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Let π be an irreducible unitary cuspidal representation for GL m (A Q ), and let L(s, π) be the automorphic L-function attached to π, which has a Dirichlet series expression in the half-plane e s > 1. When π is self-contragredient, all the coefficients in the Dirichlet series expression are real. In this paper we give non-trivial lower bounds for the number of positive and negative coefficients, respectively.

Introduction

Let m

2 be an integer and let π = ⊗π p be an irreducible unitary cuspidal representation of GL m (A Q ). The corresponding global L-function is defined by the product of local factors .

The complete L-function Φ(s, π) is defined by

(1.3) Φ(s, π) = L ∞ (s, π ∞ )L(s, π),
where

(1.4) L ∞ (s, π ∞ ) := π -ms/2 1 j m Γ s -µ π (j) 2
is the Archimedean local factor. Here {α π (p, j)} m j=1 ⊂ C and {µ π (j)} m j=1 ⊂ C are local parameters associated with π p and π ∞ , respectively, according to the Langlands correspondence. Good bounds for these local parameters are of fundamental importance for the study of automorphic L-functions. The best known record is due to Kim & Sarnak [START_REF] Kim | Refined estimates towards the Ramanujan and Selberg conjectures[END_REF] (2 m 4) and Luo, Rudnick & Sarnak [START_REF] Luo | On the generalized Ramanujan conjecture for GL(n)[END_REF] (m 5) : The Generalized Ramanujan Conjecture (GRC in brief) asserts that the inequalities in (1.5) hold for all primes p and 1 j m with (1.7) θ m = 0.

Jacquet & Shalika [START_REF] Jacquet | On Euler products and the classification of automorphic representations I[END_REF] showed that the Euler product for L(s, π) in (1.1) converges absolutely for e s > 1. Thus, in this half-plane, we may write

(1.8) L(s, π) = ∞ n=1 λ π (n) n s ,
where (1.9) λ π (n) :=

p ν n ν 1 +•••+νm=ν 1 j m α π (p, j) ν j .
In particular if m = 2 and π is corresponding to cusp form, then λ π (n) appears as a Fourier coefficient in the Fourier expansion of π. These coefficients are mysterious objects and an interesting question is how, for a fixed representation, the coefficients λ π (n) are distributed. In the case of m = 2, there are many results from which the distribution appears to be highly random; for example, the recent proof of the Sate-Tate conjecture on the Fourier coefficients of holomorphic Hecke eigenforms of Barnet-Lamb, Geraghty, Harris & Taylor [START_REF] Barnet-Lamb | A family of Calabi-Yau varieties and potential automorphy. II[END_REF]. We refer to [START_REF] Lau | Sign changes of the coefficients of automorphic L-functions, Number Theory: Arithmetic In Shangri-La[END_REF] for a more complete survey.

It seems natural and interesting to investigate the case of m 3. By a classical method of Landau [START_REF] Landau | Über die Anazahl der Gitterpunkte in gewissen Bereichen (Part II)[END_REF], Qu [START_REF] Qu | Linnik-type problems for automorphic L-functions[END_REF]Theorem 1.1] proved that if π is an irreducible unitary cuspidal representation for GL m (A Q ) such that λ π (n) is real for all n 1 (for example, if π is self-contragredient), then there must be infinitely many sign changes in the sequence {λ π (n)} ∞ n=1 , i.e., there are infinitely many n such that λ π (n) > 0, and there are infinitely many n such that λ π (n) < 0. In this paper, we would like to give a quantitative version of this result. The key point of our method is to establish an asymptotic formula for the weighted second moment of λ π (n) defined as

(1.10) S π,κ (x) := n x |λ π (n)| 2 d κ (n) ,
where κ > 0 is a constant, ζ(s) is the Riemann zeta-function and d κ (n) is the Piltz function defined by the relation 

(1.11) ζ(s) κ = n 1 d κ (n)n -s ( e s > 1
- L L (s, π) = ∞ n=1 Λ(n)a π (n) n s ,
where Λ(n) is the von Mangoldt function defined by

(1.12) Λ(n) := log p if n = p ν 0 otherwise and (1.13) a π (n) := α π (p, 1) ν + • • • + α π (p, m) ν if n = p ν 0 otherwise
for all primes p and integers ν 1. Hypothesis H of Rudnick-Sarnak states the following.

