Jie Wu 
email: jie.wu@univ-lorraine.fr
  
Zhao Xu 
  
  
  
  
  
POWER SUMS OF HECKE EIGENVALUES OF MAASS CUSP FORMS

Keywords: Mathematics Subject Classification. 11F30, 11F66 Fourier coefficients of automorphic forms, Dirichlet series

.

Introduction

Let f be a primitive holomorphic cusp form of even weight k and of level N or a primitive Maass cusp form for the Hecke congruence subgroup Γ 0 (N ) with Laplace eigenvalue 1 4 + t 2 f . Denote by λ f (n) its nth normalized Fourier coefficient such that λ f (1) = 1. The distribution of these coefficients is one of the most important problems in modular form theory. It is known that they are real and satisfy the Hecke relation. In particular, λ f (n) is a real multiplicative function of n. For holomorphic forms, the situation is clearer. According to Deligne [START_REF] Deligne | La conjecture de Weil, I, II[END_REF], the Ramanujan-Petersson conjecture (1.1) |λ f (p)| 2

is true for all primes p N . Thanks to the recent proof of the Sato-Tate conjecture of Barnet-Lamb, Geraghty, Harris & Taylor [START_REF] Barnet-Lamb | A family of Calabi-Yau varieties and potential automorphy. II[END_REF], the sequence {λ f (p)} p primes is equidistributed on [-2, 2] with respect to the Sato-Tate measure. For Maass cusp forms, both conjectures are wide open. In place of (1.1), we have only

(1.2) |λ f (p)| 2p θ
for all primes p. The best known value θ = 7/64 is due to Kim & Sarnak [START_REF] Kim | Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , with appendix 1 by D. Ramakrishnan and appendix 2[END_REF].

The real positive power sum of Hecke's eigenvalues of primitive holomorphic cusp form

(1.3) S f (x; r) := n x |λ f (n)| 2r
was firstly studied by Rankin ([12], [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF]). His method illustrates how to obtain optimally the lower and upper bounds for S f (x; r) if we only know that the associated Dirichlet series

(1.4) F r (s) := n 1 |λ f (n)| 2r n -s ( e s > 1)
is invertible for e s 1 (i.e. holomorphic and nonzero for e s 1 except for s = 1) when r = 1, 2 (The invertibility of these two cases is known by Moreno & Shahidi [START_REF] Moreno | The fourth moment of Ramanujan τ -function[END_REF]). The key technique of this method is to approximate the function t → t r optimally by real polynomials of degree 2 on the interval [0, 4] (t = |λ f (p)| 2 4). Rankin's results are as follows :

(1. [START_REF] Holowinsky | A sieve method for shifted conveolution sums[END_REF] x(log x) δ ∓ r f,r S f (x; r) f,r x(log x) δ ± r (r ∈ R ∓ ) for x x 0 (f, r), where

R -:= (0, 1] ∪ [2, ∞), R + := [1, 2],
and

δ - r := 2 r-1 -1, δ + r := 2 r-1 5 (2 r + 3 2-r ) -1.
The implied constants in (1.5) depend on f and r. Since Kim & Shahidi [START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF] has proved that F 3 (s) and F 4 (s) also are invertible for e s 1, it is natural to approximate the function t → t r optimally by real polynomials of degree 4 on the interval [0, 4]. Based on this idea, Tenenbaum [START_REF] Tenenbaum | Remarques sur les valeurs moyennes de fonctions multiplicatives[END_REF] and Wu [START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF] found betters bounds. Now the Sato-Tate conjecture for primitive holomorphic cusp forms has been proved. With the help of this, it is easy to see that

(1.6) S f (x; r) ∼ C r (f )x(log x) θr (x → ∞),
where C r (f ) is a positive constant depending on f, r, and

θ r := 4 r Γ(r + 1 2 ) √ π Γ(r + 2) -1.
In the case of Maass cusp forms, the same asymptotic as (1.6) is conjectured to hold with the same exponent θ r , since the corresponding symmetric power L-functions are conjectured to the same analytic properties.

