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Abstract: In the numerical solution of partial differential equations (PDEs), a central question
is the one of building variational formulations that are inf-sup stable not only at the infinite-
dimensional level, but also at the finite-dimensional one. This guarantees that residuals can be
used to tightly bound errors from below and above and is crucial for a posteriori error control
and the development of adaptive strategies. In this framework, the so-called Discontinuous
Petrov–Galerkin (DPG) concept can be viewed as a systematic strategy of contriving variational
formulations which possess these desirable stability properties, see e. g. Broersen et al. [2015].
In this paper, we present a C++ library, Dune-DPG, which serves to implement and solve such
variational formulations. The library is built upon the multi-purpose finite element package
Dune (see Blatt et al. [2016]). One of the main features of Dune-DPG is its flexibility which
is achieved by a highly modular structure. The library can solve in practice some important
classes of PDEs (whose range goes beyond classical second order elliptic problems and includes
e. g. transport dominated problems). As a result, Dune-DPG can also be used to address other
problems like optimal control with the DPG approach.

1 Introduction

General context and motivations: Let Ω be a domain of Rd (d ≥ 1) and U, V two Hilbert
spaces defined over Ω and endowed with norms ‖ · ‖U and ‖ · ‖V, respectively. The normed dual
ofV, denotedV′, is endowed with the norm

‖`‖V′ B sup
v∈V

|`(v)|
‖v‖V

, ∀` ∈ V′.

Let B : U→ V be a boundedly invertible linear operator and let b : U ×V→ R be its associated
continuous bilinear form defined by b(w, v) = (Bw) (v), ∀(w, v) ∈ U×V. We consider the operator
equation

Given f ∈ V′, find u ∈ U s. t.
Bu = f ,

(1)

or, equivalently, the variational problem

Given f ∈ V′, find u ∈ U s. t.
b(u, v) = f (v), ∀v ∈ V.

(2)

Let 0 < γ ≤ 1 be a lower bound for the (infinite-dimensional) inf-sup constant

inf
w∈U

sup
v∈V

b(w, v)
‖w‖U‖v‖V

≥ γ > 0.

Since B is invertible, problem (1) admits a unique solution u ∈ U and for any approximation
ū ∈ U of u,

‖B‖
−1
L(U,V′)‖ f − Bū‖V′ ≤ ‖u − ū‖U ≤ γ−1

‖ f − Bū‖V′ . (3)
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From (3), it follows that the error ‖u − ū‖U is equivalent to the residual ‖ f − Bū‖V′ . The residual
contains known quantities and its estimation on an appropriate finite-dimensional space opens
the door to rigorously founded a posteriori concepts. However, note that the information that
the estimator can give is only meaningful when the variational formulation is well-conditioned,
i. e., for ‖B‖L(U,V′) and γ being as close to one as possible. Assuming that we have this property of
well-conditioning, a crucial point is that this needs to be inherited at the finite-dimensional level.
This issue has been well explored for standard Galekin methods (i. e. when U = V) and allows
to appropriately address most parabolic and second order elliptic problems with a wide variety
of finite element methods. However, much less is known when U , V is required to obtain a
well-posed and well-conditioned problem, like for transport-dominated PDEs. In the latter case,
the main ideas are that

• γ = 1 by choosing a problem-dependent norm forV and

• for a given finite-dimensional trial spaceUH, there exists a corresponding optimal test space
Vopt(UH) such that the discrete inf-sup condition

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ (4)

holds with the same constant γ as the infinite-dimensional one. For more details on this,
see Section 2.1.

Since, in general, even the approximate computation of the optimal test space requires the solution
of global problems, there are essentially two ways to make the computation affordable. One is the
introduction of a mixed formulation which avoids the computation of the optimal test spaces and
only uses them indirectly. This approach was used in Dahmen et al. [2012] to construct a general
adaptive scheme when U = L2(Ω) and to show convergence under certain abstract conditions
(which have to be verified for concrete applications). It was also employed in the context of
reduced-basis construction for transport-dominated problems (see [Dahmen et al., 2014]).

The other way is to make computations affordable by localization so that the optimal test spaces
can be computed by solving local problems. This is the approach taken in the DPG methodology,
initiated and developed mainly by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz
and Gopalakrishnan [2011], Gopalakrishnan and Qiu [2014], Demkowicz and Gopalakrishnan
[2015]). In this method, an approximation of the exact optimal test functions is realized in the
context of a discontinuous Petrov–Galerkin formulation. This yields a so-called near-optimal
test space which is the one that is eventually used in the solution of the discrete problem. The
tightness of a posteriori error estimators has been theoretically justified only for second order
elliptic problems. However, numerical evidence illustrates their good performance also for a
much broader variety of problems. Without being exhaustive, we can find works on transport
equations [Broersen et al., 2015], convection–diffusion [Broersen and Stevenson, 2015], elasticity
and Stokes problems [Carstensen et al., 2014], Maxwell equations [Carstensen et al., 2015] and the
Helmholtz equation [Demkowicz et al., 2012].

