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THE SELBERG-DELANGE METHOD IN SHORT INTERVALS WITH AN APPLICATION
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In this paper, we establish a general mean value result of arithmetic functions over short intervals with the Selberg-Delange method. As an application, we generalize the Deshouillers-Dress-Tenenbaum's arcsin law on divisors to the short interval case.

Introduction

Many number theoretic problems lead to the study of the mean values of arithmetic functions. Between 1954 and 1971, Selberg [START_REF] Selberg | Note on the paper by L. G. Sathe[END_REF] and Delange [START_REF] Delange | Sur les formules dues à Atle Selberg[END_REF][START_REF] Delange | Sur les formules de Atle Selberg[END_REF] developed a quite general method using the analytic properties of the Dirichlet series associated to the arithmetic function. This is nowadays known as the Selberg-Delange method. We refer the readers to [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Chapter II.5] for an excellent exposition of this theory.

Let f (n) be an arithmetic function and denote its corresponding Dirichlet series by (1.1)

F(s) := ∞ n=1 f (n)n -s .
Suppose that F(s) admits the factorization

F(s) = G(s; z)ζ(s) z
for e s > 1, where ζ(s) is the Riemann ζ-function and z ∈ C. Under some suitable assumptions on G(s; z), we may apply the Selberg-Delange method to establish a very precise asymptotic formula for the summatory function

S f (x) := n x f (n).
See [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.5.3]. In 2008, Hanrot, Tenenbaum & Wu [START_REF] Hanrot | Moyennes de certaines fonctions arithmétiques sur les entiers friables[END_REF] further extended this method to investigate the mean value of f (n) over the friable integers:

S f (x, y) := n x P (n) y f (n),
where P (n) is the largest prime factor of n with the convention P (1) = 1. In particular, suppose ζ K (s) is the Dedekind ζ-function of the number field K and

κ j ∈ R such that κ 1 + • • • + κ r > 0. If F(s) factors into F(s) = G(s; z) 1 j r ζ K j (s) κ j
for e s > 1, then together with the saddle-point method in [START_REF] Tenenbaum | La méthode du col en théorie analytique des nombres[END_REF], it is established (cf.

[5, Théorème 1.2]) a very precise asymptotic formula for S f (x, y) in wide ranges of x and y. It is worth while to note that f is not assumed to be multiplicative albeit it is a Dirichlet convolution.

In this paper, we extend the Selberg-Delange method to handle the sum f (n) where n ranges over a short interval and give an application. We shall proceed along the same line of argument as in [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Chapter II.5]. Let κ > 0, w ∈ C, α > 0, δ 0, A 0, B > 0, M > 0 be some constants. A Dirichlet series F(s) defined as in (1.1) is said to be of type P(κ, w, α, δ, A, B, M ) if the following conditions are verified:

(a) for any ε > 0 we have In order to state our result, it is necessary to introduce some more notation. From [10, Theorem II.5.1], * the function

(1.2) |f (n)| ε n ε (n 1); (b) we have ∞ n=1 |f (n)|n -σ (σ -1) -α (σ > 1); (c) the Dirichlet series (1.3) G(s; κ, w) := F(s)ζ(s) -κ ζ(2s) w
Z(s; z) := {(s -1)ζ(s)} z (z ∈ C)
is holomorphic in the disc |s -1| < 1, and admits the Taylor series expansion

Z(s; z) = ∞ j=0 γ j (z) j! (s -1) j ,
where the γ j (z)'s are entire functions of z and satisfy: for all B > 0 and ε > 0, the estimate

(1.5) γ j (z) j! B,ε (1 + ε) j (j 0, |z| B).
Under 

) := 1 ! j=0 j ∂ -j (G(s; κ, w)ζ(2s) -w ) ∂s -j s=1 γ j (κ).
The following result is an analogue of Theorem II.5.3 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF] for the mean value over short intervals.

