2.3.1. Macroscopic scale

Previous works on the axle steel [27,28] have shown that a con-
stitutive law combining isotropic and kinematic hardening, as
described in [29] reflects satisfyingly the cyclic behavior of the
material. This law is summarized through equations [(1)–(4)]:

_ep ¼ _eeqp
@f

@r
ð1Þ

f ¼ J2ðr� XÞ � R� ry 6 0 ð2Þ
_R ¼ bðR1 � RÞ _p ð3Þ
_X ¼ 2

3
C _ep � cX _p ð4Þ

where the rate of plastic flow _ep is related to the equivalent plastic
strain rate _eeqp through an associated flow rule. f denotes the yield

function and J2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

3
2 s : s

q

is the second invariant of the deviatoric

stress tensor s ¼ r� 1
3TrðrÞI, and operation ‘‘:” denotes the tensor

double dot product. The evolution of the elastic domain is governed
by the combined evolutions of the isotropic hardening R and the
kinematic hardening variable X. This results effectively in a transla-
tion and a uniform expansion of the original domain. In addition to
the elastic parameters E and m, five parameters are necessary to
implement it in a finite element solver: fry;R1; b;C; cg. ry is the

Fig. 1. Multi-scale model and geometry, for a reduced (200) number of grains.

Fig. 2. Microstructural gradient generation: geometry and local grain size evolutions for (a) linear and (b) exponentially decreasing grain sizes in the width of the aggregates.
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initial value of R;R1 is its asymptotic value, and b allows to control
the rate with which R reaches its final value. C is the initial kine-
matic hardening modulus, and c is the rate at which it decreases
with increasing plastic deformation. The parameters identified by
[28] are used here. This constitutive law is affected to all the mesh
elements lying outside the polycrystalline aggregate. Note that the
matrix behavior will overall remain elastic, save for some elements
at the junction with the aggregate.

2.3.2. Mesoscopic scale model

In the case of aggregates with heterogeneous grain sizes, two
main microstructural features must be reflected in the description
of the mesoscopic response: grain size and grain orientation. Sig-
nificant progress has been made in recent years to model grain size
effects in polycrystals in a physically consistent fashion, using
strain gradient plasticity [20,30]. However these models remain
computationally expensive, and are so far limited to reduced num-
ber of grains. Modeling a grain size gradient, on the other hand,
necessitates the explicit modeling of a more important number
of grains.

Considering these difficulties, to try and acquire qualitative
insight on the combined effects of a grain size gradient and a
macroscopic stress gradient on fatigue life, the proposed approach
is to model grain orientation and grain size effects in a phe-
nomenological manner, by using the previous macroscopic consti-
tutive law with a different yield stress for each individual grain in
the polycrystal. To account for hardening mechanisms related to
grain size, as a first approximation, the yield strength ry;g associ-
ated to each grain is expressed as a direct function of individual
grain size dg through the empirical Hall–Petch law (Eq. (5)):

ry;g ¼ r0 þ
ky
ffiffiffiffiffi

dg

p ð5Þ

where r0 and ky are material constants. This empirical law, postu-
lated in the case of monotonic loading, is a traduction of two hard-
ening mechanisms linked to grain size (for a more comprehensive
description of grain size effects, see [31]). The first one is an intrinsic
grain size effect. For a given grain geometry, a small grain will prove
more resilient than a bigger one, because its geometrically neces-
sary dislocation density qGND will be more important. The second
source of hardening comes from grain boundary hardening: the
multiplication of grain boundaries associated with smaller grain
sizes effectively limits dislocation movements in the polycrystal
(dislocation pile-up effect). One can argue that similar mechanisms
take place in the fatigue regime: the multiplication of grain bound-
aries associated with smaller grain sizes effectively prevents the
propagation of microstructurally small cracks (MSC), while higher
GND densities effectively slow the formation and subsequent prop-
agation of persistent slip bands. The chosen modeling has the
advantage of accounting for both mechanisms, however
empirically.

