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We explore nonvanishing of Hecke eigenvalues in short arithmetic progressions and their signs in short intervals by further developing B-free number method and studying moments in short intervals. We improve some results of Alkan & Zaharescu [3] and Lau & Wu [20] on the distribution of Hecke eigenvalues.

Introduction

The distribution of Fourier coefficients of holomorphic cusp forms is one of central questions in modular form theory. The well known Lang-Trotter conjecture suggests that these coefficients vanish rarely over prime variables in a precise sense. When the forms are primitive, according to Sato-Tate's conjecture their coefficients restricted in prime variables are equi-distributed on [-2, 2] with respect to the Sato-Tate measure. In [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF], Kowalski, Robert & Wu used Rankin-Selberg's theory and B-free number method to investigate the nonvanishing or lacunary of these coefficients. Recently Lau & Wu [START_REF] Lau | The number of Hecke Eigenvalues of same signs[END_REF] further studied sign changes of Hecke eigenvalues. The present work is a continuation of [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF][START_REF] Lau | The number of Hecke Eigenvalues of same signs[END_REF]. Here we shall explore nonvanishing of these coefficients in short arithmetic progressions and their signs in short intervals by further developing B-free number method and studying moments in short intervals.

Let us begin by fixing our notation. For any integers k 1, N 1 and any Dirichlet character χ modulo N verifying χ(-1) = (-1) k , we denote by S k (N, χ) the vector space of holomorphic cusp forms of weight k for the Hecke congruence group Γ 0 (N ) with nebentypus χ. When χ is the trivial character modulo N , we simply write S k (N ). We also denote by S * k (N, χ) (resp. S * k (N )), the set of all normalized Hecke eigencuspforms in S k (N, χ) (resp. S k (N )). Here the normalization is taken in the way that the Fourier series expansion of f ∈ S * k (N, χ) at the cusp ∞,

(1.1) f (z) = ∞ n=1 λ f (n)n (k-1)
/2 e 2πinz ( mz > 0), has its first coefficient equal to one (i.e. λ f (1) = 1). Inherited from the Hecke operators, the normalized Fourier coefficient λ f (n) satisfies the following relation

(1.2) λ f (m)λ f (n) = d|(m,n) χ(d)λ f mn d 2
for all integers m 1 and n 1. In particular, λ f (n) is multiplicative. According to Deligne [START_REF] Deligne | La conjecture de Weil, I, II[END_REF], if f ∈ S * k (N ) we have (1.3) |λ f (n)| τ (n) for all n 1, where τ (n) is the divisor function.

1.1. Nonvanishing of Fourier coefficients of newforms in short progressions. Let f ∈ S * k (N, χ) be a primitive cusp form not of CM type. One of Serre's main results in [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF] states as follows:

(1.4)

|{p x : λ f (p) = 0}| f,δ x (log x) 1+δ
for x 2 and any δ < 1 2 , from which he deduces that the series (1.1) is not lacunary, i.e. the set of indices n where λ f (n) = 0, has a positive density. Serre asked ( [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF], p. 183) for more precise statements. A stronger form of the problem is to find y as small as possible (as a function of x, say y = x θ with θ < 1) such that (1.5) |{x < n x + y : λ f (n) = 0}| f y for x x 0 (f ). Balog and Ono [START_REF] Balog | The Chebotarev density theorem in short intervals and some questions of Serre[END_REF] apparently first noticed that this problem can be resolved by B-free numbers theory, introduced by Erdős [START_REF] Erdős | On the difference of consecutive terms of sequences, defined by divisibility properties[END_REF]. For a set of integers

B = {b i : 1 < b 1 < b 2 < . . . } such that (1.6) i 1 1/b i < ∞ and (b i , b j ) = 1 (i = j),
one says that n 1 is B-free if it is not divisible by any element in B. Erdös [START_REF] Erdős | On the difference of consecutive terms of sequences, defined by divisibility properties[END_REF] already showed in 1966 that there exists an absolute constant θ < 1 such that the interval (x, x + x θ ] contains a B-free number for x large enough. Now taking (1.7)

B P f := P f ∪ {p 2 : p ∈ P P f }
where P is the set of all primes and

(1.8)

P f := {p : p | N or λ f (p) = 0}
and using the fact that λ f (n) is multiplicative, we see that Erdős' result solves Serre's question in the affirmative. A quantitative result proving the analogue of (1.5) for general B-free numbers was also obtained Szemerédi [START_REF] Szemerédi | On the difference of consecutive terms of sequences, defined by divisibility properties II[END_REF] as early as 1973.

The best exponent is 7/17, due to Kowalski, Robert & Wu [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF], where readers can find a detailed historical description on B-free numbers in short intervals.

Alkan & Zaharescu considered the analogue of (1.5) in short arithmetic progressions, by proving the following result ([3], Theorem 1): Suppose that k 2 and f ∈ S * k (N, χ) is a primitive form not of CM type. For every ε > 0, x x 0 (f, ε), y x 9/20+(1803/10)ε and 1 a q x ε with (a, q) = 1, we have (1.9) |{x < n x + y : n ≡ a (mod q) and λ f (n) = 0}| f,ε y/q.

The analogue of (1.9) for general B-free numbers has been established by the same authors [2, Theorem 1].

Here we propose a better and general result, by combining new estimates for exponential sums [START_REF] Wu | Almost primes in short intervals[END_REF] and some ideas on B-free numbers of [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF].

Theorem 1. Suppose that k 2 and f ∈ S * k (N, χ) is a primitive form not of CM type such that (1.10) P f ∩ [1, x] f x ρ (log log x) Ψρ (log x) Θρ (x 2),
where ρ ∈ [0, 1] and Θ ρ , Ψ ρ are real constants such that Θ 1 > 1. Define

θ(ρ) =    29ρ/(46ρ + 19) if 190/323 < ρ 166/173 17ρ/(26ρ + 12) if 166/173 < ρ 1 or θ(ρ) = (κ + 2)ρ (κ -λ + 3)ρ + 2 for κ κ -λ + 1 ρ 1,
where (κ, λ) is an exponent pair. For every ε > 0, x x 0 (f, ε), y x θ(ρ)+100ε and 1 a q x ε with (a, q) = 1, the inequality (1.9) holds.