The presented finite element library Dune-DPG serves to implement and solve such DPG formu-
lations.

Contributions and layout of the paper: In this paper, we explain the construction of the Dune-
DPG library which is capable of solving various types of PDEs with a DPG variational formulation.
Since the appropriate characteristics of the formulation depend on the problem, the user is given
the freedom to choose the spaces U, V, their finite-dimensional counterparts and the geometry
and mesh refinement. We would like to note that, in fact, Dune-DPG is not the first software tool
for solving PDEs with the DPG method. The Camellia package (see Roberts [2014]) is another
library whose purpose and construction is similar to Dune-DPG. In Dune-DPG, we incorporate,
at the software level, the latest theoretical results on DPG for transport equations, given by
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Broersen et al. [2015], that allow to appropriately address families of transport-based PDEs. They
essentially require the use of subgrids of fixed depth for the finite-dimensional test space. For this
reason, in Dune-DPG, a strong emphasis has been put on providing as much freedom as possible
in the selection of the finite-dimensional test space. This makes Dune an appropriate choice of
foundation for our library since its modular structure gives low-level access to those parts for
which fine control is required while still providing high-level functionality for the rest of the code.

To show how the library works, the paper is organized as follows: in Section 2, we summarize
the mathematical concepts of DPG that are relevant to understand the library. As an example,
we explain at the end of this section how the ideas can be applied to a simple transport problem
following the theory of Broersen et al. [2015]. Then, in Section 3, we present the different building
blocks that form the library. We explain how they interact and how they make use of some
features of the Dune framework upon which our library is built. Finally, in Section 4, we validate
Dune-DPG by giving concrete results related to the solution of a simple transport problem.

2 Theoretical Foundations for DPG

As already brought up in the introduction, the DPG concept was initiated and developed mainly
by L. Demkowicz and J. Gopalakrishnan (see e. g. Demkowicz and Gopalakrishnan [2011],
Gopalakrishnan and Qiu [2014]). Other relevant results concerning theoretical foundations are
Broersen and Stevenson [2014, 2015] and, more recently, Broersen et al. [2015]. The strategy
followed in DPG to contrive stable variational formulations is based on the concept of optimal
test spaces and their practical approximation through the solution of local problems in the context
of a discontinuous Petrov–Galerkin variational formulation. The two following sections explain
more in detail these two fundamental ideas.

2.1 The concepts of optimal and near-optimal test spaces

Assuming that we start from a well-posed and well-conditioned infinite-dimensional variational
formulation (2), we look for a formulation at the finite-dimensional level which inherits these
desirable features. Let H > 0 be a parameter (H will later be associated to the size of a mesh ΩH
of Ω). For any given finite-dimensional trial spaceUH of dimensionN (that depends on H), there
exists a so-called optimal test spaceVopt(UH) of the same dimension. It is called optimal because
the finite-dimensional version of problem (2),

Find uH ∈ UH s. t.

b(uH, v) = f (v), ∀v ∈ Vopt(UH),
(5)

is well posed and

inf
wH∈UH

sup
v∈Vopt(UH)

b(wH, v)
‖wH‖U‖v‖V

≥ γ.

In other words, the discrete inf-sup condition is bounded with the same constant γ that is involved
in the infinite-dimensional problem. This implies that the discrete problem has the same stability
properties as the infinite-dimensional problem. Therefore the residual ‖ f − BuH‖V′ is equivalent
to the actual error ‖u − uH‖U with the same constants exhibited in (3). Since these constants do
not depend on H, ‖ f − BuH‖V′ is a robust error bound that is suitable for adaptivity since we can
decrease H without degrading the constants of equivalence.

Unfortunately, the optimal test space Vopt(UH) is not computable in practice. Indeed, if {ui
H}
N

i=1
spans a basis ofUH, then the set of functions {vi

}
N

i=1 defined through the variational problems,

i ∈ {1, . . . ,N}, 〈vi, v〉V = b(ui
H, v), ∀v ∈ V (6)

spans a basis ofVopt(UH). Since these problems are formulated in the infinite-dimensional space
V, they cannot be computed exactly (in addition, the problems are global). To address this issue,
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problems (6) are V-projected to a finite-dimensional subspace Vh that will be called test-search
space. Therefore, in practice, an approximation {v̄i

}
N

i=1 to the set of functions {vi
}
N

i=1 is computed
by solving for all i ∈ {1, . . . ,N},

〈v̄i, v〉V = b(ui
H, v), ∀v ∈ Vh. (7)

This defines a projected test space Vn.opt(UH,Vh) B span{v̄i
}
N

i=1. For the elliptic case and some
classes of transport problems, it is possible to exhibit test-search spaces Vh (which depend on
the initialUH) such thatVn.opt(UH,Vh) is close enough to the optimalVopt(UH) to allow that the
discrete inf-sup constant

γH B inf
uH∈UH

sup
vh∈Vn.opt(UH ,Vh)

b(uH, vh)
‖uH‖UH‖vh‖Vh

(8)

is bounded away from 0 uniformly in H. For this reason, Vn.opt(UH,Vh) is called a near-optimal
test-space. In the case of transport problems, the recent work of Broersen et al. [2015] shows that
good test-search spacesVh can be found when they are defined over a refinement Ωh of ΩH.