The main hypothesis, as implied by the microstructures gener-
ation described on Fig. 2, is that one can consider the grain size gra-
dient as a finite number of bands of homogeneous grain size laid
next to each other. When isolating one of these bands, the macro-
scopic response would then have to comply with the Hall–Petch
law if the number of grains in the band is important enough. The
chosen modeling can also qualitatively reflect the response of
small ‘‘clusters” of grains. It is shown in [32] that, within a given
aggregate, grain criticity is both a function of grain orientation
and grain environment (i.e. surrounding grain size and orienta-
tion). The use of macroscopic constitutive laws parameterized with
grain size at the grain scale, although not realistic to describe intra-
granular fields, is a very simple and efficient way to account for
such small clusters effects. Based on a similar modeling, Bertolino

and co-workers [12] underline very clearly the limitations of the
Dang Van criterion for heterogeneous loadings. Finally, from an
engineering perspective, it is more straightforward to identify the
constitutive parameters of macroscopic laws from experimental
results, especially in the presence of heterogeneous properties.

As a wide discrepancy can be found in literature for these
parameters in steel, it is difficult to come up with a good default
value, but according to [33], the Hall–Petch slope ky can vary

between 0.14 and 1.58 MPa m
1
2 for common steels. The parameters

ky; r0
� �

are then chosen to reflect a mild steel behavior:

r0 ¼ 100 MPa; ky ¼ 0:8 MPa m
1
2

n o

. As a simplification of the actual

steel microstructure, the same couple of parameters is used for all
grains in the aggregate, which comes down to assuming that the
microstructure is single phase.

2.3.3. Grain orientation

To model grain orientation, a possible methodology is to alter
the yield strength obtained for each grain through the Hall–Petch
law, by means of a random drawing from a distribution centered
around this value. This leads to distribute yield strengths over
the aggregate in the three following steps (Fig. 3):

The draw is done from a Gaussian distribution, of mean value
ry;g , and the standard deviation is taken identical to that of the
yield strength distribution given by the Hall–Petch law for a
Poisson-Voronoi tessellation of representative grain size. The
obtained value, S ¼ 30 MPa, is in good accordance with a similar
modeling realized in [26]. The successive yield strength distribu-
tions obtained through this procedure, for an aggregate of approx-
imately 2000 grains are plotted on Fig. 4.

� Fig. 4a shows the initial grain size distribution.
� Fig. 4b shows the yield strength values obtained for that distri-
bution through Eq. (5).

� Fig. 4c shows the final yield strength distribution.

The final yield strength distribution exhibits a typical normal
distribution aspect, which is in good accordance with the hypoth-
esis of randomly distributed grain orientations. At this stage, one
must verify that the mean response of an aggregate of representa-
tive grain size corresponds to the macroscopic steel behavior. To
this end, a simple simulation is conducted: a patch of approxi-
mately 200 grains is inserted in a plain sample, and the aggregate
mean response is compared to the theoretical response given by
the macroscopic law for the same load. The results of this simula-
tion are presented on Fig. 5.

The dotted curve presents the macroscopic behavior, and each
colored line presents the axial stress response of a grain. It is clear
that the mean behavior of the aggregate is very similar to that of
the macroscopic model. This simulation supports the assumptions
made regarding the distribution of yield strengths.

3. Choice of fatigue indicators

The impact of the grain size variation in the width of the spec-
imen is studied according to the frequential and spatial distribu-
tion of several FIPs, described in the next sections. Following the
recommendations made in [10], both strain and stress based indi-
cators are considered.

