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DISTRIBUTION OF HECKE EIGENVALUES OF NEWFORMS
IN SHORT INTERVALS

JIE WU AND WENGUANG ZHAI

Abstract. We explore nonvanishing of Hecke eigenvalues in short arithmetic
progressions and their signs in short intervals by further developing B-free number
method and studying moments in short intervals. We improve some results of
Alkan & Zaharescu [3] and Lau & Wu [20] on the distribution of Hecke eigenvalues.

1. Introduction

The distribution of Fourier coefficients of holomorphic cusp forms is one of cen-
tral questions in modular form theory. The well known Lang-Trotter conjecture
suggests that these coefficients vanish rarely over prime variables in a precise sense.
When the forms are primitive, according to Sato-Tate’s conjecture their coefficients
restricted in prime variables are equi-distributed on [−2, 2] with respect to the Sato-
Tate measure. In [18], Kowalski, Robert & Wu used Rankin-Selberg’s theory and
B-free number method to investigate the nonvanishing or lacunary of these coeffi-
cients. Recently Lau & Wu [20] further studied sign changes of Hecke eigenvalues.
The present work is a continuation of [18, 20]. Here we shall explore nonvanishing
of these coefficients in short arithmetic progressions and their signs in short inter-
vals by further developing B-free number method and studying moments in short
intervals.

Let us begin by fixing our notation. For any integers k > 1, N > 1 and any
Dirichlet character χ modulo N verifying χ(−1) = (−1)k, we denote by Sk(N,χ) the
vector space of holomorphic cusp forms of weight k for the Hecke congruence group
Γ0(N) with nebentypus χ. When χ is the trivial character modulo N , we simply
write Sk(N). We also denote by S∗k(N,χ) (resp. S∗k(N)), the set of all normalized
Hecke eigencuspforms in Sk(N,χ) (resp. Sk(N)). Here the normalization is taken in
the way that the Fourier series expansion of f ∈ S∗k(N,χ) at the cusp ∞,

(1.1) f(z) =
∞∑
n=1

λf (n)n(k−1)/2e2πinz (=mz > 0),

has its first coefficient equal to one (i.e. λf (1) = 1). Inherited from the Hecke
operators, the normalized Fourier coefficient λf (n) satisfies the following relation

(1.2) λf (m)λf (n) =
∑
d|(m,n)

χ(d)λf

(mn
d2

)
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for all integers m > 1 and n > 1. In particular, λf (n) is multiplicative. According
to Deligne [7], if f ∈ S∗k(N) we have

(1.3) |λf (n)| 6 τ(n)

for all n > 1, where τ(n) is the divisor function.

1.1. Nonvanishing of Fourier coefficients of newforms in short progres-
sions. Let f ∈ S∗k(N,χ) be a primitive cusp form not of CM type. One of Serre’s
main results in [23] states as follows:

(1.4) |{p 6 x : λf (p) = 0}| �f,δ
x

(log x)1+δ

for x > 2 and any δ < 1
2
, from which he deduces that the series (1.1) is not lacunary,

i.e. the set of indices n where λf (n) 6= 0, has a positive density. Serre asked ([23],
p. 183) for more precise statements. A stronger form of the problem is to find y as
small as possible (as a function of x, say y = xθ with θ < 1) such that

(1.5) |{x < n 6 x+ y : λf (n) 6= 0}| �f y

for x > x0(f).
Balog and Ono [4] apparently first noticed that this problem can be resolved by

B-free numbers theory, introduced by Erdős [9]. For a set of integers

B = {bi : 1 < b1 < b2 < . . . }
such that

(1.6)
∑
i>1

1/bi <∞ and (bi, bj) = 1 (i 6= j),

one says that n > 1 is B-free if it is not divisible by any element in B. Erdös [9]
already showed in 1966 that there exists an absolute constant θ < 1 such that the
interval (x, x+ xθ] contains a B-free number for x large enough. Now taking

(1.7) BPf
:= Pf ∪ {p2 : p ∈PrPf}

where P is the set of all primes and

(1.8) Pf := {p : p | N or λf (p) = 0}
and using the fact that λf (n) is multiplicative, we see that Erdős’ result solves
Serre’s question in the affirmative. A quantitative result proving the analogue of
(1.5) for general B-free numbers was also obtained Szemerédi [24] as early as 1973.
The best exponent is 7/17, due to Kowalski, Robert & Wu [18], where readers can
find a detailed historical description on B-free numbers in short intervals.

Alkan & Zaharescu considered the analogue of (1.5) in short arithmetic progres-
sions, by proving the following result ([3], Theorem 1): Suppose that k > 2 and
f ∈ S∗k(N,χ) is a primitive form not of CM type. For every ε > 0, x > x0(f, ε),
y > x9/20+(1803/10)ε and 1 6 a 6 q 6 xε with (a, q) = 1, we have

(1.9) |{x < n 6 x+ y : n ≡ a (mod q) and λf (n) 6= 0}| �f,ε y/q.

The analogue of (1.9) for general B-free numbers has been established by the same
authors [2, Theorem 1].

Here we propose a better and general result, by combining new estimates for
exponential sums [30] and some ideas on B-free numbers of [18].
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Theorem 1. Suppose that k > 2 and f ∈ S∗k(N,χ) is a primitive form not of CM
type such that

(1.10)
∣∣Pf ∩ [1, x]

∣∣�f x
ρ (log log x)Ψρ

(log x)Θρ
(x > 2),

where ρ ∈ [0, 1] and Θρ,Ψρ are real constants such that Θ1 > 1. Define

θ(ρ) =

29ρ/(46ρ+ 19) if 190/323 < ρ 6 166/173

17ρ/(26ρ+ 12) if 166/173 < ρ 6 1

or

θ(ρ) =
(κ+ 2)ρ

(κ− λ+ 3)ρ+ 2
for

κ

κ− λ+ 1
6 ρ 6 1,

where (κ, λ) is an exponent pair. For every ε > 0, x > x0(f, ε), y > xθ(ρ)+100ε and
1 6 a 6 q 6 xε with (a, q) = 1, the inequality (1.9) holds.

According to (1.4), the hypothesis (1.10) holds with (ρ,Θρ,Ψρ) = (1, 3
2
− δ, 0).

Thus we immediately obtain the following corollary, which gives an improvement of
Alkan & Zaharescu’s exponent 9/20 in (1.9).