The near-optimal test space Vn.opt(UH,Vh) is the one that is computed in practice in the Dune-
DPG library. The finite-dimensional variational formulation that is eventually solved reads

Find uH ∈ UH s. t.

b(uH, vh) = f (vh), ∀vh ∈ V
n.opt(UH,Vh).

(9)

It can be expressed as a linear system of the form Ax = F, A ∈ RN×N , x ∈ RN , F ∈ RN . It can be
proven that A is by construction symmetric positive definite. The assembly of the system and its
solution in Dune-DPG are explained in Section 3.1.

2.2 The concept of localization

Depending on the choice ofV andVh, the solution of (7) to derive the near-optimal basis functions
of Vn.opt(UH,Vh) might be costly. This is because these N problems are, in general, global in the
whole domain Ω and they cannot be decomposed into local ones. Furthermore, if the resulting
near-optimal basis functions have global support, the solution of the finite-dimensional variational
problem (9) is costly as well because the resulting system matrix A is full.

To prevent this, we need an appropriate variational formulation with a well-chosen test space V
which has a product structure on the coarse grid ΩH,

V B
∏

K∈ΩH

VK, (10)

where supp(v) ⊂ K for any v ∈ VK. In particular, the restriction of theV-scalar product to K ∈ ΩH
has to be a scalar product forVK:

〈·, ·〉V|K = 〈·, ·〉VK

The test-search space Vh will be choosen in such a way, that it has the same product structure as
V,

Vh B
∏

K∈ΩH

Vh,K, Vh,K ⊂ VK.

Therefore, for any 1 ≤ i ≤ N , the near-optimal test function v̄i can be written as

v̄i =
∑

K∈ΩH

v̄i
KχK,
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where χK is the characteristic function of cell K. Additionally, we need a decomposition of the
bilinear form as a sum over mesh cells of ΩH,

b (u, v) =
∑

K∈ΩH

bK (u, v) , ∀v ∈
∏

K∈ΩH

VK. (11)

Then, for every K ∈ ΩH, v̄i
K is the solution of a local problem in K,

〈v̄i
K, v〉VK = bK

(
ui

H, v
)
, ∀v ∈ Vh,K, (12)

where {ui
H}
N

i=1 is a basis ofUH. Therefore, finding v̄i can be decomposed into a sum of problems,
each one of which is localized on a mesh cell K ∈ ΩH. Moreover, if the support of ui

H is included
in some cell K ∈ ΩH, then the support of its corresponding near-optimal test function v̄i is also a
subset of K (and the neighboring cells in some cases). In other words, we would have v̄i = v̄i

KχK

or v̄i =
∑

K′∈ neigh(K) v̄i
K′χK′ . Hence, if the basis functions ui

H ofUH have local support, the resulting
system matrix A is sparse.

2.3 An example: a linear transport equation

Let Ω = (0, 1)2 and β be a vector of R2 with norm one. For any x ∈ ∂Ω, let n(x) be its associated
outer normal vector. Then

Γ− B {x ∈ ∂Ω | β · n(x) < 0} ⊂ ∂Ω (13)

is the inflow-boundary for the given constant transport direction β. Given c ∈ R and a function
f : Ω → R, we consider the problem of finding the solution ϕ : Ω → R to the simple transport
equation

β · ∇ϕ + cϕ = f , in Ω,

ϕ = 0, on Γ−.
(14)

If we apply the DPG approach introduced in Broersen et al. [2015] to solve this problem, we first
need to introduce the following spaces. Denoting ∇H the piecewise gradient operator, let

H(β,ΩH) B {v ∈ L2(Ω) | β · ∇Hv ∈ L2(Ω)},

equipped with squared “broken” norm ‖v‖2H(β,ΩH) = ‖v‖2L2(Ω) + ‖∇H · v‖2L2(Ω). Let also

H0,Γ− (β,Ω) B closH(β,Ω){u ∈ H(β,Ω) ∩ C(Ω̄) | u = 0 on Γ−}

and
H0,Γ− (β, ∂ΩH) B {w|∂ΩH | w ∈ H0,Γ− (β,Ω)}

equipped with quotient norm

‖θ‖H0,Γ− (β,∂ΩH) B inf{‖w‖H(β,Ω) | θ = w|∂ΩH , w ∈ H0,Γ− (β,Ω)}.

The variational formulation reads

ForU B L2(Ω) ×H0,Γ− (β, ∂ΩH) andV B H(β,ΩH),
given f ∈ H(β,ΩH)′, find u B (ϕ, θ) ∈ U such that
b(u, v) = f (v), ∀v ∈ V.