3.1. Crossland’s criterion

As a first indicator, the Crossland criterion is considered. This
criterion takes into account the magnitude of the octahedral shear
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stress
ffiffiffiffiffiffi

J2a
p

and the maximum hydrostatic stress Ph;max encountered
during a stabilized loading cycle:
ffiffiffiffiffiffiffi

J2;a

q

þ aPh;max 6 b ð6Þ

The two coefficients a and b are obtained through fully reversed
tensile and torsional fatigue tests:

a ¼
t�1 � s�1

ffiffi

3
p

s�1
3

; b ¼ t�1 ð7Þ

where t�1 and s�1 are respectively the fully reversed tensile and tor-
sional fatigue limits.

ffiffiffiffiffiffiffi

J2;a
p

is a measure of the variation of the
octaedric shear stress over a stabilized cycle:
ffiffiffiffiffiffiffi

J2;a

q

¼ 1
2

ffiffiffi

2
p max

t1
max

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½sðt2Þ � sðt1Þ� : ½sðt2Þ � sðt1Þ�
p

� �

ð8Þ

where operation ‘‘:” designates the tensor double dot product. The
focus will be primarily set on the distribution of both

ffiffiffiffiffiffiffi

J2;a
p

and
Ph;max within the aggregates.

3.2. Cumulated equivalent plastic strain

Many authors [10,16,17,32] insist on the relevance of the equiv-
alent cumulated plastic strain p as a fatigue indicator (Eq. (9)):

p ¼
Z t

0

_p dt with _p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3

_ep : _ep
r

ð9Þ

It is also considered here, as this parameter gives direct insight
into the apparition and distribution of plasticity at the mesoscopic
scale. It is also shown in [32] that this variable reflects facts
observed experimentally, such as a higher failure probability for
surface grains.

Fig. 3. Mesoscopic yield strengths distribution steps.

Fig. 4. Yield strengths distribution over the aggregates.

Fig. 5. Overall material behavior compared with the mechanical behavior of each grain.
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3.3. Theory of critical distances (point method)

Contrary to the other indicators, the ‘‘theory of critical dis-
tances” formulated by Taylor [21] is a global criterion, taking into
account the stress gradient by averaging the notch stress over a
given characteristic length. Three variations are described in [21],
according to the space dimension over which the stress (or an
equivalent fatigue indicator) is averaged. In the case of a homoge-
neous grain size, the ‘‘point method” involves comparing the stress
value at a given depth below the notch with the fatigue limit. In the
present case, to account for the effect of varying grain size in the
aggregates, a modification of this method is considered here
(Fig. 6).

Given the hypothesis made in Section 2.3.2, the main conse-
quence of varying grain size is an associated varying yield strength
in the width of the gradient aggregates. To take this fact into
account, the equivalent von Mises stress variation will be consid-
ered, and compared to the local yield strength in the width of
the aggregates. In the case of a homogeneous microstructure (i.e.
homogeneous yield strength), this method is equivalent to the
original point method. For gradient aggregates, it allows to take
into account the hardening induced by varying grain sizes.

For the chosen method, the distance at which the stress is to be
considered (denoted a0

2 ) is given by (Eq. (10)):

a0 ¼ 1
p

DK th

Dr0

� �2

ð10Þ

where K th is the stress intensity threshold beyond which crack
propagates, and Dr0 is the stress variation at the fatigue limit of a
plain specimen. For the railway steel considered here,
a0
2 � 0:125 mm [27].

To the authors’ best knowledge, Taylor’s theory of critical dis-
tances has not yet been reviewed through the prism of aggregate
calculations. In particular, a long standing question remains the

interpretation of this distance can take with respect to the
microstructure. This point will be further discussed in the next
sections.

4. Microstructures

The three microstructures investigated in this work are
depicted in Fig. 7. The corresponding aggregates are noted A1;A2

and A3 in the next sections. The grain size of the first aggregate
(A1) is homogeneous, so that A1 is later considered as the reference
case to calculate the fatigue load. The other two aggregates’ grain
size decrease linearly (A2) and exponentially (A3) in their width.