Hypothesis H. For any fixed ν 2, (1.14)

p |a π (p ν )| 2 (log p) 2 p ν < ∞.
Remark 1. (i) Clearly Hypothesis H is a simple consequence of GRC.

(ii) For m = 2, 3, Hypothesis H follows from the Rankin-Selberg theory [START_REF] Rudnick | Zeros of principal L-functions and random matrix theory[END_REF]. The GL 4 (A Q ) case was proved by Kim [START_REF] Kim | A note on Fourier coefficients of cusp forms on GL n[END_REF] based on his proof of the (weak) functoriality of the exterior square ∧ 2 π from a cuspidal representation π of GL 4 (A Q ) (cf. [START_REF] Kim | Functoriality for the exterior square of GL 4 and symmetric fourth of GL 2 , With appendix 1 by D. Ramakrishnan[END_REF]). Beyond GL 4 (A Q ), the only known special cases for Hypothesis H are as follows :

• the symmetric fourth power sym 4 π of a cuspidal representation π of GL 2 (A Q ),
which is an automorphic representation of GL 5 (A Q ) (see [START_REF] Kim | Functoriality for the exterior square of GL 4 and symmetric fourth of GL 2 , With appendix 1 by D. Ramakrishnan[END_REF][START_REF] Kim | A note on Fourier coefficients of cusp forms on GL n[END_REF]);

• the automorphic representation Π of GL 6 (A Q ) such that Π p ∼ = ∧ 2 π p if p ∈ T ,
where π is a cuspidal representation of GL 4 (A Q ) and T is the set of places consisting of p = 2, 3 and those p at which π p is supercuspidal [20, Theorem 1]; [START_REF] Wu | Hypothesis H and the prime number theorem for automorphic representations[END_REF]Theorem 2]).

• the automorphic representation π 1 π 2 of GL 6 (A Q ), where π 1 (resp. π 2 ) is a cuspidal representation of GL 2 (A Q ) (resp. GL 3 (A Q )) (cf.
(iii) From the proof of Theorem 1, we can see that the result of this theorem in the case of m 5 also holds under a slightly weaker assumption that for any fixed integer ν 2, (1.15)

p |a π (p ν )| 2 log p p ν < ∞. Now we write (1.16) N ± π (x) := n x λπ(n)≷ 0 1,
and we are interested in their asymptotic behaviour as x → ∞. It seems reasonable to conjecture (1.17) N ± π (x) π x for x x 0 (π), where x 0 (π) is a constant depending on π.

The principal aim of this paper is to prove the following result.

Theorem 1. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ), and let θ m be as in (1.6). Then we have N ± π (x) π x 1-2θm (log x) 2/m-2 (x x 0 (π)) unconditionally for 2 m 4 and under Hypothesis H for m 5, where the constant x 0 (π) and the implied constant depend only on π.

Corollary 1. Let sym 4 π, Π and π 1 π 2 be the automorphic representations of GL 5 (A Q ) and GL 6 (A Q ) mentionned in Remark 1 (ii), respectively. Then we have

N ± sym 4 π (x)
x 2/13 (log x) -8/5

and

N ± Π (x), N ± π 1 π 2 (x)
x 4/37 (log x) -5/3 unconditionally for x x 0 , where the constant x 0 and the implied constants depend on sym 4 π, Π and π 1 π 2 respectively. Corollary 2. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ). Then the number of sign changes of the sequence {λ π (n)} n 1 in the interval [1, x] is π log log x unconditionally for 2 m 4 and under Hypothesis H for m 5.