(15)

In this formulation (usually called ultra-weak formulation) the bilinear form b(u, v) is defined by

b(u, v) = b
(
(ϕ, θ), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂ΩH

~vβ�θ ds. (16)
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Note that this variational formulation depends on the mesh ΩH. Also, note the presence of an
additional unknown θ that lives on the skeleton ∂ΩH of the mesh. For smooth solutions, θ agrees
with the traces of ϕ on ∂ΩH (i. e. the union of cell interfaces of ΩH).

For the discretization, we take for some m ∈N,

UH B
( ∏

K∈ΩH

Pm−1(K)
)
×

(
H0,Γ− (β; Ω) ∩

∏
K∈ΩH

Pm(K)
)∣∣∣∣∣∣∣
∂Ωh

, (17)

where Pm(K) is the space of polynomials of degree m. A viable test-search space can be taken
simply as discontinuous piecewise polynomials of slightly higher degree on the finer mesh Ωh of
ΩH, namely

Vh B
∏
K∈Ωh

Pm+1(K). (18)

As a result, the discrete version of (15) reads

Find uH B (ϕH, θH) ∈ UH such that

b̃(uH, vh) = f (vh), ∀vh ∈ V
n.opt(UH,Vh).

(19)

The bilinear form b̃ is slightly different from b. It reads

b̃(u, v) = b
(
(ϕ, θ), v

)
=

∫
Ω

(
−β · ∇vϕ + cvϕ

)
dx +

∫
∂Ωh

~vβ�θ ds, (20)

where the trace integral is over ∂Ωh and not ∂ΩH.

3 An Overview of the Architecture of DUNE-DPG

In this section we describe how the DPG method presented in Section 2 has been implemented
in Dune-DPG. As already brought up, the present library has been built upon the finite element
package Dune. It benefits from the new Dune-Functions module [Engwer et al., 2015] that has
been critical for the construction of a uniform interface for test and trial spaces.

The user of Dune-DPG starts by choosing the appropriate test-search space Vh and trial space
UH for his problem. Then, the bilinear form b(·, ·) and the inner product 〈·, ·〉V are declared via
the classes BilinearForm and InnerProduct (see Section 3.1.2). They both consist of an arbitrary
number of elements of the type IntegralTerm (see Section 3.1.3). Next, the near-optimal test
space is determined automatically with the help of the bilinear form and the inner product via
(12) (see Section 3.2). Finally, the SystemAssembler class handles the automatic assembly of the
linear system Ax = F associated to problem (9) including the right hand side f and boundary
conditions (see Section 3.1.1). For assembling, the matrix A, we use (11) and define the local
matrices AK by

(AK)i, j = bK(ui
H,K, ṽ

j
K) (21)

where {ui
H,K}

NK
i=1 is a basis for the restriction ofUH to K and {ṽ j

K}
NK
j=1 is a basis for the restriction of the

near-optimal test spacesVn.opt(UH,Vh) to K. The BilinearForm class provides the local matrices
AK and the SystemAssembler class constructs the global matrix A out of the local matrices AK.
The classes that we have just mentioned are intertwined and depend on each other. Figure 1 gives
an overview of their interactions. In addition to these classes, the class ErrorTools handles the
computation of a posteriori estimators following the guidelines that are given in Section 3.3.

3.1 Assembling the discrete system for a given PDE

The following subsections describe the SystemAssembler class and all the classes used by it,
except for the OptimalTestBasis class that will be explained in detail in Section 3.2.
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SystemAssembler

OptimalTestBasis

forVn.opt(UH ,Vh)

right hand side
implemented as

tuple of functions

boundary conditions
implemented as

applyDirichletBoundarySolution()

InnerProduct

〈·, ·〉VK

BilinearForm

bK(·, ·)

IntegralTerms
of 〈·, ·〉VK

enriched test space
Vh

trial space
UH

IntegralTerms
of bK(·, ·)

Figure 1: Overview of interactions between the main classes of Dune-DPG.

3.1.1 SystemAssembler The assembly of the discrete system Ax = F derived from the vari-
ational problem is handled by the class SystemAssembler. We start by creating the appropriate
object of the class (that we will name in our case systemAssembler) by calling the method
make_DPG_SystemAssembler. As an input, it needs objects representing our trial space UH, our
near-optimal test spaceVn.opt(UH,Vh) and the bilinear form b. The bilinear form is an object of the
class BilinearFormwhich is explained in Section 3.1.2. As for the spacesUH andVn.opt(UH,Vh),
they are respectively given by a std::tuple composed of global basis functions from Dune-
Functions. The reason to use a tuple is to handle problems involving several unknowns. For
instance, in the ultra-weak formulation introduced for the transport problem in Section 2.3, we
have two unknowns (ϕ, θ) andUH is a product of two spaces.