The main characteristics of these 3 aggregates are summed up
in Table 1. An important distinction must be made at this point
considering the evaluations of averaged quantities over these
microstructures: whereas averaging over the number of grains
and over the area is equivalent for A1, significant differences appear
in A2 and A3 as a consequence of the heterogeneous grain size. This
point will be discussed further on because it affects the considera-
tion of the FIP statistical distributions.

4.1. Fatigue load

The fatigue limit is obtained by a calculation on the macro-
scopic geometry, assuming a purely elastic behavior. The load giv-
ing an average stress of 270 MPa (mean yield strength for A1) over
the 1 mm � 1 mm patch in the notch root is considered as the fati-
gue limit of the A1 aggregate. For each aggregate, ten cycles are
then simulated for this external load. The response of each aggre-
gate, in terms of stabilized axial stress/strain curve is given on
Fig. 8. Differences among the three aggregates are already notice-
able at this very global scale. The average response of A3 is entirely
elastic, whereas A1 and A2 are closer to an accommodated state,
with a clear hysteresis for A2. From this figure, one can notice that
the grain size variations have little impact on the macroscopic
response, but can affect significantly individual grain responses.
To evaluate grain size effects more precisely, the FIPs distributions
at the grain scale must be must be considered.

5. Results and discussion

5.1. Crossland criterion

The distribution of the Crossland criterion parameters for the
three aggregates are given in Fig. 9. The most critical point for
aggregate A1, is shown by a red dot, and is taken as a reference
for comparison. Comparing all three aggregates, the critical value
of the Crossland criterion is found to be roughly the same,

Fig. 6. Theory of critical distances and suggested modification to account for yield
strength gradients.

Fig. 7. Modelled aggregates: bulk is on the left, notch on the right.
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independently of the grain size distributions. The most critical
points are nonetheless obtained for the two aggregates with a
microstructure gradient.

Another important point to take into consideration is the distri-
butions of hydrostatic pressure and octaedric shear stress in the
aggregates. For most grains in A2 and A3 (microstructure gradients),
the distributions of these two parameters are clearly bent towards
their maximum value, indicating that a high number of grains
experience critical loadings with regards to the Crossland criterion.
On the other hand, the opposite phenomenon is observed for A1,
with a very reduced number of grains actually critical with regards
to this fatigue criterion.

Finally, the spatial variation of the scatter obtained on the val-
ues of the Crossland criterion (see the indicated areas on Fig. 9a–
c) yields important information. Given the chosen constitutive
laws, isotropic, this scatter is necessarily related to the onset of
plasticity in some grains. For the homogeneous aggregate A1, plas-
ticity is essentially confined to the notch root, with a purely elastic
behavior for the bulk grains. The opposite situation is observed for

the remaining two aggregates, in which scatter in the criterion val-
ues occurs mostly for the bulk grains. This is a direct consequence
of the yield strength gradient existing between the surface and the
bulk of aggregates A2 and A3.

These considerations illustrate the fact, very well shown in
[10,32] for instance, that a fatigue criterion based purely on stress
is a poor indicator of fatigue severity at the mesoscopic scale. Fol-
lowing these authors, the distribution of cumulated plastic strain
seems to be a more consistent choice.

5.2. Cumulated plastic strain

The distributions of p in Fig. 10 confirm the spatial localizations
of plasticity deduced from the Crossland diagrams, with very clear
differences with regards to the underlying microstructures.

Differences in the plastified volumes are inferred from these
distributions. To distinguish plastified volume and plastified
microstructure fraction (relative number of grains), the corre-
sponding distributions are plotted in Fig. 11.

For A1 (homogeneous grain size), there is no significant differ-
ence in the volumic and microstructural distributions. However,
for the other two aggregates, significant differences in these distri-
butions underline that an average per grain underestimates the
importance of the damage. For the lower values of p

(0:0 6 p 6 0:01), the volumic fractions of A2 are indeed more
important than A1, implying a much more important overall plas-
tified volume (see Table 2). However, the most important value of p
is encountered in A1, for the homogeneous grain size.