Theorem 1.1. Let κ > 0, w ∈ C, α > 0, δ 0, A 0, B > 0, M > 0 be some constants. Suppose that

F(s) := ∞ n=1 f (n)n -s
is a Dirichlet series of type P(κ, w, α, δ, A, B, M ). Then for any ε > 0, we have

(1.9) x<n x+y f (n) = y(log x) κ-1 N =0 λ (κ, w) (log x) + O R N (x, y)
uniformly for

x y x θ(κ,δ)+ε 2, N 0, 0 < κ B, |w| B, where

λ (κ, w) := g (κ, w) Γ(κ -) , θ(κ, δ) := 5κ + 15δ + 21 5κ + 15δ + 36 , R N (x, y) := y x N +1 =1 |λ -1 (κ, w)| (log x) + (c 1 N + 1) N +1 x 1/2 + M c 1 N + 1 log x N +1 + e -c 2 (log x/ log 2 x) 1/3
for some constants c 1 > 0, c 2 > 0. The implied constant in the O-term depends only on A, B, α, δ and ε.

The proof of Theorem 1.1 is rather similar to that of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.5.3]. The main new ingredient we introduce is the contour of integration as in [START_REF] Sedunova | On the mean values of some arithmetic functions on the short interval[END_REF]. Thanks to the hypothesis (1.2), our proof seems slightly simpler.

As an application of (1.9), we generalize the Deshouillers-Dress-Tenenbaum's arcsin law on divisors to the short interval case. For each positive integer n, denote by τ (n) the number of divisors of n and define the random variable D n which takes the value (log d)/ log n, as d runs through the set of the τ (n) divisors of n, with the uniform probability 1/τ (n). The distribution function F n of D n is given by

F n (t) = Prob(D n t) = 1 τ (n) d|n, d n t 1 (0 t 1).
It is clear that the sequence {F n } n 1 does not converge pointwisely on [0, 1]. However Deshouillers, Dress & Tenenbaum ([4] or [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.6.7]) proved that its Cesàro mean converges uniformly to the arcsin law, more precisely,

(1.10) 1 x n x F n (t) = 2 π arcsin √ t + O 1 √ log x
uniformly for x 2 and 0 t 1. The error term in (1.10) is optimal. Very recently Basquin [START_REF] Basquin | Trois études autour de sommes de fonctions multiplicatives sur les entiers friables[END_REF] considered the generalization of (1.10) for friable integers. Interestingly he showed that the limit law shifts from the arcsine law towards the Gaussian as u := (log x)/ log y → ∞.

Here we obtain an analogue of (1.10) for short intervals.

Theorem 1.2. Let ε > 0 be an arbitrarily small positive constant. We have

(1.11) 1 y x<n x+y F n (t) = 2 π arcsin √ t + O ε 1 √ log x
uniformly for 0 t 1, x 2 and x 62/77+ε y x, where the implied constant depends only on ε. Further (1.11) with y = x implies (1.10).

Proof of Theorem 1.1

Since F(s) is a Dirichlet series of type P(κ, α, w, δ, A, B, M ), we can apply [10, Corollary II.2.2.1] with the choice of parameters σ a = 1, B(n

) := n ε , α = α, σ = 0 to write x<n x+y f (n) = 1 2πi b+iT b-iT F(s) (x + y) s -x s s ds + O x 1+ε T ,
where b := 1 + 2/ log x and 100 T x such that ζ(σ + iT ) = 0 for 0 < σ < 1.

Let L be the boundary of the modified rectangle with the vertices 1 2 ± iT and b ± iT , where 

Γ ρ Γ L 1 L 6 L 3 L 4 L 5 L 2 1 + 2 log x σ T -T τ O 1 2 1 Figure 1 -Contour L
Clearly the function F(s) is analytic inside L . By the Cauchy residue theorem, we can write (2.1)

x<n x+y f (n) = I + I 1 + • • • + I 6 + β> 1 2 , |γ|<T I ρ + O ε x 1+ε T ,
where

I := 1 2πi Γ F(s) (x + y) s -x s s ds, I ρ := 1 2πi Γρ F(s) (x + y) s -x s s ds, I j := 1 2πi L j F(s) (x + y) s -x s s ds.
A. Evaluation of I Let 0 < c < 1 10 be a small constant. Since G(s; κ, w)ζ(2s) -w Z(s; κ) is holomorphic and O(M ) in the disc |s -1| c, the Cauchy formula implies that

(2.2) g (κ, w) M c - ( 0, 0 < κ B, |w| B),
where g (κ, w) is defined as in (1.8). From this and (1.7), it is easy to deduce that for any integer N 0 and |s -1| Thus we have

(2.3) I = N =0 g (κ, w)M (x, y) + O M c -N E N (x, y) ,
where

M (x, y) := 1 2πi Γ (s -1) -κ (x + y) s -x s s ds, E N (x, y) := Γ (s -1) N +1-κ (x + y) s -x s s | ds|.
Firstly we evaluate M (x, y). By using the formula