OncesystemAssemblerhas been defined, a call to the methodassembleSystem(stiffnessMatrix,
rhsVector, rhsFunction) assembles the matrix A and the right-hand side vector F. They are
stored in the variables stiffnessMatrix (of type BCRSMatrix<FieldMatrix<double,1,1>>) and
rhsVector (of type BlockVector<FieldVector<double,1>>). The input parameter rhsFunction
is a std::tuple of std::function<double(Dune::FieldVector<double,dim>)> and represents
the function f from the PDE. Internally, the class SystemAssembler iterates over all mesh
cells K and delegates the work of computing local contributions AK to the system matrix A
to BilinearForm::getLocalMatrix(). Similarily the local right-hand side vectors are computed
by a function getVolumeTerm. For constructing A and F out of the local matrices AK and the
local right-hand side vectors, we make use of the mapping between local and global degrees of
freedom given by the index sets from Dune-Functions.

Once A and F are obtained, the system Ax = F (which is, from the theory, invertible) can be solved
with the user’s favorite direct or iterative scheme. As a summary, the following lines of code
give the main guidelines to solve the transport problem of Section 2.3. The commented lines
starting with “[...]” mean that there is some code to be written in addition. We do not provide it
for the sake of clarity and refer to our source code for an example of exact implementation (see
src/plot_solution.cc).

C++ code
1 // Definition of the trial spaces
2 DuneFEM1 spacePhi;
3 DuneFEM2 spaceTheta;
4 auto solutionSpaces = std::make_tuple(spacePhi , spaceTheta);
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5 // [...] Definition of testSearchSpaces (tuple containing the test search space)
6 // [...] Computation the associated near optimal test space. The space is stored in

the object nearOptTestSpaces (see Section 3.2)
7 // [...] Definition of the object bilinearForm (see Section 3.1.2)
8 // Creation of the object systemAssembler
9 auto systemAssembler

10 = make_DPG_SystemAssembler(nearOptTestSpaces , solutionSpaces , bilinearForm);
11 // Assemble the system Ax=f
12 MatrixType stiffnessMatrix;
13 VectorType rhsVector;
14 //[...] Define rhsFunction as a suitable lambda expression
15 systemAssembler.assembleSystem(stiffnessMatrix , rhsVector , rhsFunction);
16 // [...] Compute ‘‘inverse(matrix)*rhsVector’’

SystemAssembler is also responsible for applying boundary conditions to the system. So far, only
Dirichlet boundary conditions are implemented. To this end, first the degrees of freedom affected
by the boundary condition are marked. Then, the boundary values are set to the corresponding
nodes with the method applyDirichletBoundarySolution. For instance, if we are considering
the transport problem of Section 2.3, we need to set the degrees of freedom of θ, that are in Γ−, to
0. For this, we mark the relevant nodes with the method getInflowBoundaryMask and store the
information in a vector dirichletNodesInflow. Then we call applyDirichletBoundarySolution
as we outline in the following listing. Note that the trial space associated to θ is required. Since,
in our ordering, θ is our second unknown, we get its associated trial space with the command
std::get<1>(solutionSpaces) (since std::tuple starts counting from 0).

C++ code
1 std::vector<bool> dirichletNodesInflow;
2 BoundaryTools boundaryTools = BoundaryTools();
3 boundaryTools.getInflowBoundaryMask(std::get<1>(solutionSpaces),
4 dirichletNodesInflow ,
5 beta); //mark affected degrees of freedom
6 systemAssembler.applyDirichletBoundarySolution<1>
7 (stiffnessMatrix ,
8 rhs,
9 dirichletNodesInflow ,

10 0.);

Finally, in certain types of problems, some degrees of freedom might be ill-posed. For example,
in the transport case, the degrees of freedom corresponding to trial functions on faces aligned
with the flow direction will be weighted with 0 coefficients in the matrix. To address this issue,
SystemAssemblerprovides several methods, of which the simplest isdefineCharacteristicFaces.

3.1.2 BilinearForm and InnerProduct As it follows from (11), the bilinear form b(·, ·) can
be decomposed into local bilinear forms bK(·, ·). The BilinearForm class describes bK and pro-
vides access to the corresponding local matrices AK defined in (21) which are then used by the
SystemAssembler to assemble the global matrix A.

In our case, we view a bilinear form bK as a sum of what we will call elementary integral terms.
By this we mean integrals over K (or ∂K) which are a product of a test search function v ∈ Vh (or
its derivatives) and a trial function u ∈ UH (or its derivatives). Additionally, the product might
also involve some given coefficient c(x). For instance, in our transport equation (cf. (20)),

bK(u, v) = bK((ϕ, θ), v) B
∫

K
cvϕ︸ ︷︷ ︸

Int0

−

∫
K
β · ∇vϕ︸         ︷︷         ︸
Int1

+
∑

Kh∈Ωh,Kh⊂K

∫
∂Kh

vθβ · n

︸                       ︷︷                       ︸
Int2

, (22)

where we have omitted the tilde to ease notation here. Therefore the matrix AK =
∑

i∈I Ai
K can

be computed as a sum of the matrices Ai
K corresponding to the different elementary integrals
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Inti, i ∈ I. Any of the elementary integrals can be expressed via the class IntegralTerm that we
describe in Section 3.1.3.