In order to assess the distributions of p near the maximum val-
ues for the three cases, the associated repartition functions are
plotted in Fig. 11d. This figure shows a clearly positive impact of

Table 1

Grain size and yield strengths of the three aggregates: mean values and standard
deviations evaluated per grain and per unit of surface.

Aggregate 1 Aggregate 2 Aggregate 3

Number of grains 1974 1385 2118
dav: [lm] 24 21 20
ld [lm] 6.8 21 15
ry;av: [MPa] (per grain) 270 310 310
lry

[MPa] (per grain) 45 110 120

ry;av: [MPa] (per unit of surface) 236 195 219
lry

[MPa] (per unit of surface) 6 50 51

Fig. 8. Stabilized stress strain/cycles at the mesoscopic and macroscopic scales for the three aggregates: (a) A1 , (b) A2 and (c) A3 .
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Fig. 9. Crossland criterion evaluated on each grain on the last loading cycle and corresponding distributions of octahedral shear stress and maximum hydrostatic stress for
the three aggregates: (a) A1 , (b) A2 and (c) A3.

Fig. 10. Cumulated equivalent plastic strain p (average per grain) after 10 cycles for the three aggregates: (a) A1 , (b) A2 and (c) A3.
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the microstructural gradients with regards to plasticity, as the tails
of the repartition functions are shifted to lower strain values for
the gradient aggregates. Table 2 sums up the data regarding cumu-
lated plastic strain. Note that the plastified volume fractions are
expressed over the aggregate volume, and that the specimen
response outside the aggregate is entirely elastic, save for a few
elements lying on the boundary of the aggregates. As a result, plas-
ticity is essentially confined to a very small volume, as expected in
the high cycle fatigue regime.

Regardless of the considered variable, aggregate A3 exhibits the
least critical response. Distinguishing between the remaining two
aggregates is however non-trivial, and would require some exper-
imental insight. The spread of plasticity is more pronounced for
aggregate 2, whereas it is really confined for aggregate 1. However,
the few grains that plastify in the latter case exhibit much more
important values of p than for the second aggregate. These two
aggregates lie in an undetermined situation, both considering
mean values (Table 1) and the local distributions.

5.3. Prediction given by a critical distance approach

To evaluate the average stress at the depth of the critical
distance (point method, a02 ¼ 0:125 mm) in the different aggregates,

the variation of the averaged von Mises stress in the width of the
three aggregates is plotted in Fig. 12 (denoted rvm;meanðAiÞ; i ¼
1 . . .3, black curves). The average yield strength at a given depth
is also represented (denoted ry;meanðAiÞ; i ¼ 1 . . .3, red curves).

For the three aggregates, the perceived macroscopical von
Mises stress is near-identical, independently of the local grain size,
and the stress at the critical distance is 275 MPa (close to the sup-
posed fatigue limit of the homogeneous grain-size aggregate). For
A3, the local yield strength in a0

2 is superior to the applied stress.
In that case, T.C.D. indicates that the applied load on the aggregate
is below its fatigue threshold, which is in agreement with the sta-
bilized stress–strain curves and the plasticity distributions. For the

Fig. 11. Plastic strain distributions as volumic and grain fractions for the three aggregates (a) A1 , (b) A2 , (c) A3 and (d) corresponding repartition functions.

Table 2

Plasticity distribution over the three aggregates: maximum value, average per grain,
average per element of volume and corresponding plastified fractions over the
aggregates.

A1 A2 A3

pmax 0.03213 0.02171 0.01183
pmean;g 0.00124 0.001721 0.00071
pmean;vol 0.00153 0.00325 0.00110
Plastified grains (%) 25 35 17
Plastified volume (%) 29 59 29

Fig. 12. von-Mises stress (black) and local yield stress (red) variations in the width
of the aggregates. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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remaining two aggregates however, the local yield strength is
below the macroscopic load, pointing toward a solicitation beyond
their respective fatigue limit. An interesting point is that for both
A1 and A2, the local yield strengths in a0

2 are very close (approx.
235 MPa), and that it is also difficult to tell them apart from a
micro-damage localization point of view (see Table 2 and Fig. 11).