When π is an holomorphic primitive modular form f of GL 2 , Lau & Wu [11, Theorem 1] obtained the best possible lower bounds (1.17). Their method is completely different from ours and it seems rather difficult to generalize it to our case. One of difficulties is that in the general case there is no analogue of Serre's estimate [17, page 181] :

|{p x : λ f (p) = 0}| f,δ x (log x) 1+δ for x
2 and any δ < 1 2 . Here, as indicated before, we shall prove Theorem 1 by establishing an asymptotic formula of the weighted second moment (1.10). In fact we shall obtain a rather general mean value theorem on non-negative multiplicative functions (see Theorem 2 in Section 2 below), and (1.10) is just a particular case of this. This general result is of independent interest and may find other applications in the future.
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Mean values of multiplicative functions

Let f (n) be a non-negative multiplicative function satisfying certain growth conditions that will be specified later. In order to prove Theorem 1, we need to establish an asymptotic formula for (2.1)

S f (x) := n x f (n).
Assume that there are positive constants A > 0, κ > 0 and η ∈ (0, 1 2 ) such that

p z f (p) log p = κz + O(z/R(z)) (z 2) (2.2)
where the summation is taken over primes p, and z → R(z) is an increasing function satisfying certain growth conditions, and such that

p, ν 2 f (p ν ) p (1-η)ν A. (2.3)
By the saddle point meothd, Tenenbaum & Wu [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF] obtained a sharp asymptotic formula for the mean value of f (n) over friable integers :

S f (x, y) := n x p|n⇒p y f (n)
in a large domain of (x, y). Taking y = x, their result yields an asymptotic formula for S f (x). Unfortunately the condition (2.3) is too restrictive for our application. In this section, we shall establish a rather general asymptotic formula for S f (x). On the one hand, we shall relax (2.3) to (2.5) below, which is necessary for our application. On the other hand, we shall consider a general form R(z) for the error term of (2.2) as in [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF] such that it is more convenient for applications in the future.

Denote by R the set of all increasing functions R ∈ C 1 ((1, ∞), (1, ∞)) satisfying the following conditions : there are two positive constants

z 0 = z 0 (R) and δ = δ(R) such that (a) z → R (z) R(z) z log z is monotonic and R (z) R(z) z is bounded for z z 0 ; (b) we have R(z)
(log 2 z) 1+δ for z z 0 . For simplicity in the following we will write

R + (z) := R (z) R(z) z log z. (2.4)
The definition of R may seem technical, but the conditions are easily verified in practice. In fact, most of the explicit error terms of arithmetic sums actually correspond to elements of such a class. The following functions are, defined for z > e, typical examples of elements of R :

(log 2 z) 1+δ , (log z) δ /(log 2 z) η , e (log 2 z) δ , e (log z) δ , z δ ,
where δ > 0 is a positive constant, η ∈ R is a real number and log k is the k-fold logarithmic function.

The principal result of this section is as follows.

Theorem 2. Let f (n) be a non-negative multiplicative function satisfying the condition (2.2) with some R ∈ R and the inequality

(2.5) p, ν 2 f (p ν ) p ν log p ν A,
where A > 0 is a constant. Then we have

(2.6) S f (x) = C f x(log x) κ-1 1 + O f log 2 x log x + E(x) ,
where

(2.7) C f := 1 Γ(κ) p 1 + ν 1 f (p ν ) p ν 1 - 1 p κ and (2.8) E(x) :=        (log R(x)) 2 R(x) + ∞ x (log R(z)) 2 R(z)z log z dz if R + (z) ↑ 1, 1 R(x) + ∞ x 1 R(z)z log z dz otherwise.
Here and throughout, g(z) ↑ 1 means that the function g(z) monotonically increases to the limit 1 as z → ∞.