Corollary 1. Suppose that k > 2 and f ∈ S∗k(N,χ) is a primitive form not of CM
type. For every ε > 0, x > x0(f, ε), y > x17/38+100ε and 1 6 a 6 q 6 xε with
(a, q) = 1, the inequality (1.9) holds.

The hypothesis (1.10) is known only when ρ = 1, except for primitive forms
f ∈ S∗2(N) with integral coefficients. Those are associated to elliptic curves over Q,
and Elkies [8] has proved that (1.10) holds with (ρ,Θρ,Ψρ) = (3

4
, 0, 0). Theorem 1

implies the following corollary, which improves Alkan & Zaharescu’s exponent 9/22
([3], Theorem 2).

Corollary 2. Let fE(z) =
∑

n>1 λE(n)e(nz) be a primitive form associated with an
elliptic curve E/Q without complex multiplication. For every ε > 0, x > x0(E, ε),
y > x87/214+100ε and 1 6 a 6 q 6 xε with (a, q) = 1, the inequality (1.9) holds for
f = fE.

According to a result of David & Pappalardi [6], the hypothesis (1.10) with λE(n)
defined as in Corollary 2 holds with (ρ,Θρ,Ψρ) = (1

2
, 0, 0) in average. By combining

this with Theorem 1 with (κ, λ) = (1
6
, 4

6
), we obtain the following result of almost

all type.

Corollary 3. Consider the family of elliptic curves Ec,d : v2 = u3 + cu+ d without
complex multiplication, where c and d are integers with |c| 6 C and |d| 6 D. Let

fEc,d(z) =
∑
n>1

λEc,d(n)e(nz)

be a primitive form associated with Ec,d without complex multiplication. Let X →∞
be a parameter such that min{C, D} > X2+η for some η > 0. For every ε > 0,
x > x0(Ec,d, ε), y > x13/40+100ε and 1 6 a 6 q 6 xε with (a, q) = 1, the inequality
(1.9) holds for f = fEc,d, with at most O

(
CD(logX)−η

)
exceptions of Ec,d.

The particular case of q = 1 of Corollary 3 improves [1, Theorem 6] by reducing
the exponent 1/3 to 13/40. His exponent 1/3 was obtained by a trivial treatment
of the corresponding error term in Bantle & Grupp’s method. However for q = 1,
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Kowalski, Robert & Wu can get a better exponent 10/33 ([18], Theorem 1 with
ρ = 1

2
), by Wu’s method [28] with other ideas. The key of this method is to use

triple exponential sums of type I instead of type II as in Bantle & Grupp’s method
and that we can estimate sums of type I more effectively.

1.2. Signs of Hecke eigenvalues in short intervals. Let k > 2 be an even
integer and N > 1 a squarefree integer. Let f ∈ S∗k(N). In view of Sato-Tate’s
conjecture and the multiplicativity of λf (n), it would be expected that

(1.11) N ±
f (x) :=

∑
n6x

λf (n)≷ 0

1�f x

for all x > x0(f). Recently Kohnen, Lau & Shparlinski ([17], Theorem 1) proved

(1.12) N ±
f (x)�f

x

(log x)17

for x > x0(f). Then the exponent 17 was reduced to 1− 1/
√

3 by Wu [29]. Finally
Lau & Wu [20] established (1.11).

By coupling (1.12) with (1.9), Alkan and Zaharescu [17] showed that there are
absolute constants ϑ < 1 and A > 0 such that for any f ∈ S∗k(N) the inequality

(1.13) N ±
f (x+ xϑ)−N ±

f (x) > 0

holds for x > kA, but no explicit value of ϑ is evaluated. It is an interesting
and important problem to know how small ϑ can be. The estimate (1.13) implies
immediately that λf (n) has sign-changes in short interval [x, x+xϑ] for all sufficiently
large x. Lau & Wu [20] succeeded in obtaining the first quantitative result: for any
newform f ∈ S∗k(N), there exists an absolute constant C > 0 such that for all
sufficiently large x > N2x0(k), we have

(1.14) N ±
f (x+ CN2+εx1/2)−N ±

f (x)�ε (Nx)1/4−ε.

We are concerned with the sign changes of λf (n) in the interval [x, x + xϑ] for
ϑ < 1/2 . In this case it seems rather difficult to establish the inequality (1.15) below
for all large x. However, we can prove the following partial results. For simplicity,
we consider only the case of N = 1. In this case, we note S∗k = S∗k(1). The next
results can be easily generalized to the case of S∗k(N).

Theorem 2. Let σ = + or −. Suppose that f ∈ S∗k and 3/7 < ϑ < 1/2. Then there
exist two positive constants Ci = Ci(f, ϑ) (i = 1, 2) such that for any large parameter
T , there are at least C1T

1−ϑ(log T )2 disjoint subintervals of length C2T
ϑ(log T )−2 in

[T, 2T ], such that the inequality

(1.15) N σ
f (x+ xϑ)−N σ

f (x)�f,ϑ,ε x
ϑ/2−ε

holds, whenever x lies in any of these subintervals. Moreover, we have∣∣{x ∈ [T, 2T ] : N σ
f (x+ xϑ)−N σ

f (x)�f,ϑ,ε x
ϑ/2−ε}∣∣�f,ϑ,ε T

for all sufficiently large T .

Our approach of Theorem 2 is a variant of the method of Heath-Brown & Tsang
[13]. The main new ingredient is the estimate on the fourth moments of

(1.16) Sf (x) :=
∑
n6x

λf (n).
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in short intervals (cf. Corollary 4 of Section 5), which can proved by using the
method of Tanigawa & Zhai [25]. From our proof of Theorem 2 given in Section
6, it is easy to see that Conjecture 2 stated in Section 5 implies (1.15) for any
0 < ϑ < 1/2 (i.e. Conjecture 1 below). This conjecture is very strong, since it is
an analogue of Jutila’s conjecture (5.20) and Jutila has pointed out his conjecture
implies the sixth power moment of the Riemann zeta-function ζ(s) over the critical
line <e s = 1/2.

Theorem 3. Let σ = + or −. Suppose that f ∈ S∗k and 3/8 6 ϑ 6 3/7. Then there
exist two positive constants Ci = Ci(f, ϑ) (i = 3, 4) such that for any large parameter
T , there are at least C3T

1−ϑ disjoint subintervals of length C4T
ϑ−ε in [T, 2T ], such

that the inequality

N σ
f (x+ xϑ)−N σ

f (x)�f,ϑ,ε x
ϑ/2−2ε

holds, whenever x lies in any of these subintervals. Moreover, we have∣∣{x ∈ [T, 2T ] : N σ
f (x+ xϑ)−N σ

f (x)�f,ϑ,ε x
ϑ/2−2ε

}∣∣�f,ϑ,ε T
1−ε

for all sufficiently large T .