Since the conjecture of Ramanujan-Petersson and that of Sato-Tate are both open for Maass cusp forms, it seems interesting to establish analogues of (1.5) for Maass cusp forms. In a private communication with H. Iwaniec, he suggested us considering this problem. The principal difficulty is that we only have (1.2) instead of (1.1). This means that we must approximate the function t → t r by real polynomials in the unbounded interval [0, ∞) instead of [0,[START_REF] Gelbart | A relation between automorphic representations of GL(2) and GL(3)[END_REF]. In [START_REF] Holowinsky | A sieve method for shifted conveolution sums[END_REF], Holowinsky [5, (65)] proposed such an inequality for r = 1/2 :

(1.7)

t 1/2 1 + 1 2 (t -1) - 1 9 (t -1) 2 + 1 36 (t -1) 3
valid for all t 0. Although not stated explicitly, his inequality yields

(1.8) S f (x; 1 2 ) f x(log x) -1/12
. The aim of this paper is to give a general method by developing the ideas in [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF][START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF] and to provide analogues of (1.5) for Maass cusp forms.

Theorem. Let f be a primitive Maass cusp form for Γ 0 (N ). Then we have

x(log x) γ ∓ r f,r S f (x; r) f,r x(log x) γ ± r (r ∈ R ∓ ) (1.9)
for x x 0 (f, r), where

(1.10) R -:= (0, 1] ∪ [2, 3], R + := [1, 2] ∪ [3, 4]
and

γ + r :=        2 r -r -1 if r ∈ (0, 1] ∪ [2, 3], 3 • 2 r-3 + 2 2r-5 -1 if r ∈ (1, 2), 14 • 4 r-4 -1 if r ∈ (3, 4],
(1.11)

γ - r := (3 r-1 -1)/2 if r ∈ (0, 1] ∪ [1, 2] ∪ [3, 4], 5 14 5 r-3 -1 if r ∈ (2, 3). (1.12)
The implied constants in (1.9) depend on f and r. In the lower bound part of (1.9), we need the Ramanujan-Petersson conjecture. The particular case of (1.9) with r = 1/2 and the sign "+" improves Holowinsky's bound (1.8). For comparison, we have It is possible to get unconditional lower bounds for S f (x; r). For example, when r 1 by using the fact that † S f (x; j) f,j x(log x) m j -1 (x → ∞, 1 j 4)

where the m j are given as in (3.3) below, a simple application of the Hölder inequality allows us to deduce S f (x; r) f,r x(log x) r(m j -1)/j (x x 0 (f, r)) for j r j + 1 with j = 1, 2, 3 or r 4 with j = 4. This is better than the lower bound in (1.9) when r is closed to j from its right for j = 1, . . . , 4. Similarly when 0 < r 1, we have

S f (x; r) f,r x(log x) -(1-r)
for x x 0 (f, r), which is weaker than (1.9).

Remark 1. When r > 1 the functions λ ± f,r (n) in the lower bound part given in [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF][START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF] are not necessary positive. This will give a problem in the final proof because Tauberian's theorem requires positive coefficients. Our present work corrects them.
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Rankin's idea and refinement

In this section, by developing the ideas from [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF][START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF], we shall construct optimal multiplicative functions λ

± f,r (n) such that (2.1) 0 λ ∓ f,r (n) |λ f (n)| 2r λ ± f,r (n) (r ∈ R ∓ )
for all integers n 1, and furthermore, their associated Dirichlet series Λ ± f,r (s) (see (3.1) below) in the half-plane e s 1 are controlled by F j (s) for j = 1, 2, 3, 4. Then we can apply the tauberian theorem of Delange [2, Theorem III] (see also [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF]Lemma 4]) to obtain the asymptotic behaviour of the summatory functions of λ ± f,r (n).

Functions of Rankin's type

h r,+ (t; a + ) with r ∈ (0, 1) ∪ (2, 3). Consider the function (2.2) h r,+ (t; a + ) := t r -a + 1 t -a + 2 t 2 -a + 3 t 3 (t 0),
where

a + = a + (r) = (a + 1 , a + 2 , a + 3 ) = (a + 1 (r), a + 2 (r), a + 3 (r)) ∈ R 3 . Let 0 < κ < η < ∞
be two parameters to be chosen later.