(2.4) (x + y) s -x s s = x+y x t s-1 dt
and Corollary II.5.2.1 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], we can write

M (x, y) = x+y x 1 2πi Γ (s -1) -κ t s-1 ds dt = x+y x (log t) κ-1- 1 Γ(κ -) + O (c 1 + 1) t 1/2 dt,
where we have used the following inequality

47 |κ-| Γ(1 + |κ -|) B (c 1 + 1) ( 0, 0 < κ B).
The constant c 1 and the implied constant depend at most on B. On the other hand, it is easy to see that, for 0 < κ B,

x+y x (log t) κ-1-dt = y 0 log κ-1-(x + t) dt = y(log x) κ-1-1 + O B ( + 1)y x log x .
Inserting this into the preceding formula, we obtain

(2.5) M (x, y) = y(log x) κ-1- 1 Γ(κ -) + O B ( + 1)y Γ(κ -)x log x + (c 1 + 1) x 1/2
for 0 and 0 < κ B. Next we estimate E N (x, y). In view of the trivial inequality

(2.6) (x + y) s -x s s yx σ-1 ,
we deduce that (2.7)

E N (x, y) 1-1/ log x 1/2+1/ log x (1 -σ) N +1-κ x σ-1 y dσ + y (log x) N +2-κ y (log x) N +2-κ ∞ 1/2 t N +1-κ e -t dt + 1 y(log x) κ-1 c 1 N + 1 log x N +1
uniformly for x y 2, N 0 and 0 < κ B, where the constant c 1 > 0 and the implied constant depend only on B. Inserting (2.5) and (2.7) into (2.3) and using (2.2), we find that (2.8)

I = y(log x) κ-1 N =0 λ (κ, w) (log x) + O B E * N (x, y) ,
where

E * N (x, y) := y x N +1 =1 |λ -1 (κ, w)| (log x) + (c 1 N + 1) N +1 x 1/2 + M c 1 N + 1 log x N +1
.

B. Estimations of I 3 and I 4

For s = 1 2 + e iθ log x with 0 < |θ| π 2 , we have trivially

F(s) (log x) | e w|+A , (x + y) s -x s s x 1/2 .

Thus

(2.9)

|I 3 | + |I 4 | x 1/2 (log x) | e w|+A-1 (x 3).
C. Estimations of I 1 and I 6 It is well known that

|ζ(σ + iτ )| |τ | (1-σ)/3 log |τ | ( 1 2 σ 1 + log -1 |τ |, |τ | 2), (2.10) |ζ(σ + iτ )| log -1 (|τ | + 3) (σ 1 -σ 0 (τ ), τ ∈ R), (2.11)
where C > 0 is an absolute positive constant and (2.12) σ 0 (t) := C (log(|t| + 3)) 2/3 (log log(|t| + 3)) 1/3 • In view of (2.10), (2.11) and (1.4), we have

F(s) M T max{(1-σ)(κ/3+δ), 0} (log T ) | e w|+κ+A
for s = σ ± iT with 1 2 σ b. Thus (2.13) 

|I 1 | + |I 6 | b 1/2 M T (1-σ)(κ/3+δ) (log T ) | e w|+κ+A x σ T dσ x T ( log 

E. Estimations of the I ρ

As in the case C, we have

F(s) M |γ| (1-σ)(κ/3+δ) (log |γ|) | e w|+κ+A for s = σ + iγ with 1 2 σ β < 1 -σ 0 (γ).
From this and (2.6) we deduce that (2.15)

|I ρ | β 1/2 M |γ| (1-σ)(κ/3+δ) (log |γ|) | e w|+κ+A x σ-1 y dσ.
Denote by N (σ, T ) the number of zeros of ζ(s) in the region e s σ and | m z| T . Summing (2.15) over |γ| < T and interchanging the summations, we have

β> 1 2 |γ|<T |I ρ | M y(log x) | e w|+κ+A 1-σ 0 (T ) 1/2 (T κ/3+δ /x) 1-σ N (σ, T ) dσ.
According to [START_REF] Huxley | The difference between consecutive primes[END_REF], it is known that

(2.16) N (σ, T ) T (12/5)(1-σ) (log T ) 44
for 1 2 σ 1 and T 2. Thus (2.17)

