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Abstract – Fluctuations in a fluid are strongly affected by the presence of a macroscopic gradient
making them long-ranged and enhancing their amplitude. While small-scale fluctuations exhibit
diffusive lifetimes, moderate-scale fluctuations live shorter because of gravity. In this letter we
explore fluctuations of even larger size, comparable to the extent of the system in the direction of
the gradient, and find experimental evidence of a dramatic slowing-down of their dynamics. We
recover diffusive behavior for these strongly confined fluctuations, but with a diffusion coefficient
that depends on the solutal Rayleigh number. Results from dynamic shadowgraph experiments
are complemented by theoretical calculations and numerical simulations based on fluctuating
hydrodynamics, and excellent agreement is found. Hence, the study of the dynamics of non-
equilibrium fluctuations allows to probe and measure the competition of physical processes such
as diffusion, buoyancy and confinement; i.e. the ingredients included in the Rayleigh number,
which is the control parameter of our system.

The physics of systems out of thermodynamic equi-1

librium is instrumental in several research areas such2

as physics of fluids, soft matter, astrophysics, statistical3

physics, biology, metallurgy and many others [1,2]. As an4

example, we consider in this letter a binary liquid mix-5

ture subjected to a steady temperature gradient parallel6

to gravity, i.e. in the stable Rayleigh-Bénard configura-7

tion. Two component liquids experience separation in the8

presence of temperature differences due to different affini-9

ties of molecules to ’heat’ [3]. A phenomenon referred to10

as thermodiffusion or Soret effect that will induce a steady11

concentration gradient in the system. This so-called solu-12

tal Rayleigh-Bénard setting, allows for a very refined con-13

trol of density profiles within the system and the ability14

to investigate intimate properties of fluids like molecular15

interactions [4–6].16

Any full description of non-equilibrium systems must in-
clude spontaneous fluctuations, whose nature is quite dif-
ferent from fluctuations around equilibrium states mainly

(a)E-mail: fabrizio.croccolo@univ-pau.fr

due to the former long-ranged nature [7–9], not restricted
to the proximity of critical points [10]. Non-equilibrium
fluctuations are thus a basic problem in understanding
transport phenomena like mass diffusion [11], as well as
fluctuation-induced, or Casimir, forces [12–14]. In our
non-equilibrium problem, the coupling between sponta-
neous velocity fluctuations and the macroscopic gradient
results in giant non-equilibrium concentration fluctuations
(c-NEF) in the quiescent state [9, 15]. Gravity quenches
the intensity (statics) of fluctuations with length scales
larger than a characteristic (horizontal) size 2π/q?s related
to the dimensionless solutal Rayleigh number Ras of the
system [15,16]:

Ras = −βs~g ·
~∇c

νD
L4; | Ras |=(q?sL)4, (1)

where βs = ρ−1(∂ρ/∂c) is the solutal expansion coefficient, 17

ρ the fluid density, ~g the gravity acceleration, c the con- 18

centration (mass fraction) of the denser component of the 19

fluid, ~∇c the concentration gradient, D the mass diffusion 20
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Fig. 1: Experimental cell: two sapphire windows are kept at
different temperatures T0 + ∆T/2 (the top, red one) and T0 −
∆T/2 (the bottom, blue one) while the sample fluid (colored
pattern) is contained by an O-ring (black circles) at a thickness
L precisely defined by three plastic spacers (gray rectangles).