According to (1.4), the hypothesis (1.10) holds with (ρ, Θ ρ , Ψ ρ ) = (1, 3 2 -δ, 0). Thus we immediately obtain the following corollary, which gives an improvement of Alkan & Zaharescu's exponent 9/20 in (1.9). Corollary 1. Suppose that k 2 and f ∈ S * k (N, χ) is a primitive form not of CM type. For every ε > 0, x x 0 (f, ε), y x 17/38+100ε and 1 a q x ε with (a, q) = 1, the inequality (1.9) holds.

The hypothesis (1.10) is known only when ρ = 1, except for primitive forms f ∈ S * 2 (N ) with integral coefficients. Those are associated to elliptic curves over Q, and Elkies [START_REF] Elkies | Distribution of supersingular primes[END_REF] has proved that (1.10) holds with (ρ, Θ ρ , Ψ ρ ) = ( 34 , 0, 0). Theorem 1 implies the following corollary, which improves Alkan & Zaharescu's exponent 9/22 ([3], Theorem 2).

Corollary 2. Let f E (z) = n 1 λ E (n)e(nz) be a primitive form associated with an elliptic curve E/Q without complex multiplication. For every ε > 0, x x 0 (E, ε), y

x 87/214+100ε and 1 a q x ε with (a, q) = 1, the inequality (1.9) holds for f = f E .

According to a result of David & Pappalardi [START_REF] David | Average Frobenius distributions of elliptic curves[END_REF], the hypothesis (1.10) with λ E (n) defined as in Corollary 2 holds with (ρ, Θ ρ , Ψ ρ ) = ( 12 , 0, 0) in average. By combining this with Theorem 1 with (κ, λ) = ( 16 , 4 6 ), we obtain the following result of almost all type. 

f E c,d (z) = n 1 λ E c,d (n)e(nz)
be a primitive form associated with E c,d without complex multiplication. Let X → ∞ be a parameter such that min{C, D} X 2+η for some η > 0. For every ε > 0, x x 0 (E c,d , ε), y

x 13/40+100ε and 1 a q x ε with (a, q) = 1, the inequality (1.9) holds for f = f E c,d , with at most O CD(log X) -η exceptions of E c,d .

The particular case of q = 1 of Corollary 3 improves [1, Theorem 6] by reducing the exponent 1/3 to 13/40. His exponent 1/3 was obtained by a trivial treatment of the corresponding error term in Bantle & Grupp's method. However for q = 1, Kowalski, Robert & Wu can get a better exponent 10/33 ([18], Theorem 1 with ρ = 1 2 ), by Wu's method [START_REF] Wu | Nombres B-libres dans les petits intervalles[END_REF] with other ideas. The key of this method is to use triple exponential sums of type I instead of type II as in Bantle & Grupp's method and that we can estimate sums of type I more effectively. 1.2. Signs of Hecke eigenvalues in short intervals. Let k 2 be an even integer and N 1 a squarefree integer. Let f ∈ S * k (N ). In view of Sato-Tate's conjecture and the multiplicativity of λ f (n), it would be expected that (1.11) 17 for x x 0 (f ). Then the exponent 17 was reduced to 1 -1/ √ 3 by Wu [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF]. Finally Lau & Wu [START_REF] Lau | The number of Hecke Eigenvalues of same signs[END_REF] established (1.11).

N ± f (x) := n x λ f (n)≷ 0 1 f x for all x x 0 (f ). Recently Kohnen, Lau & Shparlinski ([17], Theorem 1) proved (1.12) N ± f (x) f x (log x)
By coupling (1.12) with (1.9), Alkan and Zaharescu [START_REF] Kohnen | On the number of sign changes of Hecke eigenvalues of newforms[END_REF] showed that there are absolute constants ϑ < 1 and A > 0 such that for any f ∈ S * k (N ) the inequality (1.13)

N ± f (x + x ϑ ) -N ± f (x) > 0 holds for x k A , but no explicit value of ϑ is evaluated.
It is an interesting and important problem to know how small ϑ can be. The estimate (1.13) implies immediately that λ f (n) has sign-changes in short interval [x, x+x ϑ ] for all sufficiently large x. Lau & Wu [START_REF] Lau | The number of Hecke Eigenvalues of same signs[END_REF] succeeded in obtaining the first quantitative result: for any newform f ∈ S * k (N ), there exists an absolute constant C > 0 such that for all sufficiently large x N 2 x 0 (k), we have

(1.14) N ± f (x + CN 2+ε x 1/2 ) -N ± f (x) ε (N x) 1/4-ε .
We are concerned with the sign changes of λ f (n) in the interval [x, x + x ϑ ] for ϑ < 1/2 . In this case it seems rather difficult to establish the inequality (1.15) below for all large x. However, we can prove the following partial results. For simplicity, we consider only the case of N = 1. In this case, we note S * k = S * k (1). The next results can be easily generalized to the case of S * k (N ). Theorem 2. Let σ = + or -. Suppose that f ∈ S * k and 3/7 < ϑ < 1/2. Then there exist two positive constants

C i = C i (f, ϑ) (i = 1, 2) such that for any large parameter T , there are at least C 1 T 1-ϑ (log T ) 2 disjoint subintervals of length C 2 T ϑ (log T ) -2 in [T, 2T ], such that the inequality (1.15) N σ f (x + x ϑ ) -N σ f (x) f,ϑ,ε x ϑ/2-
ε holds, whenever x lies in any of these subintervals. Moreover, we have

x ∈ [T, 2T ] : N σ f (x + x ϑ ) -N σ f (x) f,ϑ,ε x ϑ/2-ε f,ϑ,ε T for all sufficiently large T .
Our approach of Theorem 2 is a variant of the method of Heath-Brown & Tsang [START_REF] Heath-Brown | Sign changes of E(t), ∆(x) and P (x)[END_REF]. The main new ingredient is the estimate on the fourth moments of (1.16)

S f (x) := n x λ f (n).
in short intervals (cf. Corollary 4 of Section 5), which can proved by using the method of Tanigawa & Zhai [START_REF] Tanigawa | On the fourth power moment of ∆(x) and E(x) in short intervals[END_REF]. From our proof of Theorem 2 given in Section 6, it is easy to see that Conjecture 2 stated in Section 5 implies (1.15) for any 0 < ϑ < 1/2 (i.e. Conjecture 1 below). This conjecture is very strong, since it is an analogue of Jutila's conjecture (5.20) and Jutila has pointed out his conjecture implies the sixth power moment of the Riemann zeta-function ζ(s) over the critical line e s = 1/2.