Lemma 2.1. Let r ∈ (0, 1) ∪ (2, 3). If the function h r,+ (t; a + ) defined by (2.2) satisfies (2.3) h r,+ (κ; a + ) = h r,+ (κ; a + ) = h r,+ (η; a + ) = 0, then (2.4) 
                 a + 1 (r) = r η -κ η r-1 κ 2 + ηκ r-1 (η -2κ) η -κ -(r -1)ηκ r-1 , a + 2 (r) = r η -κ κ r -κη r-1 η -κ + (r -1)κ r-2 (η + κ) 2 , a + 3 (r) = r 3(η -κ) η r-1 -κ r-1 η -κ -(r -1)κ r-2 .
In particular if we take

‡ (2.5) (κ, η) = (κ + , η + ) = (1, 2), ‡
In Remark 2, we shall explain the reason behind this choice.

then

(2.6)        a + 1 (r) = 2r(2 r-2 -r + 1), a + 2 (r) = -r(2 r -3r + 1)/2, a + 3 (r) = r(2 r-1 -r)/3.
Proof. We write (2.3) in the form

  1 2η 3η 2 1 2κ 3κ 2 0 2 6κ     a + 1 a + 2 a + 3   =   rη r-1 rκ r-1 r(r -1)κ r-2   .
By resolving this system of linear equations, we can get (2.4).

Lemma 2.2. Let r ∈ (0, 1)∪(2, 3) and let a + = (a + 1 (r), a + 2 (r), a + 3 (r)) and h r,+ (t; a + ) be defined as in (2.6) and (2.2), respectively. Then we have

t r h r,+ (η + ; a + ) + a + 1 (r)t + a + 2 (r)t 2 + a + 3 (r)t 3 (t 0). Proof. We have h (3) r,+ (t; a + ) = r(r -1)(r -2)t r-3 -6a + 3 , so h (3)
r,+ (t; a + ) has at most one zero for t > 0 and h (i) r,+ (t; a + ) has at most 4-i zeros for t > 0 (i = 2, 1, 0). Since h r,+ (κ + ; a + ) = h r,+ (η + ; a + ), it follows that h r,+ (ξ + ; a + ) = 0 for some ξ + ∈ (κ + , η + ). Therefore κ + (= 1) and ξ + are the only zeros of h r,+ (t; a + ) in (0, ∞). Now it is easy to check that h r,+ (κ + ; a + ) = 5r 2 -9r + 6 -2 r r 6 > 0 (r ∈ (0, 1) ∪ (2, 3)).

Hence for r ∈ (0, 1) ∪ (2, 3), the function h r,+ (t; a + ) is increasing on [0, η + ] and decreasing on [η + , ∞). Therefore we have h r,+ (t; a + ) h r,+ (η + ; a + ) (t 0), which is equivalent to the required inequality.

Functions of Rankin's type

h r,+ (t; a + ) with r ∈ (1, 2). Consider the func- tion (2.7) h r,+ (t; a + ) := t r -a + 2 t 2 -a + 3 t 3 -a + 4 t 4 (t 0),
where 

a + = a + (r) := (a + 2 , a + 3 , a + 4 ) = (a + 2 (r), a + 3 (r), a + 4 (r)) ∈ R 3 . Let 0 < η < ∞ be a
+ ) = h r,+ (η; a + ) = h r,+ (4; a + ) = 0, then (2.9)                  a + 2 (r) = 4(r -4)η r-1 + 16(3 -r)η r-2 + 4 r-2 η 2 (η -4) 2 , a + 3 (r) = (4 -r)η r-1 + 16(r -2)η r-3 -2 • 4 r-2 η (η -4) 2 , a + 4 (r) = (r -3)η r-2 + 4(2 -r)η r-3 + 4 r-2 (η -4) 2 •
In particular if we take §

(2.10)

η = η + = 2, then (2.11) 
       a + 2 (r) = 4 r-2 + 2 r -r2 r-1 , a + 3 (r) = -4 r-2 -2 r-1 + 3r2 r-3 , a + 4 (r) = 4 r-3 + 2 r-4 -r2 r-4 . Lemma 2.4. Let r ∈ (1, 2) and (a + 2 , a + 3 , a + 4 ) = (a + 2 (r), a + 3 (r), a + 4 (r)
) be given by (2.11). Then we have (2.12) t r a + 2 t 2 + a + 3 t 3 + a + 4 t 4 0 (0 t 4).