In view of (1.14) and Theorems 2-3, it seems reasonable to propose the following
conjecture.

Conjecture 1. Let f ∈ S∗k and 0 < ϑ < 1/2. Then for any ε > 0, the inequality
(1.15) holds for x > x0(f, ϑ, ε).

The next theorem shows that this conjecture is true for infinitely many x.

Theorem 4. Suppose that f ∈ S∗k and 0 < ϑ < 1/2. Then for any ε > 0, the
inequality (1.15) holds for infinitely many x.

2. A special triple exponential sum

The next result is one of keys in the proofs of Theorem 1 and Propositions 2–3
below (see Sections 3–4).

Proposition 1. Let χ(h) := e(ξh) (ξ ∈ R), |ϕm| 6 1, |ψn| 6 1 and

S :=
∑
h∼H

∑
m∼M

∑
n∼N

χ(h)ϕm ψn e

(
xh

mn

)
.

Then for any 1 6 H 6MNy−1x3ε, we have

(2.1) S �ε MNx−2ε,

provided one of the following conditions is satisfied:

x17/38 6 y 6 x23/50, M 6 yx−ε
′
, N 6 y10/14x−3/14−ε′ ;(2.2)

x83/188 6 y 6 x17/38, M 6 yx−ε
′
, N 6 y14/12x−5/12−ε′ ;(2.3)

x10/27 6 y 6 x83/188, M 6 yx−ε
′
, N 6 y27/19x−10/19−ε′ ;(2.4)

xκ/(2κ−λ+1) 6 y 6 x(κ+1)/(2κ−λ+2), M 6 yx−ε
′
, N 6 y(κ−λ+1)/2x−κ/2−ε

′
;(2.5)

where (κ, λ) is an exponent pair.
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Proof. By [30, Theorem 2], we can write

S �MN
{

(x5y−16M2N12)1/26 + (xy−4MN3)1/6

+ (x20y−56M2N38)1/90 + (x3y−12M2N14)1/20

+ (x7y−22MN22)1/36 + (x7y−28M6N26)1/44 + y−1M + y−1N2
}
xε.

Thus the inequality (2.1) holds provided

M 6 yx−ε
′
, N12 6 y14x−5−ε′ , N3 6 y3x−1−ε′ , N19 6 y27x−10−ε′ ,

N14 6 y10x−3−ε′ , N22 6 y21x−7−ε′ , N26 6 y22x−7−ε′ , N2 6 yx−ε
′
.

Among the above eight inequalities, it is easy to verify that for x17/38 6 y 6 x23/50,
the fifth inequality implies all others except the first one. This proves (2.2). Asser-
tions (2.3) and (2.4) can be treated similarly.

In order to prove (2.5), we apply Lemma 3.1 of [21] with the choice of parameters
(H,M,N) = (M,H,N), f(h) = h−1, α = 1 and β = −1 to write

S �MN
{

(xκy−2κ−2Mλ+1N2)1/(2κ+2) + y−1M

+ (y−2MN2)1/2 + (xy)−1/2MN
}
xε.

Thus the inequality (2.1) holds provided

M 6 yx−ε
′
, N2 6 y2κ−λ+1x−κ−ε

′
, N2 6 yx−ε

′
, N2 6 y−1x1−ε′ .

For xκ/(2κ−λ+1) 6 y 6 x(κ+1)/(2κ−λ+2), it is easy to see that the second inequality
implies the third and fourth. The proof of Proposition 1 is complete. �

3. B-free numbers in short progressions

The distribution of B-free numbers in short progressions was first studied by
Alkan & Zaharescu [2]. Their result is as follows: For all ε > 0, x > x0(B, ε),
y > x9/20+(1803/10)ε and 1 6 a 6 q 6 xε with (a, q) = 1, we have

(3.1) |{x < n 6 x+ y : n ≡ a (mod q) and n is B-free}| �B,ε y/q.

The particular case of (3.1) with q = 1 was obtained by Bantle & Grupp [5]. In [2, 3],
Alkan & Zaharescu used the method of Bantle & Grupp with some straightforward
modification. The only difference is that they cannot directly apply Fouvry-Iwaniec’s
estimate on exponential sums ([11], Theorem 6) – the key tool in Bantle & Grupp’s
method, because of the coefficient e(hadσp1p2/q) (see (C) below), which depends on
the variables pi (and is equal to 1 if q = 1). Since q 6 xε, it is easy to see that
after a simple congruence argument (as Alkan & Zaharescu remarked in [2], [3]),
Fouvry-Iwaniec’s estimate on exponential sums is still applicable.

Here we shall insert our new estimate on exponential sums into the method of
Bantle & Grupp with Alkan & Zaharescu’s adaptation to obtain a better result.

Proposition 2. For all ε > 0, x > x0(ε), y > x17/38+100ε and 1 6 a 6 q 6 xε with
((a, q), b) = 1 for all b ∈ B, the inequality (3.1) holds.

Since Alkan & Zaharescu’s proof contains some inaccuracies (for example, (17) of
[2] and [3] is inexact), we reproduce here the proof of Bantle & Grupp with some
simple adaptation, for the convenience of reader.



DISTRIBUTION OF HECKE EIGENVALUES OF NEWFORMS IN SHORT INTERVALS 7

The notation of this section is independent. Let θ, δ1 and δ2 be some parameters
such that

(3.2)


1
4

+ ε 6 θ < 1
2
,

5ε < δ2 + 4ε < δ1 + 3ε < θ,

δ1 + δ2 < 1,

δ1 + δ2 + θ − ε > 1.

Introducing

(3.3)

{
P1 :=

{
p ∈P : xδ1 < p 6 xδ1+ε

}
,

P2 :=
{
p ∈P : xδ2 < p 6 xδ2+ε

}
.

Bantle & Grupp’s weight function is defined by

(3.4) c(n) :=
∑
p1∈P1

∑
p2∈P2

p1p2|n

1.

For x > 3 and x > y > xθ, put

(3.5) A :=
∑

x<n6x+y
n≡a(mod q)
b -n (∀ b∈B)

c(n).

From (3.2), (3.3) and (3.4), it is easy to see that

(3.6) c(n) 6 (δ1δ2)−1 (n 6 2x),

which implies ∑
x<n6x+y
n≡a(mod q)
b -n (∀ b∈B)

1 > δ1δ2A.