To create an object bilinearForm of the class BilinearForm, we call make_BilinearForm as
follows.

C++ code
1 auto bilinearForm = make_BilinearForm (testSearchSpaces , solutionSpaces , terms);

The variables testSearchSpaces and solutionSpaces are the ones introduced in Section 3.1.1 to
representVh andUH. The object terms is a tuple of objects of the class IntegralTerm. Once that
the object bilinearForm exists, a call to the method getLocalMatrix computes AK by iterating
over all elementary integral terms and summing up their contributions Ai

K.

Let us now briefly discuss the class InnerProduct. Its aim is to allow the computation of the
inner products associated to the Hilbert spacesU and V. For this, we take advantage of the fact
that an inner product can be seen as a symmetric bilinear form b(u, v) where u and v are both
functions from some space. Hence, we can reuse the structure of BilinearForm for summing over
elementary integral terms to define the class InnerProduct. The construction of an InnerProduct
is thus done with

C++ code
1 auto innerProduct = make_InnerProduct (testSpaces , terms);

3.1.3 IntegralTerm An IntegralTerm represents an elementary integral over the interior of a
cell K, over its faces ∂K or even over faces of a partition of K. It expresses a product between a
term related to a test function v and a term related to a trial function u. Examples are Int0, Int1
and Int2 from (22).

The IntegralTerm is parametrized by two size_t that give the indices of the test and trial spaces
that we want to integrate over. Additionally we specify the type of evaluations used in the integral
with a template parameter of type

C++ code
1 enum class IntegrationType {
2 valueValue ,
3 gradValue ,
4 valueGrad ,
5 gradGrad ,
6 normalVector ,
7 normalSign
8 };

and the domain of integration with a template parameter of type

C++ code
1 enum class DomainOfIntegration {
2 interior ,
3 face
4 };

IfintegrationType is of typeIntegrationType::valueValueorIntegrationType::normalSign,
the function make_IntegralTerm has to be called as follows:

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c);
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wherec is a scalar coefficient in front of the test space product and is of arithmetic type, e. g.double.
The template parameter domainOfIntegration is one of the types from DomainOfIntegration
and the parameterslhsSpaceIndex andrhsSpaceIndex refer, in this particular order, to the indices
of test and trial space in their respective tuples of test and trial spaces. Note that the objects of the
class IntegralTerm are not given the spaces themselves but only some indices referring to them.
This is because the spaces are managed by the class BilinearForm (or InnerProduct) owning the
IntegralTerm.

For other integrationTypes, we also need to specify the flow direction beta by calling

C++ code
1 auto integralTerm
2 = make_IntegralTerm<lhsSpaceIndex , rhsSpaceIndex ,
3 integrationType , domainOfIntegration>(c, beta);

where c is again of arithmetic type and beta is of vector type, e. g. FieldVector<double, dim>.
There has been some rudimentary work to support functions mapping coordinates to scalars or
vectors for c and beta.

The IntegralTerm Int1 from example (22) can be created with

C++ code
1 auto integralTerm
2 = make_IntegralTerm<0, 0, IntegrationType::gradValue ,
3 DomainOfIntegration::interior>(-1., beta);

where the two zeroes are, in this particular order, the indices of test and trial space in their
respective tuples of test and trial spaces.

The class IntegralTerm provides a method getLocalMatrix that computes its contribution Ai
K

to the local matrix AK and that is called by the getLocalMatrix method of BilinearForm or
InnerProduct. To prevent runtime switches over theIntegrationTypeandDomainOfIntegration,
we made them template parameters of IntegralTerm and use Boost Fusion1 to easily handle com-
pile time abstractions.

3.2 Computing the optimal test space

As described in Section 2.2, for a given basis function ui
H of the trial spaceUH, the corresponding

near-optimal test function v̄i =
∑

K∈ΩH
v̄i

KχK can be computed cell-wise. Indeed, one can find v̄i
K

by solving (12) for every K ∈ ΩH. As a consequence, we can decompose the computation of v̄i

into the following steps (we will omit the index i and call these functions uH, v̄ and v̄K in the rest
of this section):

• For a given cell K ∈ ΩH, let {z j
}
M
j=1 be a basis of Vh,K, the test-search space on cell K. In

this basis, we can express v̄K =
∑M

j=1 c j
Kz j and find the vector of coefficients cK = (c j

K)M
j=1 as

follows. Let us denote BK the RM×M matrix with entries (BK) j,l = 〈z j, zl
〉VK for 1 ≤ j, l ≤ M

and gK ∈ RM the vector with entries g j
K = bK(uH, z j), 1 ≤ j ≤ M. Then cK is the solution of

the system
BKcK = gK. (23)

This task is done by the class TestspaceCoefficientMatrix for all basis functions uH with
supp(uH) ∩ K , ∅ (see Section 3.2.1 for more details).