Proof. Let r ∈ (1, 2) and let h r,+ (t; a + ) be defined as in (2.7) with the choice of a + = (a + 2 (r), a + 3 (r), a + 4 (r)) given by (2.11). We have

h (4) r,+ (t; a + ) = r(r -1)(r -2)(r -3)t r-4 -24a + 4 , so h (4) 
r,+ (t; a + ) has at most one zero for t > 0 and h

(i)
r,+ (t; a + ) has at most 5 -i zeros for t > 0 (i = 3, 2, 1, 0). Since h r,+ (0; a + ) = h r,+ (η + ; a + ) = h r,+ (4; a + ) = 0, it follows that h r,+ (ξ + ; a + ) = h r,+ (ι + ; a + ) = 0 for some ξ + ∈ (0, η + ) and ι + ∈ (η + , 4). Therefore 0, ξ + , η + and ι + are the only zeros of h r,+ (t; a + ) in (0, ∞).

Since r ∈ (1, 2), it is easy to verify that

h r,+ (η + ; a + ) = r(r -1)2 r-2 -r2 r-1 + 2 r -2 2r-3 0.
Hence h r,+ (t; a + ) takes its minimum values 0 in [0, 4] at 0, η + and 4. Moreover, h r,+ (t; a + ) has local maxima values at ξ + , ι + . This shows that h r,+ (t; a + ) 0 for 0 t 4, which implies the first inequality of (2.12). For r ∈ (1, 2), it is easy to verify that

(a + 3 ) 2 -4a + 2 a + 4 = -8 r-2 + r 2 4 r-3 < 0 and a + 4 > 0.
Thus we have a + 2 + a + 3 t + a + 4 t 2 0 for all t 0, which implies the second inequality of (2.12). § In Remark 2, we shall explain the reason behind choice.

Functions of Rankin's type

h r,-(t; a -) with r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4). Consider the function (2.13) h r,-(t; a -) := t r -a - 1 t -a - 2 t 2 -a - 3 t 3 -a - 4 t 4 (t 0),
where a -= a -(r) = (a - 1 , . . . , a - 4 ) = (a - 1 (r), . . . , a - 4 (r)) ∈ R 4 . Let 0 < κ < η < ∞ be two parameters to be chosen later.

The next two lemmas are essentially [15, Lemma 2.1] and the part with the sign "-" of [START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF]Lemma 2.3]. Here we reproduce these lemmas with some small modifications for the convenience of the reader.

Lemma 2.5. Let r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4). If the function h r,-(t; a -) defined by (2.13) satisfies h r,-(κ; a -) = h r,-(η; a -) = h r,-(κ; a -) = h r,-(η; a -) = 0, then (2.14) a - j (r) := P - j (κ, η) -P - j (η, κ) (κ -η) 3
for 1 j 4, where

P - 1 (κ, η) := {(4 -r)κ + (r -2)η}κ r-1 η 2 , P - 2 (κ, η) := {(2r -8)κ 2 + (1 -r)κη + (1 -r)η 2 }κ r-2 η, P - 3 (κ, η) := {(4 -r)κ 2 + (4 -r)κη + 2(r -1)η 2 }κ r-2 , P - 4 (κ, η) := {(r -3)κ + (1 -r)η}κ r-2 . In particular if we take ¶ (2.15) (κ, η) = (κ -, η -) = (1, 3), then (2.16)            a - 1 (r) = (-r3 r-1 + 5 • 3 r-1 -9r + 9)/4, a - 2 (r) = (7r3 r-2 -34 • 3 r-2 + 15r -6)/4, a - 3 (r) = (-5r3 r-2 + 23 • 3 r-2 -7r + 1)/4, a - 4 (r) = (r3 r-2 -4 • 3 r-2 + r)/4.
Lemma 2.6. Let r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4) and let a -:= (a - 1 , . . . , a - 4 ) be given by (2.16). Then we have