Theorem 3. Let σ = + or -. Suppose that f ∈ S * k and 3/8 ϑ 3/7. Then there exist two positive constants C i = C i (f, ϑ) (i = 3, 4) such that for any large parameter T , there are at least

C 3 T 1-ϑ disjoint subintervals of length C 4 T ϑ-ε in [T, 2T ], such that the inequality N σ f (x + x ϑ ) -N σ f (x) f,ϑ,ε x ϑ/2-
2ε holds, whenever x lies in any of these subintervals. Moreover, we have

x ∈ [T, 2T ] : N σ f (x + x ϑ ) -N σ f (x) f,ϑ,ε x ϑ/2-2ε f,ϑ,ε T 1-ε for all sufficiently large T .
In view of (1.14) and Theorems 2-3, it seems reasonable to propose the following conjecture.

Conjecture 1. Let f ∈ S * k and 0 < ϑ < 1/2.
Then for any ε > 0, the inequality (1.15) holds for x x 0 (f, ϑ, ε).

The next theorem shows that this conjecture is true for infinitely many x.

Theorem 4. Suppose that f ∈ S * k and 0 < ϑ < 1/2. Then for any ε > 0, the inequality (1.15) holds for infinitely many x.

A special triple exponential sum

The next result is one of keys in the proofs of Theorem 1 and Propositions 2-3 below (see .

Proposition 1. Let χ(h) := e(ξh) (ξ ∈ R), |ϕ m | 1, |ψ n | 1 and S := h∼H m∼M n∼N χ(h)ϕ m ψ n e xh mn .
Then for any 1 H M N y -1 x 3ε , we have

(2.1) S ε M N x -2ε ,
provided one of the following conditions is satisfied:

x 17/38 y x 23/50 , M yx -ε , N y 10/14 x -3/14-ε ; (2.2)

x 83/188 y x 17/38 , M yx -ε , N y 14/12 x -5/12-ε ; (2.3)

x 10/27 y x 83/188 , M yx -ε , N y 27/19 x -10/19-ε ; (2.4)

x κ/(2κ-λ+1) y x (κ+1)/(2κ-λ+2) , M yx -ε , N y (κ-λ+1)/2 x -κ/2-ε ; (2.5)
where (κ, λ) is an exponent pair.

Proof. By [30, Theorem 2], we can write

S M N (x 5 y -16 M 2 N 12 ) 1/26 + (xy -4 M N 3 ) 1/6 + (x 20 y -56 M 2 N 38 ) 1/90 + (x 3 y -12 M 2 N 14 ) 1/20 + (x 7 y -22 M N 22 ) 1/36 + (x 7 y -28 M 6 N 26 ) 1/44 + y -1 M + y -1 N 2 x ε .
Thus the inequality (2.1) holds provided

M yx -ε , N 12 y 14 x -5-ε , N 3 y 3 x -1-ε , N 19 y 27 x -10-ε , N 14 y 10 x -3-ε , N 22 y 21 x -7-ε , N 26 y 22 x -7-ε , N 2 yx -ε .
Among the above eight inequalities, it is easy to verify that for x 17/38 y x 23/50 , the fifth inequality implies all others except the first one. This proves (2.2). Assertions (2.3) and (2.4) can be treated similarly.

In order to prove (2.5), we apply Lemma 3.1 of [START_REF] Liu | Numbers with a large prime factor[END_REF] with the choice of parameters

(H, M, N ) = (M, H, N ), f (h) = h -1 , α = 1 and β = -1 to write S M N (x κ y -2κ-2 M λ+1 N 2 ) 1/(2κ+2) + y -1 M + (y -2 M N 2 ) 1/2 + (xy) -1/2 M N x ε .
Thus the inequality (2.1) holds provided

M yx -ε , N 2 y 2κ-λ+1 x -κ-ε , N 2 yx -ε , N 2 y -1 x 1-ε .
For x κ/(2κ-λ+1) y x (κ+1)/(2κ-λ+2) , it is easy to see that the second inequality implies the third and fourth. The proof of Proposition 1 is complete.

B-free numbers in short progressions

The distribution of B-free numbers in short progressions was first studied by Alkan & Zaharescu [START_REF] Alkan | B-free numbers in short arithmetic progressions[END_REF]. Their result is as follows: For all ε > 0, x x 0 (B, ε), y x 9/20+(1803/10)ε and 1 a q x ε with (a, q) = 1, we have (3.1) |{x < n x + y : n ≡ a (mod q) and n is B-free}| B,ε y/q.

The particular case of (3.1) with q = 1 was obtained by Bantle & Grupp [START_REF] Bantle | On a problem of Erdős and Szemerédi[END_REF]. In [START_REF] Alkan | B-free numbers in short arithmetic progressions[END_REF][START_REF] Alkan | Nonvanishing of Fourier coefficients of newforms in progressions[END_REF],

Alkan & Zaharescu used the method of Bantle & Grupp with some straightforward modification. The only difference is that they cannot directly apply Fouvry-Iwaniec's estimate on exponential sums ( [START_REF] Fouvry | Exponential sums with monomials[END_REF], Theorem 6) -the key tool in Bantle & Grupp's method, because of the coefficient e(had σ p 1 p 2 /q) (see (C) below), which depends on the variables p i (and is equal to 1 if q = 1). Since q x ε , it is easy to see that after a simple congruence argument (as Alkan & Zaharescu remarked in [START_REF] Alkan | B-free numbers in short arithmetic progressions[END_REF], [START_REF] Alkan | Nonvanishing of Fourier coefficients of newforms in progressions[END_REF]), Fouvry-Iwaniec's estimate on exponential sums is still applicable.

Here we shall insert our new estimate on exponential sums into the method of Bantle & Grupp with Alkan & Zaharescu's adaptation to obtain a better result.

Proposition 2. For all ε > 0, x x 0 (ε), y x 17/38+100ε and 1 a q x ε with ((a, q), b) = 1 for all b ∈ B, the inequality (3.1) holds.

Since Alkan & Zaharescu's proof contains some inaccuracies (for example, (17) of [START_REF] Alkan | B-free numbers in short arithmetic progressions[END_REF] and [START_REF] Alkan | Nonvanishing of Fourier coefficients of newforms in progressions[END_REF] is inexact), we reproduce here the proof of Bantle & Grupp with some simple adaptation, for the convenience of reader.