1Fusion is a meta programming library and part of the C++ library collection Boost: http://www.boost.org/

http://www.boost.org/
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• Let Kre f be the reference cell and {z j
re f }

M
j=1 the basis functions of Vh,K on Kre f . Having

computed cK, we define the corresponding local basis function of the near-optimal test
space v̄K,re f :=

∑M
j=1 c j

Kz j
re f . This task is done by the class OptimalTestLocalFiniteElement

(see Section 3.2.2).

• Having computed v̄K,re f and using the degree of freedom-handling from the global ba-
sis of the trial space UH, we build v̄re f =

∑
K∈ΩH

v̄K,re f . This task is done by the class
OptimalTestBasis (see Section 3.2.3). Note that the remaining mapping from v̄re f to v̄ has
to be performed for any global basis. It is done with the help of geometry-information while
assembling the system matrix A and right hand side F.

3.2.1 TestspaceCoefficientMatrix The computation of the coefficients cK is performed by
the class TestspaceCoefficientMatrix which has the bilinear form b(·, ·) and the inner product
〈·, ·〉V as template parameters. It has a method bind(const Entity& e) in which it sets up
and solves equation (23) for all local basis functions uK of the trial space. Since the matrix BK is
symmetric positive definite, the solution is determined via the Cholesky algorithm. The computed
coefficients cK are saved in a matrix which can be accessed by the method coefficientMatrix().

Furthermore, TestspaceCoefficientMatrix offers the possibility to save and reuse already com-
puted coefficients. In case of constant parameters, equation (23) only depends on the geometry
of the cell K, so in case of a uniform grid, the coefficients are the same for all cells and thus need
not be recomputed for every cell. To this end, in the current version, constant parameters are
assumed and the geometry of the last cell is saved and compared to the geometry of the current
cell. If they coincide, computation is skipped and the old coefficients are used. This is also helpful
in cases with more than one or vector-valued test variables (see Section 3.2.3).

3.2.2 OptimalTestLocalFiniteElement The class OptimalTestLocalFiniteElement provides
a local basis {v̄i

K,re f }
N

i=1 consisting of linear combinations v̄i
K,re f =

∑M
j=1(ci

K) jz j
re f of a given local basis

{z j
re f }

M
j=1. Its constructor is called as follows

C++ code
1 OptimalTestLocalFiniteElement< D, R, d, TestSearchSpace>
2 (coefficientMatrix , //matrix containing the coefficients ci

K
3 testSearchSpace , //given local basis {z j

re f }

4 offset=0) //optional , default-value: 0

The template parameters are the type D used for domain coordinates, the type R used for function
values, an integer d specifying the dimension of the reference element and the type of the given
local basis TestSearchSpace. The optional parameter offset is used if the coefficientMatrix
stores coefficients for multiple local bases at the same time. This happens for example for vector-
valued test spaces. In this case, only the rows offset to offset+ size of testSearchSpace of the
coefficientMatrix are taken into account.

3.2.3 OptimalTestBasis The near-optimal test space itself is implemented as a class called
OptimalTestBasis<TestspaceCoefficientMatrix, testIndex>, which is compliant with the
requirements for a global basis in the dune-module Dune-Functions [Engwer et al., 2015]. In the
current implementation, OptimalTestBasis describes only one scalar variable. If there are more
test variables, several OptimalTestBasis are needed. In this case, testIndex specifies the index
of the component of the near-optimal test space which is described.

Like all global bases in Dune-Functions, the OptimalTestBasis provides a LocalIndexSet for
the mapping of local to global degrees of freedom as well as a LocalView to provide access to
all local basis functions whose support has non-trivial intersection with a given element. Since
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every optimal test basis function corresponds to a basis function in the trial spaces, the mapping
of local to global degrees follows directly from the corresponding LocalIndexSets of the trial
spaces. If there is more than one trial space, the global degrees of freedom are ordered by trial
space, that is the first global degrees of freedom are those for the first trial space, the next ones
are for the second trial space and so on. The LocalView of the OptimalTestBasis provides
access to the correct OptimalTestLocalFiniteElement. To this end, in the method bind(const
Element& e), the coefficients for the local near-optimal test basis are computed by binding the
coefficientMatrix to the element e and the corresponding OptimalTestLocalFiniteElement
is constructed.

Note that for test spaces with more than one component, the computation of the coefficients for
the local near-optimal test basis in general cannot be seperated for the different components. That
is why the TestspaceCoefficientMatrix is implented as a seperate class so that several near-
optimal test spaces can share one TestspaceCoefficientMatrix and the computed coefficients
can be reused if the TestspaceCoefficientMatrix is bound several times to the same element
by different near-optimal test bases.

The following lines of code show how to create an OptimalTestBasis consisting of two variables
for a given BilinearForm and InnerProduct.