β> 1 2 |γ|<T |I ρ | M y(log x) | e w|+κ+A+44 1-σ 0 (T ) 1/2
T κ/3+δ+12/5 /x 1-σ dσ y(log x) | e w|+κ+A+44 T κ/3+δ+12/5 /x σ 0 (T )

provided T x 1/(κ/3+δ+12/5) /2. Inserting (2.8), (2.9), (2.13), (2.14) and (2.17) into (2.1), we find that

x<n x+y f (n) = y(log x) κ-1 N =0 λ (κ, w) (log x) + O E * N (x, y) + R T (x, y),
where R T (x, y) := y(log x) | e w|+κ+A+44 T κ/3+δ+12/5 x σ 0 (T )

+ x 1+ε T + x 1/2 (log x) | e w|+κ+A T κ/6+δ/2 . Taking T = x 1/(κ/3+δ+12/5)-10ε ,
we obtain the required result.

Proof of Theorem 1.2

Firstly we establish the following lemma with the help of Theorem 1.1.

Lemma 3.1. For any ε > 0, we have

x<n x+y 1 τ (dn) = hy (π log x) g(d) + O ε (3/4) ω(d) log x
uniformly for d 1, x 2 and x 47/77+ε y x, where ω(n) is the number of distinct prime factors of n and

h := p p(p -1) log(1 -1/p) -1 , g(d) := p ν d ∞ j=0 p -j j + ν + 1 ∞ j=0 p -j j + 1 -1 .
Proof. As usual, we denote by v p (n) the p-adic valuation of n. By using the formula

τ (dn) = p (v p (n) + v p (d) + 1),
we write, for e s > 1,

F d (s) := ∞ n=1 τ (dn) -1 n -s = p ∞ j=0 p -js j + v p (d) + 1 = ζ(s) 1/2 ζ(2s) 1/24 G d (s; 1/2, 1/24),
where

G d (s; 1/2, 1/24) := p ∞ j=0 p -js j + 1 1 - 1 p s 1/2 1 - 1 p 2s -1/24 × p ν d ∞ j=0 p -js j + ν + 1 ∞ j=0 p -js j + 1 -1
is a Dirichlet series that converges absolutely for e s > 1 3 . For e s 1 2 , we easily see that

∞ j=0 p -js j + 1 = log(1 -p -s ) p -s log(1 + p -σ ) p -σ 1 1 + p -1/2 • This implies |G d (s; 1/2, 1/24)| p ν d 1 1 + ν + O 1 √ p C 3 4 ω(d)
for e s 1 2 , where C > 0 is an absolute constant. Consequently, F d (s) is a Dirichlet series of type P( 12 , 1 24 , 1 2 , 0, 0, We are now ready to prove Theorem 1.2.

In view of the symmetry of the divisors of n about √ n, we have 

F n (t) = Prob(D n 1 -t) = 1 -Prob(D n < 1 -t) = 1 -F n (1 -t) + O τ (n) -1
1 2 k+1 = 1 + O 1 √ x .
This completes the proof of Theorem 1.2.

  is analytically continued to a holomorphic function in (some open set containing) e s 1 2 and, in this region, G(s; κ, w) satisfies the bound (1.4) |G(s; κ, w)| M (|τ | + 1) max{δ(1-σ),0} log A (|τ | + 1) (s = σ + iτ ) uniformly for 0 < κ B and |w| B.

•

  the zeros of ζ(s) of the form 1 2 +iγ with |γ| < T are avoided by the semicircles of infinitely small radius lying to the right of the line e s = 1 2 , • the zeros of ζ(s) of the form ρ = β + iγ with β > 1 2 and |γ| < T are avoided by the horizontal cut drawn from the critical line inside this rectangle to ρ = β + iγ, • the pole of ζ(2s) at the point s = 1 2 is avoided by two arcs L 3 and L 4 with the radius r := 1/ log x, • the pole of ζ(s) at the point s = 1 is avoided by the truncated Hankel contour Γ (its upper part is made up of an arc surrounding the point s = 1 with the radius r := 1/ log x and a line segment joining 1 -r to 1/2 + r).

  ; κ, w)ζ(2s) -w Z(s; κ) = N =0 g (κ, w)(s -1) + O M (|s -1|/c) N +1 .