Thus it is sufficient to show that

(3.7) A�B,ε y/q.

For this, we let ` := `(B, ε) ∈ N be a positive integer such that

(3.8)
∞∑

k=`+1

1

bk
<
Bε3

δ1δ2

,

where

B :=
∏
b∈B

(
1− 1

b

)
is the natural density of the sequence of B-free numbers.

Clearly we can write

(3.9) A > A1 − A2 − A3,
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where

A1 :=
∑

x<n6x+y
n≡a(mod q)
bi -n (∀ i6`)

c(n),

A2 :=
∑

b`<b6y/q
b∈B

∑
x<n6x+y
n≡a(mod q)

b|n

c(n),

A3 :=
∑

y/q<b6x
b∈B

∑
x<n6x+y
n≡a(mod q)

b|n

c(n).

Lemma 3.1. We have

A2 6
2Bε3

δ1δ2

y

q
·

Proof. By (3.6), it follows that

A2 6
1

δ1δ2

∑
b`<b6y/q
b∈B

∑
x<n6x+y
n≡a(mod q)
n≡0(mod b)

1.

Since ((a, q), b) = 1 for all b ∈ B, by the Chinese Remainder Theorem we easily
see that the system of equations n ≡ a (mod q), n ≡ 0 (mod b) has solution if and
only if (b, q) = 1. In this case, there is some integer a′ ∈ {1, . . . , bq − 1} such that
n ≡ a′ (mod bq). Thus

A2 6
1

δ1δ2

∑
b`<b6y/q
b∈B

(
y

bq
+ 1

)
6

1

δ1δ2

∑
b`<b6y/q
b∈B

2y

bq
,

which implies the required inequality in view of (3.8). �

Lemma 3.2. There is a constant C(B, ε) such that

A3 6
C(B, ε)

log x

y

q
·

Proof. According to the definition of c(n), we can write

(3.10) A3 =
∑

y/q<b6x
b∈B

∑
p1∈P1

∑
p2∈P2

∑
x<n6x+y
n≡a(mod q)
n≡0(mod b)

n≡0(mod p1p2)

1.

As before, the system of equations n ≡ a (mod q), n ≡ 0 (mod b) has solution if and
only if (b, q) = 1. In this case, there is a′ ∈ {1, . . . , bq−1} such that n ≡ a′ (mod bq).
Since bq > y, the sum over n is at most 1. In this case, we must have p1 | b or p2 | b,
otherwise we have n ≡ 0 (mod bp1p2). Since bp1p2 > xθ−ε+δ1+δ2 > 2x (in view of
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(3.2)) and n 6 2x, this is contradictory. Thus we deduce

A3 6
∑

y/q<b6x
b∈B

∑
p1∈P1

p1|b

∑
p2∈P2

∑
x<n6x+y
n≡a(mod q)
n≡0(mod b)

n≡0(mod p1p2)

1

+
∑

y/q<b6x
b∈B

∑
p1∈P1

∑
p2∈P2

p2|b

∑
x<n6x+y
n≡a(mod q)
n≡0(mod b)

n≡0(mod p1p2)

1.

Clearly ∑
pi∈Pi

∑
x<n6x+y
n≡a(mod q)
n≡0(mod b)

n≡0(mod p1p2)

1 6 δ−1
i (i = 1, 2).

Inserting it into the preceding inequality, we find that

A3 6 δ−1
2

∑
p1∈P1

∑
y/q<b6x
b∈B, p1|b

1 + δ−1
1

∑
p2∈P2

∑
y/q<b6x
b∈B, p2|b

1

6 (δ−1
1 + δ−1

2 )|P1|,

where we have used the hypothesis (bi, bj) = 1 with i 6= j. This implies the required
inequality. �

For each σ = {k1, . . . , ki} ⊂ {1, . . . , `}, write |σ| = i and dσ = bk1bk2 · · · bki with
the convention |∅| = 0 and d∅ = 1, where ∅ denotes the empty set.

Lemma 3.3. For x > x0(B, ε), we have

A1 >
Bε2

2
(y/q),

provided

(3.11)


25
58
< θ < 23

50
,

δ1 6 θ − 100ε,

δ2 6 min{(14θ − 5)/12, (10θ − 3)/14} − 100ε.

Proof. Since (bi, bj) = 1 (i 6= j), we can write

A1 =
∑

σ⊂{1,...,`}

(−1)|σ|
∑

x<n6x+y
n≡a(mod q)

dσ |n

c(n)

=
∑

σ⊂{1,...,`}
(dσ ,q)=1

(−1)|σ|
∑
p1∈P1

∑
p2∈P2

∑
x<n6x+y
n≡a(mod q)

n≡0(mod dσp1p2)

1.

In the second equality, we have used the following facts:

(i) (dσ, p1p2) = 1 for all σ ⊂ {1, . . . , `} and pi ∈Pi (i = 1, 2),

(ii) n ≡ a (mod q) and n ≡ 0 (mod dσp1p2) have solution ⇔ (dσ, q) = 1.
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Since (dσp1p2, q) = 1, there are dσ, p1, p2 ∈ {1, . . . , q − 1} such that

dσdσ ≡ 1 (mod q) and pipi ≡ 1 (mod q) (i = 1, 2).

It follows that

(3.12) A1 =
∑

σ⊂{1,...,`}
(dσ ,q)=1

(−1)|σ|A1(σ),

where

A1(σ) :=
∑
p1∈P1

∑
p2∈P2

∑
x<dσp1p2m6x+y
m≡a∗(mod q)

1

and a∗ := adσp1p2 ∈ {1, . . . , (q − 1)4}.
Introduce a function Φ(t) ∈ C∞(R) such that

(3.13)

Φ(t) = 1 if t ∈ (x, x+ y],

Φ(t) = 0 if t /∈ (x− yx−2ε, x+ y + yx−2ε],

0 6 Φ(t) 6 1 otherwise,

and

(3.14) Φ(j)(t)� (yx−2ε)−j (j > 0, t ∈ R).

Thus we can write

A1(σ) =
∑
p1∈P1

∑
p2∈P2

∑
m≡a∗(mod q)

Φ(dσp1p2m) +O
(
yx−2ε

)
=
∑
p1∈P1

∑
p2∈P2

∑
h∈Z

φ(h) +O
(
yx−2ε

)
where φ(t) := Φ(a∗dσp1p2 + tdσp1p2q). Let A∗1(σ) be the last sum. By Poisson’s
formula [26, Théorème I.6.1], we obtain

A∗1(σ) =
∑
p1∈P1

∑
p2∈P2

∑
h∈Z

φ̂(h),

where

φ̂(h) =

∫
R
φ(t)e−2πiht dt =

e2πiha∗/q

dσp1p2q
Φ̂

(
h

dσp1p2q

)
.