(2.17) t r a - 1 t + a - 2 t 2 + a - 3 t 3 + a - 4 t 4 if r ∈ (0, 1) and t 0 a - 1 t + a - 2 t 2 + a - 3 t 3 + a - 4 t 4 if r ∈ (1, 2) ∪ (3, 4
) and t 0 and (2.18) a - 1 t + a - 2 t 2 + a - 3 t 3 + a - 4 t 4 0 (r ∈ (0, 1), 0 t 4). ¶ In Remark 2, we shall explain the reason behind choice.

Proof. Let r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4) and let h r,-(t; a -) be defined as in (2.13) with a -:= (a - 1 , . . . , a - 4 ) given by (2.16). We have h

(4) r,-(t; a -) = r(r -1)(r -2)(r -3)t r-4 -24a - 4 , so h (4)
r,-(t; a -) has at most one zero for t > 0 and h (i) r,-(t; a -) has at most 5 -i zeros for t > 0 (i = 3, 2, 1, 0). Since h r,-(0; a -) = h r,-(κ -; a -) = h r,-(η -; a -) = 0, it follows that h r,-(ξ -; a -) = h r,-(ι -; a -) = 0 for some ξ -∈ (0, κ -) and ι -∈ (κ -, η -). Therefore ξ -, κ -, ι -and η -are the only zeros of h r,-(t; a -) in (0, ∞). Now

h r,-(κ -; a -) = 3 r-2 -(11/2)3 r-2 + r 2 -r + 3/2, h r,-(η -; a -) = r 2 3 r-2 -r3 r + (43/2) • 3 r-2 -3r -3/2.
From these, it is easy to verify that

h r,-(κ -; a -), h r,-(η -; a -)        > 0 if r ∈ (0, 1), < 0 if r ∈ (1, 2) ∪ (3, 4), = 0 if r = 1, 2, 3, 4.
Hence h r,-(t; a -) takes its minimum (maximum, respectively) values 0 in [0, ∞) at 0, κ -, η -when r ∈ (0, 1) (r ∈ (1, 2) ∪ (3, 4), respectively). Moreover, h r,-(t; a -) has local maxima (minima, respectively) values at ξ -, ι -when r ∈ (0, 1) (r ∈ (1, 2) ∪ (3, 4), respectively). This shows that h r,-(t; a -) 0 if r ∈ (0, 1) and t 0, 0 if r ∈ (1, 2) ∪ (3, 4) and t 0, which is equivalent to (2.17).

Next we prove (2.18). Write

g r,-(t) := a - 1 + a - 2 t + a - 3 t 2 + a - 4 t 3 . Then g r,-(t) := a - 2 + 2a - 3 t + 3a - 4 t 2 . It is easy to check that ∆ := (a - 3 ) 2 -3a - 2 a - 4 
< 0 and a - 4 < 0 for r ∈ (0, 1). Thus g r,-(t) < 0 for all t ∈ R and r ∈ (0, 1). This shows that when r ∈ (0, 1), the function t → g r,-(t) is decreasing on R. Since g r,-(4) = r3 r -3 r + 3r + 1 > 0, we have g r,-(t) > 0 for 0 t 4, which implies immediately (2.18).

2.4.