The notation of this section is independent. Let θ, δ 1 and δ 2 be some parameters such that

(3.2)          1 4 + ε θ < 1 2 , 5ε < δ 2 + 4ε < δ 1 + 3ε < θ, δ 1 + δ 2 < 1, δ 1 + δ 2 + θ -ε > 1. Introducing (3.3) P 1 := p ∈ P : x δ 1 < p x δ 1 +ε , P 2 := p ∈ P : x δ 2 < p x δ 2 +ε .
Bantle & Grupp's weight function is defined by

(3.4) c(n) := p 1 ∈P 1 p 2 ∈P 2 p 1 p 2 |n 1.
For x 3 and x y x θ , put

(3.5) A := x<n x+y n≡a(mod q) b n (∀ b∈B) c(n).
From (3.2), (3.3) and (3.4), it is easy to see that

(3.6) c(n) (δ 1 δ 2 ) -1 (n 2x), which implies x<n x+y n≡a(mod q) b n (∀ b∈B) 1 δ 1 δ 2 A.
Thus it is sufficient to show that (3.7) A B,ε y/q.

For this, we let := (B, ε) ∈ N be a positive integer such that

(3.8) ∞ k= +1 1 b k < Bε 3 δ 1 δ 2 ,
where

B := b∈B 1 - 1 b
is the natural density of the sequence of B-free numbers.

Clearly we can write (3.9)

A A 1 -A 2 -A 3 ,
where Lemma 3.1. We have

A 1 := x<n x+y n≡a(mod q) b i n (∀ i ) c(n),
A 2 2Bε 3 δ 1 δ 2 y q •
Proof. By (3.6), it follows that

A 2 1 δ 1 δ 2 b <b y/q b∈B x<n x+y n≡a(mod q) n≡0(mod b) 1.
Since ((a, q), b) = 1 for all b ∈ B, by the Chinese Remainder Theorem we easily see that the system of equations n ≡ a (mod q), n ≡ 0 (mod b) has solution if and only if (b, q) = 1. In this case, there is some integer a ∈ {1, . . . , bq -1} such that n ≡ a (mod bq). Thus

A 2 1 δ 1 δ 2 b <b y/q b∈B y bq + 1 1 δ 1 δ 2 b <b y/q b∈B 2y bq ,
which implies the required inequality in view of (3.8).

Lemma 3.2.

There is a constant C(B, ε) such that

A 3 C(B, ε) log x y q • Proof.
According to the definition of c(n), we can write (3.10)

A 3 = y/q<b x b∈B p 1 ∈P 1 p 2 ∈P 2 x<n x+y n≡a(mod q) n≡0(mod b) n≡0(mod p 1 p 2 ) 1.
As before, the system of equations n ≡ a (mod q), n ≡ 0 (mod b) has solution if and only if (b, q) = 1. In this case, there is a ∈ {1, . . . , bq -1} such that n ≡ a (mod bq). Since bq > y, the sum over n is at most 1. In this case, we must have p 1 | b or p 2 | b, otherwise we have n ≡ 0 (mod bp 1 p 2 ). Since bp 1 p 2

x θ-ε+δ 

1.

Clearly

p i ∈P i x<n x+y n≡a(mod q) n≡0(mod b) n≡0(mod p 1 p 2 ) 1 δ -1 i (i = 1, 2).
Inserting it into the preceding inequality, we find that

A 3 δ -1 2 p 1 ∈P 1 y/q<b x b∈B, p 1 |b 1 + δ -1 1 p 2 ∈P 2 y/q<b x b∈B, p 2 |b 1 (δ -1 1 + δ -1 2 )|P 1 |
, where we have used the hypothesis (b i , b j ) = 1 with i = j. This implies the required inequality.

For each σ = {k 1 , . . . , k i } ⊂ {1, . . . , }, write |σ| = i and

d σ = b k 1 b k 2 • • • b k i with the convention |∅| = 0 and d ∅ = 1
, where ∅ denotes the empty set. Lemma 3.3. For x x 0 (B, ε), we have

A 1 Bε 2 2 (y/q), provided (3.11) 
       25 58 < θ < 23 50 , δ 1 θ -100ε, δ 2 min{(14θ -5)/12, (10θ -3)/14} -100ε. Proof. Since (b i , b j ) = 1 (i = j), we can write A 1 = σ⊂{1,..., } (-1) |σ| x<n x+y n≡a(mod q) dσ|n c(n) = σ⊂{1,..., } (dσ,q)=1 (-1) |σ| p 1 ∈P 1 p 2 ∈P 2 x<n x+y n≡a(mod q) n≡0(mod dσp 1 p 2 )
1.

In the second equality, we have used the following facts: (i) (d σ , p 1 p 2 ) = 1 for all σ ⊂ {1, . . . , } and p i ∈ P i (i = 1, 2), (ii) n ≡ a (mod q) and n ≡ 0 (mod d σ p 1 p 2 ) have solution ⇔ (d σ , q) = 1.

Since (d σ p 1 p 2 , q) = 1, there are d σ , p 1 , p 2 ∈ {1, . . . , q -1} such that d σ d σ ≡ 1 (mod q) and p i p i ≡ 1 (mod q) (i = 1, 2).

It follows that (3.12)

A 1 = σ⊂{1,..., } (dσ,q)=1 (-1) |σ| A 1 (σ),
where

A 1 (σ) := p 1 ∈P 1 p 2 ∈P 2 x<dσp 1 p 2 m x+y m≡a * (mod q)
1 and a * := ad σ p 1 p 2 ∈ {1, . . . , (q -1) 4 }.