Thus

A∗1(σ) =
1

dσq

∑
p1∈P1

∑
p2∈P2

1

p1p2

∑
h∈Z

e2πiha∗/qΦ̂

(
h

dσp1p2q

)
.

We shall evaluate A∗1(σ) by estimating the contribution to it according to

h = 0, |h| > H := y−1xδ1+δ2+10ε, |h| 6 H,

respectively.
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(A) The contribution with h = 0

Since

Φ̂(0) =

∫
R

Φ(t) dt = y +O
(
yx−2ε

)
,

the contribution with h = 0 to A∗1(σ) is equal to{
1 +O

(
1

xε

)}
y

dσq

∑
p1∈P1

1

p1

∑
p2∈P2

1

p2

·

(B) The contribution with |h| > H := y−1xδ1+δ2+10ε

By partial integration and (3.14), it follows that

Φ̂

(
h

dσp1p2q

)
=

(
2πih

dσp1p2q

)−j ∫
R

Φ(j)(t)e−2πith/(dσp1p2q) dt

�j

(
dσp1p2qx

2ε

hy

)j
y.

Thus the contribution with |h| > H is, with the choice of j = 1/(5ε) + 3,

�j
y

q

(
xδ1+δ2+5ε

Hy

)j
H �j

y

q
x−5jεH �ε

y

q
x−5ε.

(C) The contribution with 1 6 |h| 6 H

This contribution is

=
1

dσq

∫
R

Φ(t)
∑

16|h|6H

∑
p1∈P1

∑
p2∈P2

e2πiha∗/q

p1p2

e−2πith/(dσp1p2q) dt

=
1

dσq

∫
R

Φ(t)
∑

16a16q

∑
16a26q

∑
16|h|6H

∑
p1∈P1

p1≡a1(mod q)

∑
p2∈P2

p2≡a2(mod q)

χ(h)

p1p2

e

(
−th

dσp1p2q

)
dt,

where χ(h) = e(hdσa1a2/q) is an additive character independent of p1 and p2.
Define

St/dσq(H
′,M,N) :=

∑
h∼H′

∑
m∼M

∑
n∼N

χ(h)ϕmψne

(
−(t/(dσq))h

p1p2

)
,

where

ϕm :=

{
Mm−1 if m = p1 ∈P1 and p1 ≡ a1(mod q),

0 otherwise,

ψn :=

{
Nn−1 if n = p2 ∈P2 and p2 ≡ a2(mod q),

0 otherwise.
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After dyadic split and using Proposition 1 to estimate St/(dσq)(H
′,M,N), we can see

that the contribution with 1 6 |h| 6 H to A∗1(σ) is

� 1

q

∫
R

Φ(t)q2 max
16a1, a26q

x/26t62x, 16H′6H
xδ16M6xδ1+ε, xδ26N6xδ2+ε

|St/(dσq)(H ′,M,N)|
MN

dt

� 1

q

∫
R

Φ(t)q2x−4ε dt

� y

q
x−ε,

provided (3.11) is satisfied.
Combining all, we obtain that

A1(σ) =

{
1 +O

(
1

xε

)}
y

dσq

∑
p1∈P1

1

p1

∑
p2∈P2

1

p2

+OB,ε

(
y

q
x−ε
)
.

Now the required result follows from (3.12) by noticing that

∑
σ⊂{1,...,`}
(dσ ,q)=1

(−1)|σ|

dσ
=

∏̀
i=1

(bi,q)=1

(
1− 1

bi

)
> B,

∑
pi∈Pi

1

pi
= log

(
δi + ε

δi

)
+O

(
1

log x

)
> ε

for x > x0(B, ε). �

Now we are ready to complete the proof of Proposition 2. Take

θ = 17
38
, δ1 = θ − ε′, δ2 = 1− 2θ + ε′.

It is easy to verify that these choices satisfy the conditions (3.2) and (3.11). Thus
Lemmas 3.1, 3.2 and 3.3 imply that

A >

(
Bε2

2
− Bε3

δ1δ2

− 2C(B, ε)

log x

)
y

q
�B,ε

y

q

for x > x0(B, ε). This completes the proof of (3.7) and hence Proposition 2.

4. Special B-free numbers and proof of Theorem 1

Let P ⊂P be a set of prime numbers satisfying the following condition

(4.1)
∣∣P ∩ [1, x]

∣∣�f x
ρ (log log x)Ψρ

(log x)Θρ
(x > 2),

where ρ ∈ [0, 1] and Θρ,Ψρ are real constants such that Θ1 > 1. In this section, we
consider a special set

BP := P ∪
{
p2 : p ∈PrP

}
.

Clearly BP verifies the condition (1.6)
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Proposition 3. Let BP be defined as above and let

θ(ρ) =

{
29ρ/(46ρ+ 19) if 190/323 < ρ 6 166/173

17ρ/(26ρ+ 12) if 166/173 < ρ 6 1

or

θ(ρ) =
(κ+ 2)ρ

(κ− λ+ 3)ρ+ 2
for

κ

κ− λ+ 1
6 ρ 6 1,

where (κ, λ) is an exponent pair. Then for any ε > 0, x > x0(P, ε), y > xθ(ρ)+ε with
and 1 6 a 6 q 6 xε with (a, q) = 1, we have

(4.2) |{x < n 6 x+ y : n ≡ a (mod q) and n is BP-free}| �P,ε y/q.

The proof of this proposition is very similar to that of Proposition 2. We shall
only point out some different points.

Let ρ, θ, δ1 and δ2 be some parameters such that

(4.3)


1
4

+ ε 6 θ < 1
2
,

4ε < δ2 + 3ε < δ1 + 2ε < (θ − ε)/ρ,
δ1 + δ2 < 1,

δ1 + δ2 + θ/ρ > 1.

Similarly define A′, A′1, A
′
2, A

′
3 by replacing B by BP. Thus we have

(4.4) A′ > A′1 − A′2 − A′3.

As a particular case of Lemma 3.1, we have

(4.5) A′2 6
BPε

3

δ1δ2

y

q
,

where

BP :=
∏
p∈P

(
1− 1

p

) ∏
p∈PrP

(
1− 1

p2

)
.