In order to prove Theorem 2, we first state a simple lemma due to Hall & Tenenbaum [3, Theorem 01], which gives an upper bound for S f (x) in term of the logarithmic mean of f (n) defined by (2.9)

s f (x) := n x f (n) n • Lemma 2.1.
Let f (n) be a non-negative multiplicative function satisfying a weaker version of (2.2) with certain constant B > 0 :

(2.10)

p z f (p) log p Bz (z 2)
and the condition (2.5). Then for all x 2 we have

(2.11) S f (x) (A + B + 1) x log x s f (x).
Next we shall evaluate s f (x). This was studied by Halberstam in an unpublished manuscript, who obtained an asymptotic formula for s f (x) by using the technique of [2, Chapter 5]. A complete proof of Halberstam's result can be found in Song's paper [18, Theorem A]. Theorem 3 below can be regarded as a simple generalization of Halberstam's result (with the choice of R(z) = (log z) δ with δ ∈ (0, 1)).

Theorem 3. Let R ∈ R and let f (n) be a non-negative multiplicative function satisfying, for certain positive constant κ > 0, (2.12)

p z f (p) p log p = κ log z + O log z R(z) + log 2 z
and (2.5). Then for all x 2 we have

(2.13) s f (x) = c f (log x) κ 1 + O f log 2 x log x + E(x) ,
where

(2.14) c f := 1 Γ(κ + 1) p 1 + ν 1 f (p ν ) p ν 1 - 1 p κ and (2.15) E(x) :=        log R(x) R(x) + ∞ x log R(z) R(z)z log z dz if R + (z) ↑ 1, 1 R(x) + ∞ x 1 R(z)z log z dz otherwise.
From Lemma 2.1 and Theorem 3, we easily derive an upper bound for S f (x), which will play a key role in the proof of Theorem 2.

Corollary 3. If f is as in Theorem 2, then (2.16) S f (x) x(log x) κ-1
for all x 2.

Before proving Theorem 3, Corollary 3 and Theorem 2, we need to establish some simple estimates about R(z).

Lemma 2.2. Let R ∈ R. There is a constant C = C(R) > 0 such that for z > 1 the following four estimates hold:

z R(z) C 1 + z 1 dt R(t) , (2.17) log t R(t) C 1 + log z R(z) (1 t z), (2.18) z 2 dt tR(t) C log 2 z + (log z) log R(z) R(z) , (2.19) z 2 R (t) log t R(t) 2 dt C log 2 z + (log z) log R(z) R(z) . (2.

20)

The factor log R(z) in (2. [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF]) and (2.20)

appears only if R + (z) ↑ 1. Proof. Put g(z) := z R(z) - z 1 dt R(t) •
We have

g (z) = -z R (z) R(z) 2 0 (z 3
). Thus g(z) g(3) for z 3. Clearly this implies (2.17).

Put h(z) := (log z)/R(z). We have

h (z) = 1 -R + (z) zR(z) . Since z → R + (z) is monotonic on [z 0 , ∞), there is a constant z 1 = z 1 (R) such that h (z) is of constant sign for z z 1 . Thus h(z) is monotonic on [z 1 , ∞), which implies that h(t) h(z 1 ) + h(z) (z 0 t z).
From this we deduce that there is a constant C = C(R) > 0 such that (2.18) holds.

The inequality (2. [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF]) is Lemma 3.3 of [START_REF] Tenenbaum | Moyennes de certaines fonctions multiplicatives sur les entiers friables[END_REF].

Finally we prove (2.20). Since z → R + (z) is positive and monotonic, it tends to a limit. If this limit is finite, there are two constants t 0 and M such that R + (t) M for t t 0 . Thus for z t 0 ,

z 2 R (t) log t R(t) 2 dt t 0 2 R (t) log t R(t) 2 dt + M z 2 dt tR(t)
and the desired inequality follows from (2.19). If the limit is infinite, then for any constant D > 2 there is a constant t 0 such that R + (t) D for t t 0 . This implies that R(t) (log t) D for t t 0 . In view of the hypothesis R (t) R(t) t 1, we have

z 2 R (t) log t R(t) 2 dt z 2 dt t(log t) D-1 dt 1.
This completes the proof. Now we are ready to prove Theorem 3, Corollary 3 and Theorem 2.