Introduce a function Φ(t) ∈ C ∞ (R) such that (3.13) Φ(t) = 1 if t ∈ (x, x + y], Φ(t) = 0 if t / ∈ (x -yx -2ε , x + y + yx -2ε ],
0 Φ(t) 1 otherwise, and

(3.14) Φ (j) (t) (yx -2ε ) -j (j 0, t ∈ R).
Thus we can write

A 1 (σ) = p 1 ∈P 1 p 2 ∈P 2 m≡a * (mod q) Φ(d σ p 1 p 2 m) + O yx -2ε = p 1 ∈P 1 p 2 ∈P 2 h∈Z φ(h) + O yx -2ε
where φ(t) := Φ(a * d σ p 1 p 2 + td σ p 1 p 2 q). Let A * 1 (σ) be the last sum. By Poisson's formula [26, Théorème I.6.1], we obtain

A * 1 (σ) = p 1 ∈P 1 p 2 ∈P 2 h∈Z φ(h),
where

φ(h) = R φ(t)e -2πiht dt = e 2πiha * /q d σ p 1 p 2 q Φ h d σ p 1 p 2 q . Thus A * 1 (σ) = 1 d σ q p 1 ∈P 1 p 2 ∈P 2 1 p 1 p 2 h∈Z e 2πiha * /q Φ h d σ p 1 p 2 q .
We shall evaluate A * 1 (σ) by estimating the contribution to it according to

h = 0, |h| > H := y -1 x δ 1 +δ 2 +10ε , |h| H, respectively. (A) The contribution with h = 0 Since Φ(0) = R Φ(t) dt = y + O yx -2ε , the contribution with h = 0 to A * 1 (σ) is equal to 1 + O 1 x ε y d σ q p 1 ∈P 1 1 p 1 p 2 ∈P 2 1 p 2 • (B) The contribution with |h| > H := y -1 x δ 1 +δ 2 +10ε
By partial integration and (3.14), it follows that

Φ h d σ p 1 p 2 q = 2πih d σ p 1 p 2 q -j R Φ (j) (t)e -2πith/(dσp 1 p 2 q) dt j d σ p 1 p 2 qx 2ε hy j y.
Thus the contribution with |h| > H is, with the choice of j = 1/(5ε) + 3,

j y q x δ 1 +δ 2 +5ε Hy j H j y q x -5jε H ε y q x -5ε . (C) The contribution with 1 |h| H This contribution is = 1 d σ q R Φ(t) 1 |h| H p 1 ∈P 1 p 2 ∈P 2 e 2πiha * /q p 1 p 2 e -2πith/(dσp 1 p 2 q) dt = 1 d σ q R Φ(t) 1 a 1 q 1 a 2 q 1 |h| H p 1 ∈P 1 p 1 ≡a 1 (mod q) p 2 ∈P 2 p 2 ≡a 2 (mod q) χ(h) p 1 p 2 e -th d σ p 1 p 2 q dt,
where χ(h) = e(hd σ a 1 a 2 /q) is an additive character independent of p 1 and p 2 . Define

S t/dσq (H , M, N ) := h∼H m∼M n∼N χ(h)ϕ m ψ n e -(t/(d σ q))h p 1 p 2 ,
where ϕ m := M m -1 if m = p 1 ∈ P 1 and p 1 ≡ a 1 (mod q), 0 otherwise,

ψ n := N n -1 if n = p 2 ∈ P 2 and p 2 ≡ a 2 (mod q), 0 otherwise.
After dyadic split and using Proposition 1 to estimate S t/(dσq) (H , M, N ), we can see that the contribution with 1 |h|

H to A * 1 (σ) is 1 q R Φ(t)q 2 max 1 a 1 , a 2 q x/2 t 2x, 1 H H x δ 1 M x δ 1 +ε , x δ 2 N x δ 2 +ε |S t/(dσq) (H , M, N )| M N dt 1 q R Φ(t)q 2 x -4ε dt y q x -ε , provided (3.11) is satisfied.
Combining all, we obtain that

A 1 (σ) = 1 + O 1 x ε y d σ q p 1 ∈P 1 1 p 1 p 2 ∈P 2 1 p 2 + O B,ε y q x -ε .
Now the required result follows from (3.12) by noticing that σ⊂{1,..., } (dσ,q)=1

(-1) |σ| d σ = i=1 (b i ,q)=1 1 - 1 b i B, p i ∈P i 1 p i = log δ i + ε δ i + O 1 log x ε for x x 0 (B, ε).
Now we are ready to complete the proof of Proposition 2. Take

θ = 17 38 , δ 1 = θ -ε , δ 2 = 1 -2θ + ε .
It is easy to verify that these choices satisfy the conditions (3.2) and (3.11). Thus Lemmas 3.1, 3.2 and 3.3 imply that

A Bε 2 2 - Bε 3 δ 1 δ 2 - 2C(B, ε) log x y q B,ε y q
for x x 0 (B, ε). This completes the proof of (3.7) and hence Proposition 2.

Special B-free numbers and proof of Theorem 1

Let P ⊂ P be a set of prime numbers satisfying the following condition (4.1)

P ∩ [1, x] f x ρ (log log x) Ψρ (log x) Θρ (x 2),
where ρ ∈ [0, 1] and Θ ρ , Ψ ρ are real constants such that Θ 1 > 1. In this section, we consider a special set B P := P ∪ p 2 : p ∈ P P .

Clearly B P verifies the condition (1.6) 

θ(ρ) = (κ + 2)ρ (κ -λ + 3)ρ + 2 for κ κ -λ + 1 ρ 1,
where (κ, λ) is an exponent pair. Then for any ε > 0, x x 0 (P, ε), y x θ(ρ)+ε with and 1 a q x ε with (a, q) = 1, we have

(4.2) |{x < n x + y : n ≡ a (mod q)
and n is B P -free}| P,ε y/q.

The proof of this proposition is very similar to that of Proposition 2. We shall only point out some different points.

Let ρ, θ, δ 1 and δ 2 be some parameters such that

(4.3)          1 4 + ε θ < 1 2 , 4ε < δ 2 + 3ε < δ 1 + 2ε < (θ -ε)/ρ, δ 1 + δ 2 < 1, δ 1 + δ 2 + θ/ρ > 1.
Similarly define A , A 1 , A 2 , A 3 by replacing B by B P . Thus we have

(4.4) A A 1 -A 2 -A 3 .
As a particular case of Lemma 3.1, we have

(4.5) A 2 B P ε 3 δ 1 δ 2 y q ,
where

B P := p∈P 1 - 1 p p∈P P 1 - 1 p 2 .
We shall use the method of [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF] to estimate A 3 . An advantage of this method is to allow us to relax δ 1 + ε < θ (for general B) to δ 1 + ε < (θ -ε)/ρ (for B P ).

Lemma 4.1.