We shall use the method of [18] to estimate A′3. An advantage of this method is
to allow us to relax δ1 + ε < θ (for general B) to δ1 + ε < (θ − ε)/ρ (for BP).

Lemma 4.1. There is a constant C(P, ε) such that

A′3 6
C(P, ε)

(log x)1/2

y

q
(x > 2).

Proof. According to the definition of BP, we can write

(4.6) A′3 = A′3,1 + A′3,2 + A′3,3 + A′3,4,
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where

A′3,1 :=
∑

y/q<p6(y/q)1/ρ(log x)(Θρ−1/2)/ρ

p∈P

∑
x<n6x+y
n≡a(mod q)

p|n

c(n),

A′3,2 :=
∑

(y/q)1/ρ(log x)(Θρ−1/2)/ρ<p6x
p∈P

∑
x<n6x+y
n≡a(mod q)

p|n

c(n),

A′3,3 :=
∑

y/q<p26(y/q)2 log x
p/∈P

∑
x<n6x+y
n≡a(mod q)

p2|n

c(n),

A′3,4 :=
∑

(y/q)2 log x<p26x
p/∈P

∑
x<n6x+y
n≡a(mod q)

p2|n

c(n).

In A′3,1, we have (p, q) = 1. Thus there is some integer a′ ∈ {1, . . . , pq − 1} such
that n ≡ a′ (mod pq). Since pq > y, the sum over n is at most 1. Thus For p > y,
there is at most an integer n ∈ (x, x+ y] such that p | n. Thus

A′3,1 6 (δ1δ2)−1
∑

p6(y/q)1/ρ(log x)(Θρ−1/2)/ρ

p∈P

1

�
(
(y/q)1/ρ(log x)(Θρ−1/2)/ρ

)ρ
(log x)Θρ

� (y/q)

(log x)1/2
·

The definition of c(n) allows us to write

A′3,2 =
∑

(y/q)1/ρ(log x)(Θρ−1/2)/ρ<p6x
p∈P

∑
p1∈P1

∑
p2∈P2

∑
x<n6x+y
n≡a(mod q)
p|n, p1p2|n

1.

The hypothesis δ2 + 2ε < δ1 + ε < (θ − ε)/ρ and p ∈ P imply (p, p1p2) = 1. Thus
pp1p2 | n. Since pp1p2 > xθ/ρ+δ1+δ2(log x)(Θρ−1/2)/ρ > 2x, the sum over n must be
empty. Therefore A′3,2 = 0.

We have

A′3,3 6
1

δ1δ2

∑
q6(y/q)(log x)1/2

p∈PrP

1� (y/q)

(log x)1/2
·

The term A′3,4 will be treated by the method of Filaseta & Trifonov [10]. Defining

S(t1, t2) := {d ∈ (t1, t2] : there is an integer k such that kd2 ∈ (x, x+ y]},
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we can deduce, in view of (3.6), that

A′3,4 6 (δ1δ2)−1
∑

(y/q)2 log x<p26x
p∈PrP

∑
x<n6x+y

p2|n

1

6 (δ1δ2)−1
∣∣S(yq−1(log x)1/2, x1/2

)∣∣.
We split

(
yq−1(log x)1/2, x1/2

]
into dyadic intervals (xφ, 2xφ] and write

A′3,4 6 (δ1δ2)−1(log x) max
θ−ε6φ61/2

∣∣S(xφ, 2xφ)
∣∣.

According to [10, (4)], we have∣∣S(xφ, 2xφ)
∣∣� x(1−φ)/3

for yq−1(log x)1/2 6 xφ 6 2x1/2, and thus infer with the hypothesis θ > 1
4

+ 3ε that

A′3,4 � (y/q)x−ε.

Now inserting these estimates into (4.6), we obtain the required inequality. �

Now we are ready to complete the proof of Proposition 3.
Take

θ = θ(ρ), δ1 = θ − ε′, δ2 = 1− (1 + 1/ρ)θ + ε′.

It is easy to verify that these choices satisfy the conditions (4.3). Thus Lemma 3.3,
(4.5) and Lemma 4.1 imply that

A >

(
BPε

2 − BPε
3

δ1δ2

− 2C(P, ε)

(log x)1/2

)
y

q
�P,ε

y

q

for x > x0(P, ε). This completes the proof of (3.7) and hence Proposition 3.

5. Moments of Sf (x) in short intervals

Recall the definition (1.16):

Sf (x) :=
∑
n6x

λf (n).

This section will be devoted to investigate the 2`th-moment (` = 1, 2)

(5.1) M`(T, U) :=

∫ 2T

T

|Sf (x+ U)− Sf (x)|2` dx,

which is a principal tool for the proof of Theorems 2-3, where T > 1 and U > 1 are
large parameters.

When ` = 1, this type of integral was studied by Good [12] for E(t), which is
defined by

E(t) :=

∫ t

0

∣∣ζ(1/2 + iu)
∣∣2 du− t log(t/2π)− (2γ − 1)t (t > 2),

and by Jutila [16] for ∆(x) which is the error term of the Dirichlet divisor problem,
given by the formula

∆(x) =
∑
n6x

τ(n)− x(log x+ 2γ − 1).
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Here ζ(s) denotes the function of Riemann, τ(n) is the classical divisor function and
γ the Euler constant.

Jutila [16] first studied the mean square of the difference ∆(x + U) − ∆(x) for
short intervals. He proved that if T > 2 and 1 6 U � T 1/2 � H 6 T, then

(5.2)

∫ T+H

T

|∆(x+ U)−∆(x)|2 dx

=
1

4π2

∑
n6T/(2U)

τ(n)2

n3/2

∫ T+H

T

x1/2
∣∣e((n/x)1/2U

)
− 1
∣∣2 dx

+O
(
T 1+ε +HU1/2T ε

)
,

with the notation e(t) := e2πit (t ∈ R), which implies that the estimate

(5.3)

∫ T+H

T

|∆(x+ U)−∆(x)|2 dx � HU
(

log(T 1/2/U)
)3

holds for T > 2, HU � T 1+ε and T ε � U 6 T 1/2/2. For E(t), Jutila also obtained
similar results.