2.1. Proof of Theorem 3. The proof is similar to that of Theorem A of [START_REF] Song | Sums of nonnegative multiplicative functions over integers without large prime factors. I[END_REF], which is a combination of Halberstam's proof and Hildebrand's identity [START_REF] Hildebrand | On the number of positive integers x and free of prime factors >[END_REF]. The only difference comes from our general form R(z) for the error term in (2.12). A simple partial integration gives (2.21)

n x f (n) n log n = x 1- log t ds f (t) = s f (x) log x - x 1 s f (t) t dt.
On the other hand, the multiplicativity of f (n) allows us to write (2.22)

n x f (n) n log n = mp ν x p m f (m) m f (p ν ) p ν log p ν = mp x f (m) m f (p) p log p -E 1 + E 2 ,
where

E 1 := mp x p|m f (m) m f (p) p log p, E 2 := mp ν x p m, ν 2 f (m) m f (p ν ) p ν log p ν .
Clearly the non-negativity of f (n) and the hypothesis (2.5) imply

(2.23) E 2 p,ν 2 f (p ν ) p ν log p ν m x/p ν f (m) m As f (x).
For p | m, we write m = p ν with p . Then f (m) = f (p ν )f ( ) and 

E 1 s f (x) p ν+1 x, ν 1 f (p ν ) p ν f (p) p log p.
p x f (p) p + p x f (p) R(p)p log p log 2 x + log x R(x) + x 2 R (t) log t R(t) 2 dt log 2 x + (log x) log R(x) R(x) ,
where the factor log R(x) appears only if R + (z) ↑ 1. Similarly

p ν+1 x, ν 2 f (p ν ) p ν f (p) p log p p, ν 2 f (p ν ) p ν log p A.
Combining these estimates, we obtain

(2.24) E 1 s f (x) log 2 x + (log x) log R(x) R(x) .
Further we can apply the hypothesis (2.12) and (2.18) of Lemma 2.2 to write (2.25)

mp x f (m) m f (p) p log p = m x f (m) m κ log x m + O 1 + log(x/m) R(x/m) = κ x 1 s f (t) t dt + O s f (x) 1 + log x R(x) .
Combining (2.21), (2.22), (2.23), (2.24) and (2.25), we find that

s f (x) = κ + 1 log x x 1 s f (t) t dt + s f (x)ε(x),
where

|ε(x)| C log 2 x log x + log R(x) R(x) 1 2 (x x 0 ).
Here the factor log R(x) appears only if R + (z) ↑ 1. From this we can derive

(2.26) s f (x) = 1 1 -ε(x) κ + 1 log x x 1 s f (t) t dt (x x 0 ). Define ε 0 (z) := log κ + 1 (log z) κ+1 z 1 s f (t) t dt .
Then

ε 0 (z) = κ + 1 z log z ε(z) 1 -ε(z) 1 z log z log 2 z log z + log R(z) R(z) and ∞ x ε 0 (z) dz log 2 x log x + E(x)
with E(x) as in (2.15). Writting c f := exp ∞ 1 ε 0 (z) dz , we have

ε 0 (x) = ∞ 1 ε 0 (z) dz - ∞ x ε 0 (z) dz = log c f + O log 2 x log x + E(x)
for x x 0 and κ + 1

(log z) κ+1 z 1 s f (t) t dt = c f 1 + O log 2 x log x + E(x) .
Inserting this into (2.26) yields the required result. 

f (p) p log p = κ log z + O 1 + z 2 dt tR(t) = κ log z + O log z R 0 (z) + log 2 z , where (2.27) R 0 (z) := R(z)/ log R(z) if R + (z) ↑ 1,

R(z)

otherwise.