The interest of the T.C.D. is that it yields the same qualitative
conclusions as the cumulated plastic strain indicator at the smaller
scale of the microstructure, while considering only averaged stres-
ses. The location of the most critical areas in each aggregate can
also be easily deduced from the comparison of local yield strength
and applied stress (Fig. 12). Finally, one can notice that the value of
the critical distance in this configuration is of the same order of
magnitude as a few times the grain size. Given the previous
remarks, this seems to indicate that the whole aggregate response
can be determined by the response of the smaller number of grains
lying in the critical distance area.

5.4. Overview

In the chosen framework, all three FIPs are relevant to access
some information considering the fatigue behavior of the
microstructures. In the case of the Crossland criterion, however,
one should note that the interpretation of the figures would have
been significantly more complicated for more realistic mesoscopic
constitutive laws (see [16,17] in particular, who show the crucial
importance of elastic anisotropy on the obtained FIP scatter). For
this category of constitutive laws, using the mesoscopic variations
of this criterion to assess local plasticity in microstructure gradi-
ents would prove inappropriate.

Generally speaking, the richest information is obtained by the
study of the distributions of plastic strain in the aggregates. For
strong grain size gradients, this indicator has shown that averaging
FIPs over the total number of grains instead of the total volume can
lead to underestimate the actual spread of plasticity in the pres-
ence of varying grain size. On another hand, the theory of critical
distances is an approach that is currently widely used in the engi-
neering world for fatigue lifetime estimation. The predictions of
the modified T.C.D. proposed in this work seem promising in the
case of microstructural gradients. The chosen comparison between
local yield strength and applied stress indicates a competition
mechanism between the stress variations and the grain size varia-
tion. This simplified consideration reveals several aspects con-
firmed at the smaller scales by the other FIPs:

� Plasticity location differ significantly in the presence of
microstructure gradients (localized in the bulk, whereas in the
notch tip for the homogeneous aggregate).

� The most critical values for p are found in A1.
� Aggregate A3 has an optimized grain size variation with respect
to the macroscopic load.

All these three considerations can be drawn from the sole con-
sideration of averaged quantities over the aggregates, which is
interesting from an engineering perspective.

The positive effect of grain size variations of aggregates has also
been underlined, as in the proposed framework, the most severely
loaded areas also had the highest yield strengths. In this case, crack
initiation below the surface is expected to take place as a possible
consequence of these microstructure gradients.

6. Conclusion

This study has addressed the combined effects of stress gradi-
ents and heterogeneous material properties in a notched specimen

in the fatigue regime by studying the distributions of several FIPs
with respect to different microstructures. On the basis of a phe-
nomenological model, several conclusions have been drawn about
the possible consequences of the introduction of a varying grain
size in the width of the specimen. Using traditional stress based
fatigue criteria such as Crossland and Dang Van would prove inap-
propriate in the presence of a grain-size gradient. The systematic
study of plastic strain distributions seems a more promising per-
spective. The encouraging predictions made in the critical distance
framework proposed in this work indicate that non-local global
approaches could remain relevant to tackle the many issues dealt
with in the problem at hand. In the case of a forged railway axle,
using such a global criterion also seems a more viable solution
from an engineering perspective.

The perspectives of this work are both numerical and experi-
mental. Strain gradient plasticity models would give further
insight on the response of microstructure gradients, under homo-
geneous or heterogeneous loads. In this study, residual stress have
not been considered, but could also significantly impact the fatigue
behavior of forged axles. Further experimental campaigns on such
materials would also yield interesting conclusions, especially
regarding the crack initiation location.
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