Functions of Rankin's type h r,-(t; a -) with r ∈ (2, 3). Consider the function

(2.19) h r,+ (t; a -) := t r -a - 3 t 3 -a - 4 t 4 (t 0), where a -= a -(r) := (a - 3 , a - 4 ) = (a - 3 (r), a - 4 (r)) ∈ R 2 . Let 0 < κ < ∞
be a parameter to be chosen later. 

a - 3 (r) = (4 -r)η r-3 , a - 4 (r) = -(3 -r)η r-4 .
In particular if we take

(2.22) η = η -= 14 5 , then (2.23)    a - 3 (r) = (4 -r) 14 5 r-3 , a - 4 (r) = -(3 -r) 14 5 r-4 .
Lemma 2.8. Let r ∈ (2, 3) and (a - 3 , a - 4 ) = (a - 3 (r), a - 4 (r)) be given by (2.23). Then we have (2.24) t r a - 3 t 3 + a - 4 t 4 0 (0 t 4). Proof. Let r ∈ (2, 3) and let h r,-(t; a -) be defined as in (2.19) with the choice of a -= (a - 3 (r), a - 4 (r)) given by (2.23). We have h

-) = r(r -1)(r -2)(r -3)t r-4 -24a - 4 , so h (4) (4) r,-(t; a 
r,-(t; a -) has at most one zero for t > 0 and h (i) r,-(t; a -) has at most 5 -i zeros for t > 0 (i = 3, 2, 1, 0). Since h r,-(0; a -) = h r,-(η -; a -) = 0, it follows that h r,-(ξ -; a -) = 0 for some ξ -∈ (0, η -). Therefore 0 (double), ξ -and η -are the only zeros of h r,-(t; a -) in (0, ∞).

Since r ∈ (2, 3), it is easy to verify that h r,-(η -; a -) = 14 5 r-2 (r 2 -7r + 12) 0.

Hence h r,-(t; a -) takes its minimum values 0 in [0, ∞) at 0 and η -. Moreover, h r,-(t; a -) has a local maximum value at ξ -. This shows that h r,-(t; a -) 0 for t 0, which implies the first inequality of (2.24).

The second is trivial, since a - 4 < 0 and a - 3 + 4a - 4 = 14 5 r-3 3r-2 7 > 0.

2.5. Construction of λ ± f,r (n) and its positivity. We define the multiplicative functions λ + f,r (n) by

(2.25) λ + f,r (p ν ) :=                  0 j 3 a + j (r)λ f (p) 2j if ν = 1 and r ∈ (0, 1) ∪ (2, 3), 2 j 4 a + j (r)λ f (p) 2j if ν = 1 and r ∈ (1, 2), 4 r-4 λ f (p) 8 if ν = 1 and r ∈ (3, 4), 0 if ν 2 and r ∈ (1, 2) ∪ (3, 4), |λ f (p ν )| 2r if ν 2 and r ∈ (0, 1) ∪ (2, 3),
In Remark 2, we shall explain the reason behind this choice.

where for r ∈ (0, 1) ∪ (2, 3), a + (r) := (a + 1 (r), a + 2 (r), a + 3 (r)) is as in (2.6), (2.26) a + 0 (r) := h r,+ (η

+ ; a + ) = η r + -a + 1 (r)η + -a + 2 (r)η 2 + -a + 3 (r)η 3 + (η + = 2);
and for r ∈ (1, 2), a + (r) := (a + 2 (r), a + 3 (r), a + 4 (r)) is as in (2.11) . We define the multiplicative function λ - f,r (n) by 

(2.27) λ - f,r (p ν ) :=            1 j 4 a - j (r)λ f (p) 2j if ν = 1 and r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4), 3 j 4 a - j (r)λ f (p) 2j if ν = 1 and
0 λ ∓ f,r (p ν ) |λ f (p ν )| 2r λ ± f,r (p ν ) (r ∈ R ∓ )
for all primes p and integers ν 1, where we need the Ramanujan-Petersson conjecture in the first two inequalities. Obviously (2.28) implies (2.1).

3. Dirichlet series associated to λ ± f,r (n) Let f be a primitive Maass cusp form for Γ 0 (N ) and let 0 < r 4. For e s > 1, we define

(3.1) Λ ± f,r (s) := n 1 λ ± f,r (n)n -s ,
where λ ± f,r (n) are given as in (2.25) and (2.27). Next we shall study their analytic properties in the half-plane e s 1 by using the higher order symmetric power L-functions L(s, sym m f ) associated to f . (For the definition of L(s, sym m f ), see [START_REF] Iwaniec | Topics in Classical Automorphic Forms[END_REF]Chapter 13]) It is known that the function L(s, sym m f ) is invertible for e s 1 when m = 2, 4, 6, 8, due to Gelbart & Jacquet [START_REF] Gelbart | A relation between automorphic representations of GL(2) and GL(3)[END_REF] for m = 2, Kim & Shahidi ( [START_REF] Kim | Functorial products for GL 2 ×GL 3 and the symmetric cube for GL 2 . With an appendix by Colin J. Bushnell and Guy Henniart[END_REF][START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF]) for m = 4, 6, 8.