An elementary calculation shows that

R 0 (z) R 0 (z) = 1 - 1 log R(z) R (z) R(z) •
Thus it is easy to see that R 0 (z) ∈ R, and that if R + (z) ↑ 1 as z → ∞ then so does the function

R 0 (z)
R 0 (z) z log z. This shows that f also satisfies (2.12) with the same κ but R 0 (z) in the place of R(z). Thus Theorem 3 is applicable to give s f (x) (log x) κ . The desired upper bound follows immediately from Lemma 2.1.

Proof of Theorem 2. Integration by parts gives

(2.28)

n x f (n) log n = x 1- log t dS f (t) = S f (x) log x + O(x),
where we have used the fact that (2.16) implies

x 1 S f (t) t dt x.
On the other hand, similar to (2.22) and (2.23), we can write (2.29)

n x f (n) log n = mp x f (m)f (p) log p -E 1 + O(x),
where

E 1 := m x f (m) p x/m, p|m f (p) log p.
As in the proof of Theorem 3, we have (2.30)

E 1 = x f ( )f (p ν ) p ν+1 x/ , p f (p) log p x p ν+1 x, ν 1 f (p ν )f (p) p ν+1 (log p) x p √ x f (p) 2 p 2 (log p) + x,
where we have used the hypothesis (2.2) and (2.5) to show

p ν+1 x ν 2 f (p ν )f (p) p ν+1 (log p) p, ν 2 f (p ν ) p ν 1.
Next we estimate the last sum of (2.30). First we observe that the hypothesis (2.2) implies f (p) log p p/R(p). By using the same hypothesis in form

Q(t) := p t f (p) log p t and the assumption R (t) R(t) t 1, we can deduce (2.31) p √ x f (p) 2 p 2 (log p) p x f (p) R(p)p = x 2- dQ(t) R(t)t log t = Q(x) R(x)x log x - x 2 1 + R (t) R(t) t Q(t) R(t)t 2 log t dt 1 R(x) log x + x 2 dt R(t)t log t log 2 x.
It remains to evaluate the double sum on the right-hand side of (2.29). By the hypothesis (2.2), we can write (2.32)

mp x f (m)f (p) log p = κxs f (x) + O m x f (m) x/m R(x/m) .
By virtue of (2.17), (2.16) and (2.19), we derive

(2.33) m x f (m) x/m R(x/m) m x f (m) 1 + x/m 1 dt R(t) x + x 1 S f (x/t) R(t) dt x 1 + x 1 dt tR(t) x log 2 x + x(log x) log R(x) R(x) •
Combining (2.29), (2.30), (2.31), (2.32), (2.33) with (2.28), we find

S f (x) = κx s f (x) log x + O x log 2 x log x + x log R(x) R(x) ,
where the factor log R(x) appears only if R + (z) ↑ 1. According to the proof of Theorem 3, f also satisfies (2.12) with the same κ but R 0 (z) defined as in (2.27) in the place of R(z). Now the desired result is a consequence of Theorem 3. This completes the proof of Theorem 2.

Prime number theorem for automorphic L-functions

In this section we cite prime number theorem for automorphic L-functions. The first such result is due to Liu, Wang & Ye [13, Corollary 1.2]. Lemma 3.1. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ) with m 2. Then there is a positive constant c = c(π) such that

n x Λ(n)|a π (n)| 2 = x + O π x e -c √ log x (3.1) n x Λ(n)a π (n) π x e -c √ log x (3.2) 
hold for all x 2, where the implied constants depend only on π.