coefficient, ν the kinematic viscosity, and q?s a characteris-21

tic solutal wave vector. This number is the equivalent for22

the concentration of the Rayleigh number for the temper-23

ature and describes the competition of opposite forces like24

buoyancy, diffusion and boundaries. It is also known that,25

in addition to gravity, the presence of boundaries further26

suppress the intensity of c-NEFs with length scales larger27

than the confinement length L in the direction of the gra-28

dient [9, 17].29

The role played by the different physical mechanisms30

(diffusion, buoyancy, confinement) on the dynamics of31

the fluctuations has received comparatively little atten-32

tion. It is known that gravity accelerates the dynam-33

ics of c-NEFs with (horizontal) length scales larger than34

2π/q?s [18, 19]. However, this means that fluctuations of35

a larger size decay faster, which is a rather non-intuitive36

behavior [20] and cannot be extrapolated to zero wave37

number. To investigate these open issues further, we have38

developed a new shadowgraph machine, with a state-of-39

the-art CCD detector able to measure at wave vectors40

down to qmin = 8.9 cm−1. Hence, we explored an en-41

tire new range of wave numbers, smaller than ever before,42

and discovered a dramatic slowing-down in the dynamics43

of c-NEFs. We interpret this slowing-down as caused by44

confinement, whose role on the dynamics of c-NEFs has45

not been investigated so far. Our work demonstrates that46

the study of the dynamics, rather than the intensity, of47

non-equilibrium fluctuations gives deep insights into the48

competition of physical processes such as diffusion, buoy-49

ancy, and confinement.50

Typically, the dynamics of fluctuations is character-
ized in terms of an Intermediate Scattering Function (ISF
or, equivalently, a normalized time correlation function)
f(q, t), with f(q, 0) = 1. This function describes how
a spontaneous fluctuation of a thermodynamic variable
decays in time. In first approximation, the ISF can be
modeled by a single exponential, with decay time τ(q)
depending on the fluctuations’ wave number q, or length
scale in the horizontal directions (perpendicular to gravity
and gradient). Available theories accounting for the simul-

taneous presence of diffusion (d) and gravity (g) [18, 19],
but not for confinement, predict for a stable configuration
(Ras < 0):

τ(q̃)

τs

∣∣∣∣
d+g

= τ̃(q̃)|d+g =
1

q̃2

(
1− Ras

q̃4

) , (2)