0 (τ + 1 )

 01 T ) | e w|+κ+A provided T x 1/(κ/3+δ) . D. Estimations of I 2 and I 5 For s = 1 2 + iτ = 1 2 + iγ with ζ( 1 2 + iγ) = 0 and 1/ log x |τ | T , the estimates (2.10), (2.11) and (1.4) imply that F(s) (|τ | + 1) κ/6+δ/2 (log x) | e w|+κ+A . This allows us to write (2.14) |I 2 | + |I 5 | x 1/2 (log x) | e w|+κ+A T -1+κ/6+δ/2 dτ x 1/2 (log x) | e w|+κ+A T κ/6+δ/2 .

1 2 ,log x uniformly for d 1 ,

 21 C( 3 4 ) ω(d) ). Applying Theorem 1.1 with N = 0 and noticing that λ 0 ( 1 2 ) = hg(d)/Γ( 1 2 ) = hg(d)/ x 2 and x 47/77+ε y x. This implies the required result since g(d)(3/4) ω(d) and y x.

.

  Summing over x < n x + y and treating the O-term by Lemma 3.1 with d = 1, , x 2 and x y x 62/77+ε .Finally we prove that (1.10) follows from (1.11) with y = x. Since 0 F n (t) 1, we have Applying (1.11) with y = x to the inner sum, we deduce that

	since						
	we find that S(x, y; t) + S(x, y; 1 -t) = 1 + O x t <d (x+y) t g(d) d log(x/d) 1 √ log x Combining these estimates, we obtain where S(x, y; t) := 1 y x<n x+y 1 √ x t <d (x+y) t log x F n (t). (3.2) S 1 (x, y; t) = 2 π arcsin √ t + O 1 √ log x 1 d	(0 t 1), 1 √ • log x
	On the other hand, we have the identity 2 π arcsin √ t + 2 arcsin uniformly for 0 t 1 2 , x 2 and x y x 62/77+ε . √ 1 -t = 1 Next, a similar treatment leads to π Therefore it is sufficient to prove (1.11) for 0 t 1 2 . For 0 t 1 2 , we can write 1 S 2 (x, y; t) y x t <d (x+y) t x/d<m (x+y)/d (0 t 1). 1 τ (m)
	(3.1) (3.3)	S(x, y; t) = √	1 y 1 log x x<n x+y x t <d (x+y) t 1 τ (n)	d|n, d n t 1 d	1
	where	= S 1 (x, y; t) -S 2 (x, y; t), 1 √ log x •
	S 1 (x, y; t) := Inserting (3.2) and (3.3) into (3.1), we find that 1 y x<n x+y 1 τ (n) S 2 (x, y; t) := 1 y x<n x+y 1 S(x, y; t) = 2 π arcsin √ t + O ε d|n, d (x+y) t 1 √ log x 1, τ (n) d|n, n t <d (x+y) t Firstly we evaluate S 1 (x, y; t). Changing the order of summations, we have 1. S 1 (x, y; t) = 1 y d (x+y) t x/d<m (x+y)/d 1 τ (dm) • uniformly for 0 t 1 F n (t) = F n (t) + O( √ x) 2 n x √ x<n x For d (x + y) t (2x) 1/2 and y x 62/77+ε , it is easy to verify that 0 k (log x)/(2 log 2) x/2 k+1 <n x/2 k (y/d) (x/d) 47/77+ε . = F n (t) + O( √ x).
	Thus we can apply Lemma 3.1 with (x/d, y/d) in place of (x, y) to write
	S 1 (x, y; t) = uniformly for 0 t 1 √ h π 2 , x 2 and x y x 62/77+ε . Bounding (3/4) ω(d) by 1, the d (x+y) t 1 d log(x/d) (3/4) ω(d) g(d) + O ε log x contribution of the error term to S 1 is 1/ n x F n (t) = [(log x)/(2 log 2)] x 2 k+1 2 π arcsin √ t + O x/2 k+1 + O( √ x) log(x/2 k+1 ) k=0 √ log x. According to [10, Chapter II.6], we have h √ π d x t g(d) d log(x/d) = 2 π arcsin = x 2 π arcsin √ t + O x √ , log x √ t + O 1 √ log x , since
	which implies that h √ π 2 [(log x)/(2 log 2)]+1 √ d (x+y) t d log(x/d) g(d) x and	=	2 π	arcsin	t + O √	1 log x √	,

[(log x)/(2 log 2)] k=0
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