The next lemma is a particular case of [START_REF] Lau | Sums of Fourier coefficients of cusp forms[END_REF]Lemma 7.1]. * * For the absolute convergence of H j (s) below, see [START_REF] Lau | Sums of Fourier coefficients of cusp forms[END_REF]Remark 1.7] and its proof at the end of the paper.

Lemma 3.1. Let f be a primitive Maass cusp form for Γ 0 (N ) and let F r (s) be defined by (1.4). For j = 1, 2, 3, 4 and e s > 1, we have For e s > 1, we have

(3.4) Λ ± f,r (s) = ζ(s) γ ± r +1 H ± f,r (s) 
, where

γ + r :=        η r + + 1 j 3 (m j -η j + )a + j (r) -1 if r ∈ (0, 1) ∪ (2, 3), 2 j 4 m j a + j (r) -1 if r ∈ (1, 2), m 4 4 r-4 -1 if r ∈ (3, 4), (3.5) 
γ - r := 1 j 4 m j a - j (r) -1 if r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4), 3 j 4 m j a - j (r) -1 if r ∈ (2, 3), (3.6) 
and H ± f,r (s) is invertible for e s 1. Proof. By definition (2.25), for e s > 1 we can write

Λ + f,r (s) = p 1 + 2 j 4 a + j λ f (p) 2j p -s = 2 j 4 F j (s) a + j H + f,r (s) 
for r ∈ (1, 2), and

Λ + f,r (s) = p 1 + 4 r-4 λ f (p) 8 p -s = F 4 (s) 4 r-4 H + f,r ( 
s) for r ∈ (3, 4), and

Λ + f,r (s) = p 1 + 0 j 3 a + j λ f (p) 2j p -s + ν 2 |λ f (p ν )| 2r p -νs = 0 j 3 F j (s) a + j H + f,r (s) 
for r ∈ (0, 1) ∪ (2, 3), where F 0 (s) = ζ(s) is the Riemann zeta-function and H + f,r (s) is a Dirichlet series absolutely convergent for e s > 15 16 such that H + f,r (s) = 0 for e s = 1. Here the constant 15 16 can be found after some simple calculation with the help of (1.2) and the estimation of Kim & Shahidi [START_REF] Kim | Cuspidality of symmetric powers with applications[END_REF] :

p x λ f (p) 8 p log log x (x 3).
The part with the "-" sign can be proved similarly.

Remark 2. If we regard κ, η as parameters, the γ + r = γ + r (κ, η) with r ∈ (0, 1) ∪ (2, 3) and γ - r = γ - r (κ, η) with r ∈ (0, 1)∪(1, 2)∪ [START_REF] Deligne | La conjecture de Weil, I, II[END_REF][START_REF] Gelbart | A relation between automorphic representations of GL(2) and GL(3)[END_REF] given by (3.5) and (3.6) are functions of these parameters (replacing (2.11) by (2.9) in (3.5) and (2.16) by (2.14) in (3.6), respectively). We choose (κ ± , η ± ) in (0, ∞) 2 such that ∂γ ± r (κ, η) ∂κ = 0 and ∂γ ± r (κ, η) ∂η = 0, which can be done by using a formal calculation via Maple. Their values are given by (2.5) and (2.15), respectively. For these values, we obtain γ + r = 2 r -r -1 (r ∈ (0, 1) ∪ (2, 3)), γ - r = (3 r-1 -1)/2 (r ∈ (0, 1) ∪ (1, 2) ∪ (3, 4)).

The others cases can be optimized similarly.