When H = T, Ivić [14] substantially improved Jutila’s asymptotic formulas. For
∆(x), Ivić proved for T ε � U 6 T 1/2/2 that

(5.4)

∫ 2T

T

|∆(x+ U)−∆(x)|2 dx = TU
3∑
j=0

cj(∆)
(

log(T 1/2/U)
)j

+Oε

(
T 1/2+εU2 + T 1+εU1/2

)
,

where the cj(∆) are constants.
Jutila [16] conjectured that the estimates∫ 2T

T

|∆(x+ U)−∆(x)|4 dx�ε T
1+εU2,(5.5) ∫ 2T

T

|E(t+ U)− E(t)|4 dx�ε T
1+εU2(5.6)

are true for 1 � U � T 1/2. These two conjectures are very strong since Jutila
pointed out that (5.6) implies the important conjectural bound∫ T

1

|ζ(1/2 + it)|6 dt�ε T
1+ε.

Ivić [14] proved that (5.5) holds for T 3/8 � U � T 1/2. The term T 1+εU2 in (5.5) is
best possible with respect to T ε. However, when T 3/7 � U � T 1/2, Tanigawa and
Zhai [25] proved an asymptotic formula for the integral∫ 2T

T

|∆(x+ U)−∆(x)|4 dx.

The proofs of the above estimates of ∆(x) are all based on the well-known trun-
cated Voronoi’s formula

(5.7) ∆(x) =
x1/4

π
√

2

∑
n6N

τ(n)

n3/4
cos
(

4π
√
nx− π

4

)
+O(xε +N−1/2x1/2+ε),

where 1 < N � xA, A > 0 is an arbitrarily large constant.
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For Sf (x) we have the following similar Voronoi’s formula

(5.8) Sf (x) =
x1/4

π
√

2

∑
n6M

λf (n)

n3/4
cos
(

4π
√
nx− π

4

)
+Of,ε

(
xε +M−1/2x1/2+ε

)
for 1 � M � xA. Besides the analogy between (5.7) and (5.8), we also have the
the bound (1.3). So the proofs of the above estimates apply also to Sf (x) without
modifications.

When ` = 1, Ivić [14] proved the following

Proposition 4. For each f ∈ S∗k, there is a positive constant C(f) > 0 such that
for any ε > 0 the asymptotic formula

(5.9) M1(T, U) = C(f)TU +Of,ε(T
3/5+εU9/5 + T 1+εU1/2)

holds uniformly for T > 1 and T ε � U 6 T 1/2/2. In particular we have

(5.10) 1
2
C(f)TU 6M1(T, U) 6 2C(f)TU,

uniformly for T > T0(f, ε) and T ε 6 U 6 T 1/2−ε, where T0(f, ε) is a suitable positive
constant depending on f and ε only .

When ` = 2, Ivić’s argument for
∫ 2T

T
|∆(x+ U)−∆(x)|4 dx yields the following

Proposition 5. For all f ∈ S∗k and any ε > 0, we have

(5.11) M2(T, U)�f,ε T
1+εU2 + T 7/4+ε.

uniformly for T > 1 and T ε � U � T 1/2. Especially when T 3/8 � U � T 1/2, we
have

(5.12) M2(T, U)�f,ε T
1+εU2.

If applying the argument of Tanigawa and Zhai [25] to Sf (x), we have

Proposition 6. For each f ∈ S∗k there is a small positive constant c = cf such that
for any ε > 0 we have

(5.13)
M2(T, U) =

3

π4

∫ 2T

T

x

( ∑
n6c(T/U)1/4

λf (n)2

n3/2
sin2

(
πU
√
n/x

))2

dx

+Of,ε

(
T 1/2+εU3 + T 19/16+εU25/16 + T 17/8+εU−5/8

)
.

uniformly for T > 1 and T 3/7 � U � T 1/2.

From Proposition 6 we can prove the following

Corollary 4. For all f ∈ S∗k and any ε > 0, we have

(5.14) M2(T, U)�f,ε TU
2.

uniformly for T > 1 and T 3/7+ε � U � T 1/2−ε.

Proof. With the help of trivial inequality | sin t| 6 min{|t|, 1} and Rankin-Selberg’s
well known result (cf. [22])∑

n6x

|λf (n)|2 = A(f)x+O(x3/5)
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where A(f) is the positive constant depending on f , a simple partial summation
shows that the integral in (5.13) is

� T

∫ 2T

T

( ∑
n6T/U2

λf (n)2

n3/2

U2n

x

)2

dx+ T

∫ 2T

T

( ∑
T/U2<n6c(T/U)1/4

λf (n)2

n3/2

)2

dx

� TU2.

This proves the required result. �

Analogous to Jutila’s conjectures (5.5) and (5.6), we may propose the following

Conjecture 2. The estimate (5.14) holds uniformly for T ε � U � T 1/2.

For ∆(x), Tong [27] established the well-known asymptotic formula

(5.15)

∫ T

1

|∆(x)|2 dx = CT 3/2 + F (T )

with F (T )� T (log T )5. Recently, Lau & Tsang [19] proved

(5.16) F (T )� T (log T )3 log log T.

Ivić [15] proved that

(5.17)

∫ T

1

|Sf (x)|2 dx = C(f)T 3/2 +Of

(
T (log T )5

)
.

Combining the approaches of [15] and [19], it is easy to show

(5.18) M1(T, U)�f TU + T log T

for 1 6 U � T 1/2.
Heath-Brown & Tsang [13] proved that if 2 6 H 6 T 1/2/2, then

(5.19)

∫ 2T

T

max
06h6H

∣∣∆(x+ h)−∆(x)
∣∣2 dx� TH(log T )5.

Applying their approach to the function Sf (x) with the help of (5.18) we get the
following result.

Proposition 7. For each f ∈ S∗k, we have

(5.20)

∫ 2T

T

max
06h6H

∣∣Sf (x+ h)− Sf (x)
∣∣2 dx�f TH(log T )2,

uniformly for 2 6 H 6 T 1/2/2.

Proof. Write H = 2λb with λ ∈ N and 1 6 b < 2. Similar to the proof of [13, Lemma
2], we can deduce by using (5.18) that the integral in (5.20) is

� λ
∑
µ6λ

∑
06ν<2µ

∫ T+v2λ−µb

T+v2λ−µb

|Sf (x+ 2λ−µb)− Sf (x)|2 dt+ T (log T )2

� λ
∑
µ6λ

∑
06ν<2µ

(T2λ−µb+ T log T ) + T (log T )2

� λ2HT + λHT log T + T (log T )2

� HT (log T )2.

�
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6. Proofs of Theorems 2 and 3

In this section we shall prove Theorem 2 by using the method of Heath-Brown &
Tsang [13]. We only consider the case with sign “+”. The proof for the case “−” is
the same.