where the wave vector is expressed in dimensionless form 51

q̃ = qL, and τs = L2/D is the typical solutal time it takes 52

diffusion to traverse the thickness of the sample. Equa- 53

tion (2) implies different behaviors for the decay times of 54

small-scale and large-scale fluctuations, namely, τ̃(q̃)|d = 55

1/q̃2 for q̃ � q̃?s , and τ̃(q̃)|g = −q̃2/Ras for q̃ � q̃?s . 56

Hence, small length-scale fluctuations decay diffusively 57

and evolve slower the larger the scale. Buoyancy effects, 58

for wave numbers smaller than q?s , lead to a non-diffusive 59

decay of fluctuations [20]. Separating these two regimes, 60

the decay time of c-NEFs exhibits a maximum at q̃?s , as 61

clearly shown by Eq. (2). The existence of this maximum, 62

which identifies the most persistent fluctuation in the sys- 63

tem if confinement is neglected, has been experimentally 64

demonstrated in a number of experiments on c-NEFs both 65

with a pure concentration gradient (isothermal mass dif- 66

fusion) [20, 21] or with a concentration gradient induced 67

by the Soret effect [11, 22, 23]. Our purpose here is to go 68

beyond these previous investigations, into a q-range where 69

confinement effects are to be expected. 70

To observe c-NEFs we used the thermal-gradient cell 71

sketched in Fig. 1: Two sapphire windows kept at fixed 72

vertical distance contain the fluid sample while being ther- 73

mally controlled by two Peltier elements with a central 74

hole. The entire system allows a quasi-mono-chromatic 75

parallel light beam pass through in the direction of the 76

temperature gradient. Further details of the thermal gra- 77

dient cell can be found elsewhere [11, 24]. A stabilizing 78

temperature difference of ∆T = 20 K (with an average 79

temperature of T0 =298 K) is applied to a horizontal layer 80

of tetralin and n-dodecane at 50% weight fraction. The 81

sample thickness can be varied by using different plas- 82

tic spacers and sealing O-rings, and for this work three 83

thicknesses L = 0.7, 1.3 and 5.0 mm (and a constant lat- 84

eral extent of R = 13.0 mm) were used. At the steady 85

state of the Soret separation, the solutal Rayleigh num- 86

bers are: Ras = −4× 104, −2× 105 and −1× 107, respec- 87

tively [25,26]. 88

To apply a temperature difference by heating the fluid 89

mixture from above results in a linear temperature profile 90

across the sample in a thermal time τT = L2/κ, where κ 91

is the fluid thermal diffusivity. Due to the smaller value 92

of the mass diffusion coefficient, a nearly linear concen- 93

tration profile is generated by the Soret effect [1, 27] in a 94

much larger solutal diffusion time τs = L2/D. Since our 95

mixture has a positive separation ratio, for negative Ras 96

both the temperature and the concentration profile result 97

in a stabilizing density profile [28]. 98

Shadowgraphy [29–32] allows recording images whose
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Fig. 2: (a) Shadowgraph image I(x, t); (b) difference of
normalized images ∆im(x,∆t); (c) power spectrum of (b)
| ∆im(q,∆t) |2; (d) structure function C(q,∆t) for three dif-
ferent time delays, vertical lines stand for wave vectors used
in (e); (e) structure function C(q,∆t) for three different wave
vectors, vertical lines stand for delay times used in (d); (f) ISFs
for three different wave vectors f(q,∆t): symbols are for ex-
perimental data while lines show single-exponential modeling.
All data are for Ras = −2× 105.

intensities I(x, t) contain a mapping of the sample
refractive-index fluctuations, over space and time, aver-
aged along the direction of the gradient. An example of
one of these images is shown in Fig. 2(a). These intensity
patterns are generated at the sensor plane by the hetero-
dyne superposition of the light scattered by the sample
refractive-index fluctuations and the much more intense
transmitted beam (’local oscillator’). Quantitative image
analysis is performed by the Differential Dynamic Algo-
rithm [11,20,21,33]. One first computes differences of nor-
malized images ∆im(x,∆t) as shown in Fig. 2(b). These
difference images are then 2D-space-Fourier transformed
in silico, Fig. 2(c), to separate the contribution of light
scattered at different wave vectors. This procedure pro-
vides results similar to conventional light scattering, but
with a shadowgraph one can access much smaller wave
vectors. Quantitative image analysis yields the so-called
structure function:

C(q,∆t) = 〈| ∆im(q,∆t) |2〉t,|q|=q =

= 〈| i(q, t)− i(q, t+ ∆t) |2〉t,|q|=q, (3)

with i(q, t) = F [I(x, t)/〈I(x, t)〉x] the 2D-Fourier trans-99

form of a normalized image I(x, t) and ∆t the time delay100

between the pair of analyzed images. Examples of exper-101

imental C(q,∆t) are shown in Fig. 2(d-e).102

The physical optics theory of shadowgraphy relates the
structure function to the ISF as [11,20,21,33]:

C(q,∆t) = 2A{T (q)S(q) | 1− f(q,∆t) | +B(q)}, (4)