Proof of the Theorem

In view of Lemma 3.2 and the classical fact on ζ(s), we can write

Λ ± f,r (s) = H ± f,r (1) (s -1) γ ± r +1 + g ± f,r (s) 
in some neighbourhood of s = 1 with e s > 1, where H ± f,r (1) = 0 and g ± f,r (s) is holomorphic at s = 1. Thus we can apply Delange's tauberian theorem [START_REF] Delange | Généralisation du théorème de Ikehara[END_REF] to deduce (4.1) for all x 3. On the last day of the conference, Holowinsky answered that δ = 2 71 = 0.0281 . . . is admissible. His ingredient is the following inequality (5.2) 

n x λ ± f,r (n) ∼ H ± f,r (1) 
t

Lemma 2 . 7 .

 27 Let r ∈ (2, 3). If the function h r,-(t; a -) defined by (2.19) satisfies (2.20) h r,-(η; a -) = h r,-(η; a -) = 0, then (2.21)

( 3 . 2 )Lemma 3 . 2 .

 3232 F j (s) = ζ(s) m j G j (s)H j (s), where ζ(s) is the Riemann ζ-function, (3.3) m 1 := 1, m 2 := 2, m 3 := 5, m 4 := 14, * * Since L(s, sym m f ) with 1 j 8 is invertible for e s 1, the decomposition (3.2) holds for e s > 1 by analytic continuation.andG 1 (s) := L(s, sym 2 f ), G 2 (s) := L(s, sym 2 f ) 3 L(s, sym 4 f ), G 3 (s) := L(s, sym 2 f ) 9 L(s, sym 4 f ) 5 L(s, sym 6 f ), G 4 (s) := L(s, sym 2 f ) 34 L(s, sym 4 f ) 20 L(s, sym 6 f ) 7 L(s, sym 8 f )are invertible for e s 1. Here the function H j (s) admits a Dirichlet series convergent absolutely in e s > σ j with σ 1 = 1 2 , σ 2 = 53 96 , σ 3 = 53 64 , σ 4 = 95 96 and H j (s) = 0 for e s = 1.The next lemma is essentially[START_REF] Wu | Power sums of Hecke eigenvalues and applications[END_REF] Lemma 2.5]. Let f be a primitive Maass cusp form for Γ 0 (N ) and let 0 < r 4.

5 .

 5 x(log x) γ ± r (x → ∞). Now the Theorem follows from (2.1) and (4.1). On a question posed at AIM During the GL(3) workshop at AIM in Palo Alto in 2008, the following question was asked : Let f be a primitive Maass cusp form for Γ 0 (N ). Assuming the Ramanujan-Petersson conjecture, find a positive constant δ such that (5.1) p x |λ f (p 2 )| p (1 -δ) log log x + O f (1)

  The following table illustrates the difference from the conjectured values (1.6).

	r	0	0.5	1	1.5	2	2.5	3 3.5	4
	γ -r	-0.3333 -0.2113 0 0.3660 1 1.9880 4 7.2945 13
	θ r	0	-0.1512 0 0.3581 1 2.1043 4 7.2781 13
	γ + r	0	-0.0857 0 0.3106 1 2.1112 4	6	13

  Obviously our method is also applicable to this problem for establishing lower and upper bounds. For illustration, we can find a better inequality

	valid for 0	t 9. t 1/2 3 + 16 33	√ 3	+	49 √ 121 3 -8	(t -1) -	52 √ 1089 3 -48	(t 2 -3)
	valid for 0 t 9. This implies that (5.1) holds with
				δ =	30 -16 √ 3 33	= 0.0693 . . . .
	Also, we can find an inequality			
		t 1/2		√ 3 3	+	√ 3 2	(t -1) -	√ 3 18	(t 2 -3) 0
	valid for 0 t 9. And this implies that
		p x	|λ f (p 2 )| p	√ 3 3	log log x + O
		1/2 69 71	+	75 142	(t -1) -	4 142	(t 2 -3)

f (1).

† This is an immediate consequence of the invertibility of F 1 (s), F 2 (s), F 3 (s) and F 4 (s) for e s 1.