There is a constant C(P, ε) such that

A 3 C(P, ε) (log x) 1/2 y q (x 2).
Proof. According to the definition of B P , we can write (4.6)

A 3 = A 3,1 + A 3,2 + A 3,3 + A 3,4 ,
where 

A 3,1 := y/q<p (y/q) 1/ρ (log x) (Θρ-1/2)/ρ p∈P x<n x+y n≡a(mod q) p|n c(n), A 3,2 := (y/q) 1/ρ (log x) (Θρ-1/2)/

c(n).

In A 3,1 , we have (p, q) = 1. Thus there is some integer a ∈ {1, . . . , pq -1} such that n ≡ a (mod pq). Since pq > y, the sum over n is at most 1. Thus For p > y, there is at most an integer n ∈ (x, x + y] such that p | n. Thus

A 3,1 (δ 1 δ 2 ) -1 p (y/q) 1/ρ (log x) (Θρ-1/2)/ρ p∈P 1 (y/q) 1/ρ (log x) (Θρ-1/2)/ρ ρ (log x) Θρ (y/q) (log x) 1/2 •
The definition of c(n) allows us to write

A 3,2 = (y/q) 1/ρ (log x) (Θρ-1/2)/ρ <p x p∈P p 1 ∈P 1 p 2 ∈P 2 x<n x+y n≡a(mod q) p|n, p 1 p 2 |n 1.
The hypothesis

δ 2 + 2ε < δ 1 + ε < (θ -ε)/ρ and p ∈ P imply (p, p 1 p 2 ) = 1. Thus pp 1 p 2 | n. Since pp 1 p 2 > x θ/ρ+δ 1 +δ 2 (log x) (Θρ-1/2)/ρ
2x, the sum over n must be empty. Therefore A 3,2 = 0.

We have

A 3,3 1 δ 1 δ 2 q (y/q)(log x) 1/2 p∈P P 1 (y/q) (log x) 1/2 •
The term A 3,4 will be treated by the method of Filaseta & Trifonov [START_REF] Filaseta | On gaps between squarefree numbers II[END_REF]. Defining S(t 1 , t 2 ) := {d ∈ (t 1 , t 2 ] : there is an integer k such that kd 2 ∈ (x, x + y]}, we can deduce, in view of (3.6), that

A 3,4 (δ 1 δ 2 ) -1 (y/q) 2 log x<p 2 x p∈P P x<n x+y p 2 |n 1 (δ 1 δ 2 ) -1 S yq -1 (log x) 1/2 , x 1/2 .
We split yq -1 (log x) 1/2 , x 1/2 into dyadic intervals (x φ , 2x φ ] and write

A 3,4 (δ 1 δ 2 ) -1 (log x) max θ-ε φ 1/2 S(x φ , 2x φ ) .
According to [10, (4)], we have

S(x φ , 2x φ ) x (1-φ)/3
for yq -1 (log x) 1/2 x φ 2x 1/2 , and thus infer with the hypothesis θ > 1 4 + 3ε that A 3,4

(y/q)x -ε . Now inserting these estimates into (4.6), we obtain the required inequality. Now we are ready to complete the proof of Proposition 3. Take

θ = θ(ρ), δ 1 = θ -ε , δ 2 = 1 -(1 + 1/ρ)θ + ε .
It is easy to verify that these choices satisfy the conditions (4.3). Thus Lemma 3.3, (4.5) and Lemma 4.1 imply that

A B P ε 2 - B P ε 3 δ 1 δ 2 - 2C(P, ε) (log x) 1/2
y q P,ε y q for x x 0 (P, ε). This completes the proof of (3.7) and hence Proposition 3.

Moments of S f (x) in short intervals

Recall the definition (1.16):

S f (x) := n x λ f (n).
This section will be devoted to investigate the 2 th-moment ( = 1, 2)

(5.1) M (T, U ) := 2T T |S f (x + U ) -S f (x)| 2 dx,
which is a principal tool for the proof of Theorems 2-3, where T 1 and U 1 are large parameters. When = 1, this type of integral was studied by Good [START_REF] Good | Ein Ω-Resultat für das quadratische Mittel delRiemannschen Zetafunktion auf der kritische Linie[END_REF] for E(t), which is defined by

E(t) := t 0 ζ(1/2 + iu) 2 du -t log(t/2π) -(2γ -1)t (t 2),
and by Jutila [START_REF] Jutila | On the divisor problem for short intervals[END_REF] for ∆(x) which is the error term of the Dirichlet divisor problem, given by the formula

∆(x) = n x τ (n) -x(log x + 2γ -1).
Here ζ(s) denotes the function of Riemann, τ (n) is the classical divisor function and γ the Euler constant. Jutila [START_REF] Jutila | On the divisor problem for short intervals[END_REF] first studied the mean square of the difference ∆(x + U ) -∆(x) for short intervals. He proved that if T 2 and 1 U T 1/2 H T, then

T +H T |∆(x + U ) -∆(x)| 2 dx = 1 4π 2 n T /(2U ) τ (n) 2 n 3/2 T +H T x 1/2 e (n/x) 1/2 U -1 2 dx + O T 1+ε + HU 1/2 T ε , (5.2) 
with the notation e(t) := e 2πit (t ∈ R), which implies that the estimate (5.3)

T +H T |∆(x + U ) -∆(x)| 2 dx HU log(T 1/2 /U ) 3 holds for T 2, HU T 1+ε and T ε U T 1/2 /2.
For E(t), Jutila also obtained similar results.

When H = T, Ivić [START_REF] Ivić | On the divisor function and the Riemann zeta-function in short intervals[END_REF] substantially improved Jutila's asymptotic formulas. For ∆(x), Ivić proved for T ε U T 1/2 /2 that (5.4)

2T T |∆(x + U ) -∆(x)| 2 dx = T U 3 j=0 c j (∆) log(T 1/2 /U ) j + O ε T 1/2+ε U 2 + T 1+ε U 1/2 ,
where the c j (∆) are constants. Jutila [START_REF] Jutila | On the divisor problem for short intervals[END_REF] conjectured that the estimates

2T T |∆(x + U ) -∆(x)| 4 dx ε T 1+ε U 2 , (5.5) 2T T |E(t + U ) -E(t)| 4 dx ε T 1+ε U 2 (5.6)
are true for 1 U T 1/2 . These two conjectures are very strong since Jutila pointed out that (5.6) implies the important conjectural bound

T 1 |ζ(1/2 + it)| 6 dt ε T 1+ε .
Ivić [START_REF] Ivić | On the divisor function and the Riemann zeta-function in short intervals[END_REF] proved that (5.5) holds for T 3/8 U T 1/2 . The term T 1+ε U 2 in (5.5) is best possible with respect to T ε . However, when T 3/7 U T 1/2 , Tanigawa and Zhai [START_REF] Tanigawa | On the fourth power moment of ∆(x) and E(x) in short intervals[END_REF] proved an asymptotic formula for the integral

2T T |∆(x + U ) -∆(x)| 4 dx.
The proofs of the above estimates of ∆(x) are all based on the well-known truncated Voronoi's formula

(5.7) ∆(x) = x 1/4 π √ 2 n N τ (n) n 3/4 cos 4π √ nx - π 4 + O(x ε + N -1/2 x 1/2+ε ),
where 1 < N x A , A > 0 is an arbitrarily large constant.