For our purpose, it is necessary to remove the contribution of powers of primes. The next lemma is Theorem 3 of [START_REF] Wu | Hypothesis H and the prime number theorem for automorphic representations[END_REF], which will play a key role in the proof of Theorem 1. Lemma 3.2. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ). Then there is a constant c = c(π) > 0 such that

(3.3) p x |a π (p)| 2 log p = x + O π x e -c √ log x
hold unconditionally for all 2 m 4 and under Hypothesis H for m 5, where the implied constant depends on π only.

Proof of Theorem 1

We shall prove Theorem 1 at the end of this section, for which we first establish some preliminary results. Theorem 4. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ) and let d κ (n) be the Piltz function defined as in (1.11). Then there is a positive constant C κ (π) such that (4.1)

n x λ π (n) 2 d κ (n) = C κ (π)x(log x) 1/κ-1 1 + O π,κ log 2 x log x
unconditionally for 2 m 4 and under Hypothesis H for m 5, where the implied constant depends only on π and κ. In particular we have

(4.2) n x λ π (n) 2 = C 1 (π)x 1 + O π log 2 x log x
unconditionally for 2 m 4 and under Hypothesis H for m 5, where the implied constant depends only on π.

Proof. We shall apply Theorem 2 to prove (4.1). For this, it is sufficient to verify that the non-negative multiplicative function n → λ π (n) Put

η m := 1 4 (1 -2θ m )
, where θ m is given by (1.6). In view of (1.9), (1.5) and the estimates

d κ (p ν ) = 1 ν! 0 j<ν (κ + j) κ ν , d m (p ν ) log p ν m p νηm ,
we see that

(4.4) |λ π (p ν )| 2 d κ (p ν ) log p ν κ,m p ν2θm d m (p ν ) 2 (log p ν ) 2 m p ν2(θm+ηm)
for all primes p and integers ν 1. From this we deduce that (4.5)

ν [1/(2ηm)]+2 p |λ π (p ν )| 2 d κ (p ν )p ν log p ν p ν [1/(2ηm)]+2 1 p ν(1-2θm-2ηm) p ν [1/(2ηm)]+2 1 p ν2ηm p 1 p 1+2ηm 1.
It remains to estimate the contribution of 2 ν [1/(2η m )] + 2 to the double sums of (4.3). To this end, we apply the formula [15, (5.12)]

νλ π (p ν ) = 1 j ν a π (p j )λ π (p ν-j )
and the Cauchy inequality to write

|λ π (p ν )| 2 1 j ν |a π (p j )λ π (p ν-j )| 2 .
From this and (4.4), we derive, for 2 ν [1/(2η m )] + 2, (4.6)

p |λ π (p ν )| 2 d κ (p ν )p ν log p ν m,κ 1 j ν p |a π (p j )λ π (p ν-j )| 2 p ν log p m,κ 1 j ν p |a π (p j )| 2 p j2(θm+ηm)+ν(1-2θm-2ηm) log p m,κ p |a π (p)| 2 p 1+2ηm log p + 2 j ν p |a π (p j )| 2 p j log p.
According to [START_REF] Wu | Hypothesis H and the prime number theorem for automorphic representations[END_REF] When m ∈ {2, 3, 4}, Lemma 3.1(i) of [START_REF] Wu | Hypothesis H and the prime number theorem for automorphic representations[END_REF] implies that there is a constant δ m > 0 such that

p x 1/j |a π (p j )| 2 p j x, j 2 (log p)|a π (p j )| 2 x 1-δm (x 1/j ) j(1-δm)
for each fixed j 2 and all x 2. Hence for 2 ν [1/(2η m )] + 2, a simple integration by parts yields (4.9) 

2 j ν p |a π (p j )| 2 p j log p m p |a π (p j )| 2 p j(1-δm/2) = ∞ 2- t -j(1-δm/2) d p t |a π (p j )| 2 t -jδm/2 ∞ 2 + ∞ 2 t -1-jδm/
n x |λ π (n)| log x n [m/2]+1 π x 1-θm (log x) 1/m-1 (x x 0 (π))
unconditionally for 2 m 4 and under Hypothesis H for m 5, respectively, where the implied constant depends only on π.