For f ∈ S∗k, t > 1 and U > 1, define

RU(t) := Sf (t+ U)− Sf (t) =
∑

t<n6t+U

λf (n),(6.1)

R+
U (t; ) := max{RU(t), 0}.(6.2)

Lemma 6.1. Let f ∈ S∗k and ε > 0. Then we have

(6.3)

∫ 2T

T

Rf (t;U) dt�f,ε T
1+ε

uniformly for U � T .

Proof. Taking M = T in (5.8), it follows that (j = 0, 1)∫ 2T

T

Sf (t+ jT ϑ) dt�
∑
n6M

τ(n)

n3/4

∣∣∣∣∫ 2T

T

(t+ jT ϑ)1/4 cos
(

4π
√
n(t+ jT ϑ)− π

4

)
dt

∣∣∣∣
+ T 1+ε.

This and the first derivative test imply (6.3) immediately. �

We only consider T 3/7+ε 6 U 6 T 1/2−ε, since the other case T 3/8+ε 6 U 6 T 3/7+ε

is similar. By the Hölder inequality and (5.10), we have

TU �
∫ 2T

T

|RU(t)|2/3+4/3 dt�
(∫ 2T

T

|RU(t)| dt
)2/3(∫ 2T

T

|RU(t)|4 dt

)1/3

.

Together with (5.12), it leads to∫ 2T

T

|RU(t)| dt� TU1/2,

and hence ∫ 2T

T

R+
U (t) dt� TU1/2

by (6.3) and the relation

(6.4) 2R+
U (t) = RU(t) + |RU(t)|.

Let δ > 0 be a small constant. Then

(6.5) TU1/2 �
∫ 2T

T
R+
U (t)>δU1/2

R+
U (t) dt+ δTU1/2.

So, for sufficiently small δ > 0, we have∫ 2T

T
R+
U (t)>δU1/2

R+
U (t) dt� TU1/2.

With the Cauchy-Schwarz inequality, we deduce that

(6.6) T 2U �
∣∣{t ∈ [T, 2T ] : R+

U (t) > δU1/2
}∣∣ ∫ 2T

T

|RU(t)|2 dt.
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With (5.10) and the trivial inequality

R+
U (t)� T ε

(
N +
f (t+ U)−N +

f (t)
)
,

the second part of Theorem 2 follows readily.

In view of (6.4) and the trivial inequality ||a| − |b|| 6 |a− b|, we have∣∣R+
U (t+ h)−R+

U (t)
∣∣ 6 ∣∣RU(t+ h)−RU(t)

∣∣
6
∣∣Sf (t+ U + h)− Sf (t+ U)

∣∣+
∣∣Sf (t+ h)− Sf (t)

∣∣.
Applying Proposition 7, it follows that, for H(log T )2 6 δU ,∫ 2T

T

max
06h6H

∣∣R+
U (t+ h)−R+

U (t)
∣∣2 dt� δTU,

where δ > 0 is a small constant. By (6.5) and the Cauchy-Schwarz inequality, we
deduce that ∫ 2T

T

(
R+
U (t)− max

06h6H

∣∣R+
U (t+ h)−R+

U (t)
∣∣) dt� TU1/2,∫ 2T

T

(
R+
U (t)− max

06h6H

∣∣R+
U (t+ h)−R+

U (t)
∣∣)2

dt� TU,

provided H(log T )2 6 δU . Repeating the argument in (6.5)-(6.6), we have

(6.7)
∣∣∣{t ∈ [T, 2T ] : R+

U (t)− max
06h6H

∣∣R+
U (t+ h)−R+

U (t)
∣∣ > δU1/2

}∣∣∣� T.

Take U = T θ and H = T θ(log T )−2. We divide the interval [T, 2T ] into subintervals
of length H. In view of (6.7), there are at least O(T 1−θ(log T )−2) subintervals
containing a point x such that

R+
U (x)− max

06h6H

∣∣R+
U (x+ h)−R+

U (x)
∣∣ > δU1/2.

Since

min
x6t6x+H

R+
U (t) > R+

U (x)− max
06h6H

∣∣R+
U (x+ h)−R+

U (x)
∣∣ > δU1/2.

this implies that for all t ∈ [x, x+H], R+
U (t) > δU1/2 and hence

N +
f (t+ U)−N +

f (t)� δU1/2T−ε.

Clearly, [x, x+H] may overlap at most two subintervals, so we can select alternate
subintervals to avoid overlapping. The proof of Theorem 2 is complete.

The proof of Theorem 3 is similar to that of Theorem 2. The essential difference
is to apply Proposition 5 in place of Proposition 6. So we omit the details.

Remark 1. Ivić’s estimate (5.4) implies that for any 0 < ϑ < 1/2 we have

(6.8) ∆(x+ T ϑ)−∆(x) = Ω
(
T ϑ/2(log T )3/2

)
, x ∈ [T, 2T ].

However, when 3/7 < ϑ < 1/2, our argument of this paper implies that∣∣{x ∈ [T, 2T ] : ±(∆(x+ T ϑ)−∆(x))� T ϑ/2(log T )3/2
}∣∣� T,

which is an improvement of (6.8).
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7. Proof of Theorem 4

From Proposition 4, there exists infinitely many x such that∣∣Sf (x+ xϑ)− Sf (x)
∣∣� xϑ/2

which implies that

(7.1) N +
f (x+ xϑ)−N +

f (x)� xϑ/2−ε/5.

This proves (1.15) with the sign “+”.
Let p0 be the least prime such that p0 - N and λf (p0) < 0. Since each integer n

counted in (7.1) can be written as n = pν0m with p0 - m and 0 6 ν 6 4 log x, (7.1)
becomes ∑

06ν64 log x

∑
x<pν0m6x+xϑ

p0-m,λf (pν0)λf (m)>0

1� xϑ/2−ε/5.

Thus there is at least a ν ∈ N ∩ [0, 4 log x] such that∑
x<pν0m6x+xϑ

p0-m,λf (pν0)λf (m)>0

1� xϑ/2−ε/4.

From this we deduce that at least one of the following two inequalities∑
x/pν0<m6x/pν0+xϑ/pν0

p0-m,λf (m)>0

1� xϑ/2−ε/4(7.2)

∑
x/pν0<m6x/pν0+xϑ/pν0

p0-m,λf (m)<0

1� xϑ/2−ε/4(7.3)

holds. Clearly these imply that (1.15) with the sign “−” holds for x/pν0 or x/pν−1
0

in place of x, respectively.
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