For S f (x) we have the following similar Voronoi's formula

(5.8) S f (x) = x 1/4 π √ 2 n M λ f (n) n 3/4 cos 4π √ nx - π 4 + O f,ε x ε + M -1/2 x 1/2+ε
for 1 M x A . Besides the analogy between (5.7) and (5.8), we also have the the bound (1.3). So the proofs of the above estimates apply also to S f (x) without modifications.

When = 1, Ivić [START_REF] Ivić | On the divisor function and the Riemann zeta-function in short intervals[END_REF] proved the following Proposition 4. For each f ∈ S * k , there is a positive constant C(f ) > 0 such that for any ε > 0 the asymptotic formula

(5.9) M 1 (T, U ) = C(f )T U + O f,ε (T 3/5+ε U 9/5 + T 1+ε U 1/2 )
holds uniformly for T 1 and T ε U T 1/2 /2. In particular we have (5.10)

1 2 C(f )T U M 1 (T, U ) 2C(f )T U, uniformly for T T 0 (f, ε) and T ε U T 1/2-ε
, where T 0 (f, ε) is a suitable positive constant depending on f and ε only . 

M 2 (T, U ) f,ε T 1+ε U 2 + T 7/4+ε .
uniformly for T 1 and T ε U T 1/2 . Especially when T 3/8 U T 1/2 , we have

(5.12) M 2 (T, U ) f,ε T 1+ε U 2 .
If applying the argument of Tanigawa and Zhai [START_REF] Tanigawa | On the fourth power moment of ∆(x) and E(x) in short intervals[END_REF] to S f (x), we have Proposition 6. For each f ∈ S * k there is a small positive constant c = c f such that for any ε > 0 we have

(5.13) M 2 (T, U ) = 3 π 4 2T T x n c(T /U ) 1/4 λ f (n) 2 n 3/2 sin 2 πU n/x 2 dx + O f,ε T 1/2+ε U 3 + T 19/16+ε U 25/16 + T 17/8+ε U -5/8 .
uniformly for T 1 and

T 3/7 U T 1/2 .
From Proposition 6 we can prove the following Corollary 4. For all f ∈ S * k and any ε > 0, we have

(5.14) M 2 (T, U ) f,ε T U 2 .
uniformly for T 1 and T 3/7+ε U T 1/2-ε .

Proof. With the help of trivial inequality | sin t| min{|t|, 1} and Rankin-Selberg's well known result (cf. [START_REF] Rankin | Contributions to the theory of Ramanujan's function τ (n) and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms[END_REF])

n x |λ f (n)| 2 = A(f )x + O(x 3/5 )
where A(f ) is the positive constant depending on f , a simple partial summation shows that the integral in (5.13) is

T 2T T n T /U 2 λ f (n) 2 n 3/2 U 2 n x 2 dx + T 2T T T /U 2 <n c(T /U ) 1/4 λ f (n) 2 n 3/2 2 dx T U 2 .
This proves the required result.

Analogous to Jutila's conjectures (5.5) and (5.6), we may propose the following Conjecture 2. The estimate (5.14) holds uniformly for T ε U T 1/2 .

For ∆(x), Tong [START_REF] Tong | On divisor problem III[END_REF] established the well-known asymptotic formula Ivić [START_REF] Ivić | Large values of certain number-theoretic error terms[END_REF] proved that (5.17)

T 1 |S f (x)| 2 dx = C(f )T 3/2 + O f T (log T ) 5 .
Combining the approaches of [START_REF] Ivić | Large values of certain number-theoretic error terms[END_REF] and [START_REF] Lau | On the mean square formula of the error term in the Dirichlet divisor problem[END_REF], it is easy to show

(5.18) M 1 (T, U ) f T U + T log T for 1 U T 1/2 . Heath-Brown & Tsang [13] proved that if 2 H T 1/2 /2, then (5.19) 2T T max 0 h H ∆(x + h) -∆(x)
2 dx T H(log T ) 5 .

Applying their approach to the function S f (x) with the help of (5.18) we get the following result.

Proposition 7. For each f ∈ S * k , we have

(5.20) 2T T max 0 h H S f (x + h) -S f (x) 2 dx f T H(log T ) 2 , uniformly for 2 H T 1/2 /2.
Proof. Write H = 2 λ b with λ ∈ N and 1 b < 2. Similar to the proof of [13, Lemma 2], we can deduce by using (5.18) that the integral in (5.20) is

λ µ λ 0 ν<2 µ T +v2 λ-µ b T +v2 λ-µ b |S f (x + 2 λ-µ b) -S f (x)| 2 dt + T (log T ) 2 λ µ λ 0 ν<2 µ (T 2 λ-µ b + T log T ) + T (log T ) 2 λ 2 HT + λHT log T + T (log T ) 2
HT (log T ) 2 .

Proofs of Theorems 2 and 3

In this section we shall prove Theorem 2 by using the method of Heath-Brown & Tsang [START_REF] Heath-Brown | Sign changes of E(t), ∆(x) and P (x)[END_REF]. We only consider the case with sign "+". The proof for the case "-" is the same.

For

f ∈ S * k , t 1 and U 1, define R U (t) := S f (t + U ) -S f (t) = t<n t+U λ f (n), (6.1) R + U (t; ) := max{R U (t), 0}. (6.2) Lemma 6.1. Let f ∈ S *
k and ε > 0. Then we have

(6.3) 2T T R f (t; U ) dt f,ε T 1+ε
uniformly for U T .