C++ code
1 TestspaceCoefficientMatrix testspaceCoefficientMatrix(bilinearForm , innerProduct);
2 Functions::OptimalTestBasis<TestspaceCoefficientMatrix , 0>

feBasisTest0(testspaceCoefficientMatrix);
3 Functions::OptimalTestBasis<TestspaceCoefficientMatrix , 1>

feBasisTest1(testspaceCoefficientMatrix);

3.3 A posteriori error estimators

To compute the residual

‖ f − BuH‖V′ = sup
v∈V

‖ f (v) − b(uH, v)‖V
‖v‖V

,

we exploit once again the product structure ofV and use the fact that

‖ f − BuH‖
2
V′ =

∑
K∈ΩH

‖rK(uH, f )‖2V′K =
∑

K∈ΩH

‖RK(uH, f )‖2VK

where rK is the cell-wise residual. RK is the Riesz-lift of rK inVK so it is the solution of〈
RK(uH, f ), v

〉
VK

= b(uH, v) − f (v), ∀v ∈ VK. (24)

Since (24) is an infinite-dimensional problem, we project the Riesz-lift RK to a finite-dimensional
subspace VK of VK, obtaining an approximation RK. This in turn gives the a posteriori error
estimator

‖R(uH, f )‖V B

 ∑
K∈ΩH

‖RK(uH, f )‖2VK


1/2

. (25)

An appropriate choice of the a posteriori search spaceVK depends on the problem and is crucial
to make ‖RK‖VK be good error indicators.

In Dune-DPG, the computation of the a posteriori estimator (25) is handled by the classErrorTools.
The following lines of code compute (25) for the solution u_H of a problem with bilinear form
bilinearForm, inner product innerProduct and right hand side rhsVector.
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C++ code
1 ErrorTools errorTools = ErrorTools();
2 double aposterioriErr =

errorTools.aPosterioriError(bilinearForm ,innerProduct ,u_H,rhsVector);

The object bilinearForm is of the type BilinearForm described above. It has to be created
with an object testSpace associated to the a posteriori search space VH. The same applies for
innerProduct, which is of type InnerProduct.

4 Numerical Example: Implementation of Pure Transport in DUNE-DPG

As a simple numerical example, we solve the transport problem (14) with

c = 0,
β = (cos(π/8), sin(π/8)),
f = 1.

As Figure 2d shows, the exact solution ϕ describes a linear ramp starting at 0 in each point of the
inflow boundary Γ− and increasing with slope 1 along the flow direction β. There is a kink in the
solution starting in the lower left corner of Ω and propagating along β.

For the numerical solution, we let ΩH be a partition of Ω into uniformly shape regular triangles.
Ωh is a refinement of ΩH to some level ` ∈N0 such that h = 2−`H.

With UH and Vh defined as in (17) and (18) with m = 2, we compute uH = (ϕH, θH) ∈ UH by
solving the ultra-weak variational formulation (19). We investigate convergence in H of the error
‖ϕ − ϕH‖L2(Ω). We also evaluate the a posteriori estimator ‖R(uH, f )‖V when the components
RK(uH, f ) are computed with a subspaceVK of polynomials of degree 5, ∀K ∈ ΩH.

Regarding the error ‖ϕ − ϕH‖L2(Ω), as Figure 2a shows, we observe linear convergence as H
decreases. This is to be expected since the polynomial degree to compute ϕH is 1. The figure
also shows that the refinement level ` of the test-search spaceVh has essentially no impact on the
behavior of the error.

Regarding the behavior of the a posteriori estimator ‖R(uH, f )‖V, it is possible to see in Figures 2b
and 2c that the quality of ‖R(uH, f )‖V slightly degrades as H decreases in the sense that, as H
decreases, ‖R(uH, f )‖V represents the error ‖ϕ − ϕH‖L2(Ω) less and less faithfully. An element that
might be playing a role is that ‖RK(uH, f )‖V is not exactly an estimation of ‖ϕ−ϕH‖L2(Ω), but of the
error including also θH, namely ‖u − uH‖U = ‖(ϕ, θ) − (ϕH, θH)‖U.

5 Conclusion And Future Work

In Section 2, we gave a short overview of the DPG method. We then introduced our Dune-
DPG library in Section 3, documenting the internal structure and showing how to use it to solve
a given PDE. Finally, we showed some numerical convergence results computed for a problem
with well-known solution. This allowed us to compare our a posteriori estimators to the real L2
error of our numerical solution. As a next step we want to implement adaptive mesh refinements
that would be driven by our local a posteriori error indicators.

Finally, we want to improve our handling of vector valued problems with one notable example
being first order formulations of convection–diffusion problems. With our current std::tuple of
spaces structure used throughout the code, we have to implement vector valued spaces by adding
the same scalar valued space several times. With the Dune-TypeTree library from Müthing [2015]
we can handle vector valued spaces much more easily, as has already been shown in Dune-
Functions. This will result in mayor changes in our code, but will probably allow us to replace
our dependency on Boost Fusion with more modern C++11 constructs. In the long run, we hope
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Figure 2: L2 error and a posteriori error estimator of numerical solutions

that this would give us increased maintainability and decreased compile times in addition to the
improvements in the usability of vector valued problems. This is aligned with our long-term goal
of making Dune-DPG a flexible building block for constructing DPG solvers for a large range of
different problem types.
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