Proof. By the first inequality of (4.4) and the multiplicativity of λ π (n), we have

|λ π (n)| n θm d m (n),
which implies that

|λ π (n)| λ π (n) 2 n θm d m (n)
for all n 1. From this, we deduce that Moving the contour to the vertical line e s = ε with ε being an arbitrarily small positive constant, and applying Harcos' convexity bound for L(s, π) (see [START_REF] Harcos | Uniform approximate functional equation for principal L-functions[END_REF]) :

L(σ + it, π) π,ε (|t| + 1) max{m(1-σ)/2,0}+ε (σ, t ∈ R), Proof of Theorem 1. Define

λ ± π (n) := |λ π (n)| ± λ π (n) 2 •
It is easy to see that

λ + π (n) = λ π (n) if λ + π (n) > 0, 0 if λ + π (n) < 0, and 
λ - π (n) = -λ π (n) if λ + π (n) < 0, 0 if λ + π (n) 0.
It follows from (4.12) and (4.11) that (4.13)

n x λ ± π (n) log
x n

[m/2]+1

x 1-θm (log x) 1/m-1 for x x 0 (π). On the other hand, for any fixed A > 0, by using (4.2) of Theorem 4 and by a simple partial integration, we find that This proves Theorem 1.

(1. 5 )

 5 |α π (p, j)| p θm and | e µ π (j)| θ m for all primes p and 1 j m, where (1.6) θ 2

  2 /d κ (n) satisfies the condition (2.2) with κ replaced by 1/κ and R(z) = e c √ log z (where c is a positive constant depending on π), and the condition (2.5) unconditionally for 2 m 4 and under Hypothesis H for m 5.Since d κ (p) = κ and λ π (p) = a π (p) for all primes p (which follows from (1.9) and (1.13) immediately), Lemma 3.2 shows that the condition (2.2) is satisfied by this non-negative multiplicative function with the parameters indicated unconditionally for 2 m 4 and under the Hypothesis H for m 5.Next we verify the condition (2.5) : the inequality(4.3) ν 2 p |λ π (p ν )| 2 d κ (p ν )p ν log p ν π,κ1holds unconditionally for 2 m 4 and under Hypothesis H for m 5.

(log 2 )Lemma 4 . 2 .π,ε x ε for all x 2 ,

 2422 [m/2]+1 x -θm n x/2 λ π (n) 2 d m (n) •The desired result is an immediate consequences of (4.1) with κ = m. Let π be a self-contragredient irreducible unitary cuspidal representation for GL m (A Q ) with m 2. Then for any ε > 0 we have where the implied constant depends on π and ε.Proof. We apply Perron's formula to write

  x ε . This completes the proof. Now we are ready to complete the proof of Theorem 1.

u

  A-1 e -u du π x.From (4.13) and (4.14), we deduce, via the Cauchy-Schwarz inequality, that x 1-θm (log x)

  ).

	Our result (see Theorem 4 below) is unconditional for 2 m 4. When m 5, we
	only need a weak assumption, i.e. the well known Hypothesis H of Rudnick & Sarnak
	[16], instead of GRC (1.7). We shall see that the former is a trivial consequence of
	the later.

In order to state Hypothesis H, let us first fix some notation. Since the Euler products (1.1)-(1.2) converge absolutley for e s > 1, we can write, in this half plane,

  , (2.2)], for any ε > 0 we have

			p	|a π (p)| 2 p 1+ε log p π,ε 1,
	which implies that					
	(4.7)						
	When m 5, it is clear that Hypothesis H implies
	(4.8)	2 j ν p	|a π (p j )| 2 p j	log p m	p	|a π (p j )| 2 p j	log p π 1
	for 2 ν [1/(2η m )] + 2.				

p |a π (p)| 2 p 1+2ηm log p π 1.