where T (q) is the optical transfer function of the instru- 103

ment (a oscillating function for a shadowgraph, see [30, 104

31]), S(q) the static structure factor of c-NEFs, A an in- 105

tensity pre-factor, and B(q) a background including all 106

the phenomena with time-correlation functions decaying 107

faster than the CCD frame rate, such as contributions 108

due to shot noise and temperature fluctuations. Hence, 109

experimental ISF f(q, t) can be evaluated via Eqs. (3)-(4) 110

by fitting the structure function for each wave vector as a 111

function of time, and providing a simple exponential de- 112

cay form for the ISF. By this procedure one gets the three 113

quantities TS, B and the time decay τ for each wave vec- 114

tor. Results of the ISF for three different wave vectors are 115

shown in Fig. 2(f). 116

Essentially, for all the wave vectors accessible in the ex- 117

periments the ISF can be modeled by a single exponential 118

function. For direct comparison with theory and simula- 119

tions we extract effective experimental decay times as the 120

time needed to f(q, t) to decay to 1/e. Figure 3 presents 121

these experimental decay times for the three Ras investi- 122

gated, the raw data in panel (a), and in dimensionless form 123

in panel (b). Note that in Fig. 3(b) for almost all wave 124

vectors smaller than q̃?s = 4
√
−Ras, the effective decay time 125

departs from the theoretical description of Eq. (2), shown 126

as a dashed line. As the wave vector decreases the decay 127

time presents a minimum for a dimensionless wave vector 128

q̃b ∼= 5, while for smaller wave vectors the decay time re- 129

covers a diffusive behavior τ̃ ∝ q̃−2. These conclusions are 130

clear in Fig. 3 except for the larger Ras = −1× 107, with 131

no experimental points available at low enough q̃. 132

To interpret these experimental findings and under-
stand the physical origin of the discovered slowing-down
of large-scale c-NEFs, we use a Fluctuating Hydrodynam-
ics (FHD) model [17] that incorporates gravity and con-
finement. FHD, based on original ideas by Onsager and
Landau, supplements dissipative fluxes with random con-
tributions so as to derive in a consistent way a fluctuating
or stochastic version of any thermodynamic or hydrody-
namic problem [9]. Previous FHD investigations of our
problem [17] focused on the intensity (statics) of the c-
NEFs. Here we investigate the dynamics and were able
to express the theoretical dynamic structure factor as a
series of exponentials:

S(q)f(q, t) =

∞∑
N=1

AN (q) exp

[
− t

τN (q)

]
, (5)

see [34] for further details. The decay times in Eq. (5) are
the inverse of the eigenvalues ΓN (q) = 1/τN (q) discussed
in Ref. [17]. The amplitudes AN are analytically related
to ΓN and q. The static structure factor discussed in [17]
is then S(q) =

∑
AN (q). In general, the ΓN can only
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Fig. 3: Effective decay times: (a) Log-log plot of the experi-
mental decay times τ as a function of wave vector q for different
Rayleigh numbers. (b) Same in terms of dimensionless vari-
ables. In panel (b), filled red symbols are experimental data,
open blue are for calculations based on the FHD model, and
open-crossed black are from numerical simulations. Dashed
curves represent Eq. (2) for q̃ > q̃b, which accounts for gravity
and diffusion only. Dotted lines represent Eq. (6) for q̃ < q̃b,
which accounts for confinement.

be computed numerically, however, in the limit q → 0, a
full analytical investigation is possible by means of power
expansions in q, and a clear hierarchy of well-separated
ΓN can be identified [17]. In that limit, the first am-
plitude in Eq. (5) dominates, and f(q → 0, t) becomes
a single-exponential in practice, with decay time due to
confinement (c):

τ̃(q̃ → 0)|c =
1

q̃2
(

1− Ras
Ras,c

) =
1

q̃2
(

1− Ras
720

) , (6)

where Ras,c = 720 is the critical solutal Rayleigh number133

at which the convective instability appears in this sys-134

tem [28]. Predictions from the asymptotic Eq. (6) are135

shown in Fig. 3(b) as dotted lines. Hence, the theory136

shows a crossover from Eq. (2) (not-including confine-137

ment) at large and intermediate q, to the confinement138

behaviour of Eq. (6) at small q, precisely the kind of be-139

haviour experimentally observed. We estimate the wave140

number qb corresponding to the minimum decay time by141

equating Eq. (2) and (6). This gives q̃b = 4
√
Ras,c =142

4
√

720 ∼= 5.2 independent of Ras, in further agreement with 143

the experimental observations in Fig. 3(b). 144

For arbitrary values of q, the decay times τN (q) and 145

corresponding amplitudes can only be evaluated numer- 146

ically. We have performed a numerical investigation for 147

the experimental Ras [34], yielding similar results in the 148

three cases. For very large q̃ & 50, all decay times col- 149

lapse to the bulk value, τ̃N ' q̃−2, and the ISF is approx- 150

imately a single exponential. As already commented, for 151

very small q̃ . 0.3 the first mode dominates in amplitude 152

and a single-exponential decay is again recovered, with de- 153

cay time given by Eq. (6). For intermediate 0.6 . q̃ . 30, 154

the second mode leads in amplitude but having a smaller 155

decay time means that the two lower modes play a sig- 156

nificant role and the theoretical ISF shows signatures of 157

a double exponential decay. Indeed, data from simula- 158

tions show such signatures in the predicted wave-vector 159

range. However such signatures were not detected in the 160

experiments due to limited range, frame acquisition rate, 161

and insufficient signal to noise ratio. In Fig. 2(e) we re- 162

ported three examples of experimental ISFs for different 163

wave vectors, with single-exponential modeling. 164

Regardless of the multiple exponential character, a sin- 165

gle effective theoretical decay time τeff(q) can be defined 166

by f(q, τeff) = 1/e. In Fig. 3(b) we show results for the- 167

oretical τeff(q), computed via Eq. (5) from the numerical 168

decay rates and amplitudes as open blue symbols. All the 169

features seen in the experimental data are well reproduced 170

by the theory. Noticeably the slowing-down observed for 171

small wave numbers is clearly related to confinement, since 172

this is the only ingredient added to the ’bulk’ theory of 173

Eq. (2). 174

The FHD theory [17] assumes that viscous dissipation 175

dominates, and neglects the effect of fluid inertia; this is 176

justified by the fact that in all liquids momentum diffu- 177

sion is much faster than mass diffusion, i.e., the Schmidt 178

number Sc = ν/D is very large. While neglecting inertial 179

effects is a good approximation at most wavenumbers of 180

interest, it is known that, depending on Ras, it fails at 181

sufficiently small wavenumbers due to the appearance of 182

propagative modes [35] (closely related to gravity waves) 183

driven by buoyancy. In order to confirm that the observed 184

slowing down is due to confinement and not to inertia we 185

have performed FHD numerical simulations [36, 37] that 186

account for inertial effects and confinement, see [34] for 187

further details. Data points from a numerical simulation 188

with fluid parameters matching the experimental ones are 189

also displayed in Fig. 3 as open-crossed black symbols. 190

The excellent agreement of this dataset with experimen- 191

tal and theoretical results, shows that inertia effects are 192

not relevant in our experiments. We note, however, that 193

for thicknesses L & 5 mm the simulations do show oscilla- 194

tory time-correlation functions (propagative modes) at the 195

smallest wavenumbers [37], but this range is not accessible 196

in the experiments reported here. 197

We conclude that, although confinement has a moder- 198

ate damping impact on the intensities of large-scale non- 199
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equilibrium concentration fluctuations [17], in the presence200

of gravity, it strongly affects their dynamics. Our current201

findings are in contrast to the case of diffusion in micro-202

gravity where the coupling to velocity fluctuations greatly203

enhances the intensity of the c-NEFs but does not alter204

their Fickian diffusive dynamics [38].205

Although the focus of this letter is on the dynamics and206

we leave for future publications a full discussion of the stat-207

ics, we note that the minimum q̃b in τeff corresponds to a208

minimum in the intensity of fluctuations S(q). Hence, the209

current results might be interpreted as a kind of de Gennes210

narrowing [39]. In analogy to diffusion in colloids, where a211

competition between interparticle interactions and hydro-212

dynamic effects exists, here we have competition between213

gravity and confinement.214

Interestingly, we find that the dimensionless wave num-215

ber where confinement coexists with gravity is related to216

the critical solutal Rayleigh number Ras,c = 720 where217

the convective instability first appears [28]. This is a sig-218

nature of the Onsager regression hypothesis stating that219

the dynamics of the fluctuations contains all of the signa-220

tures seen in the deterministic dynamics, which is known221

to be controlled by the Rayleigh number.222
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Phys. Rev. Lett. 110, 235902 (2013). 259

[13] A. Najafi, and R. Golestanian, Europhys. Lett. 68, 776 260

(2004). 261

[14] A. Hanke, PloS one 8, e53228 (2013). 262

[15] A. Vailati and M. Giglio, Nature 390, 262 (1997). 263

[16] A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). 264
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