Proof. Taking M = T in (5.8), it follows that (j = 0, 1)

2T T S f (t + jT ϑ ) dt n M τ (n) n 3/4 2T T (t + jT ϑ ) 1/4 cos 4π n(t + jT ϑ ) - π 4 dt + T 1+ε .
This and the first derivative test imply (6.3) immediately.

We only consider T 3/7+ε U T 1/2-ε , since the other case T 3/8+ε U T 3/7+ε is similar. By the Hölder inequality and (5.10), we have

T U 2T T |R U (t)| 2/3+4/3 dt 2T T |R U (t)| dt 2/3 2T T |R U (t)| 4 dt 1/3
.

Together with (5.12), it leads to

2T T |R U (t)| dt T U 1/2 ,
and hence

2T T R + U (t) dt T U 1/2
by (6.3) and the relation

(6.4) 2R + U (t) = R U (t) + |R U (t)|. Let δ > 0 be a small constant. Then (6.5) T U 1/2 2T T R + U (t)>δU 1/2 R + U (t) dt + δT U 1/2 .
So, for sufficiently small δ > 0, we have 

2T T R + U (t)>δU 1/2 R + U (t) dt T U 1/2
0 h H R + U (t + h) -R + U (t) > δU 1/2 T.
Take U = T θ and H = T θ (log T ) -2 . We divide the interval [T, 2T ] into subintervals of length H. In view of (6.7), there are at least O(T 1-θ (log T ) -2 ) subintervals containing a point x such that

R + U (x) -max 0 h H R + U (x + h) -R + U (x) > δU 1/2 .
Since min

x t x+H R + U (t) R + U (x) -max 0 h H R + U (x + h) -R + U (x) > δU 1/2 .
this implies that for all t ∈ [x, x + H], R + U (t) > δU 1/2 and hence

N + f (t + U ) -N + f (t) δU 1/2 T -ε .
Clearly, [x, x + H] may overlap at most two subintervals, so we can select alternate subintervals to avoid overlapping. The proof of Theorem 2 is complete. The proof of Theorem 3 is similar to that of Theorem 2. The essential difference is to apply Proposition 5 in place of Proposition 6. So we omit the details.

Remark 1. Ivić's estimate (5.4) implies that for any 0 < ϑ < 1/2 we have (6.8) ∆(x + T ϑ ) -∆(x) = Ω T ϑ/2 (log T ) 3/2 , x ∈ [T, 2T ].

However, when 3/7 < ϑ < 1/2, our argument of this paper implies that

x ∈ [T, 2T ] : ±(∆(x + T ϑ ) -∆(x)) T ϑ/2 (log T ) 3/2 T, which is an improvement of (6.8).

Proof of Theorem 4

From Proposition 4, there exists infinitely many x such that

S f (x + x ϑ ) -S f (x) x ϑ/2
which implies that (7.1)

N + f (x + x ϑ ) -N + f (x)
x ϑ/2-ε/5 .

This proves (1.15) with the sign "+". Let p 0 be the least prime such that p 0 N and λ f (p 0 ) < 0. Since each integer n counted in (7.1) can be written as n = p ν 0 m with p 0 m and 0 ν 4 log x, (7.1) becomes

0 ν 4 log x x<p ν 0 m x+x ϑ p 0 m, λ f (p ν 0 )λ f (m)>0 1 
x ϑ/2-ε/5 .

Thus there is at least a ν ∈ N ∩ [0, 4 log x] such that

x<p ν 0 m x+x ϑ p 0 m, λ f (p ν 0 )λ f (m)>0 1 
x ϑ/2-ε/4 .

From this we deduce that at least one of the following two inequalities

x/p ν 0 <m x/p ν 0 +x ϑ /p ν 0 p 0 m, λ f (m)>0 1

x ϑ/2-ε/4 (7.2)

x/p ν 0 <m x/p ν 0 +x ϑ /p ν 0 p 0 m, λ f (m)<0 1

x ϑ/2-ε/4 (7.3) holds. Clearly these imply that (1.15) with the sign "-" holds for x/p ν 0 or x/p ν-1 0 in place of x, respectively.

Corollary 3 .

 3 Consider the family of elliptic curves E c,d : v 2 = u 3 + cu + d without complex multiplication, where c and d are integers with |c| C and |d| D. Let

A 2

 2 

When = 2 ,

 2 Ivić's argument for 2T T |∆(x + U ) -∆(x)| 4 dx yields the following Proposition 5. For all f ∈ S * k and any ε > 0, we have (5.11)

1 |∆

 1 (x)| 2 dx = CT 3/2 + F (T ) with F (T )T (log T )5 . Recently, Lau & Tsang[START_REF] Lau | On the mean square formula of the error term in the Dirichlet divisor problem[END_REF] proved(5.16)F (T )T (log T ) 3 log log T.

  1 +δ 2 > 2x (in view of (3.2)) and n 2x, this is contradictory. Thus we deduce

	A 3			1
	y/q<b x	p 1 ∈P 1	p 2 ∈P 2 x<n x+y
	b∈B	p 1 |b	n≡a(mod q)
				n≡0(mod b)
				n≡0(mod p 1 p 2 )
	+		
	y/q<b x	p 1 ∈P 1 p 2 ∈P 2	x<n x+y
	b∈B			p 2 |b	n≡a(mod q)
				n≡0(mod b)
				n≡0(mod p 1 p 2 )

  Proposition 3. Let B P be defined as above and let

	29ρ/(46ρ + 19) if 190/323 < ρ 166/173
	θ(ρ) =
	17ρ/(26ρ + 12) if 166/173 < ρ 1
	or

  With (5.10) and the trivial inequalityR + U (t) T ε N + f (t + U ) -N + f (t), the second part of Theorem 2 follows readily.In view of (6.4) and the trivial inequality ||a| -|b|| |a -b|, we haveR + U (t + h) -R + U (t) R U (t + h) -R U (t) S f (t + U + h) -S f (t + U ) + S f (t + h) -S f (t) .Applying Proposition 7, it follows that, for H(log T ) 2 δU ,

		T	2T	max 0 h H	R + U (t + h) -R + U (t)	2 dt	δT U,
	where δ > 0 is a small constant. By (6.5) and the Cauchy-Schwarz inequality, we
	deduce that					
	2T					
	T	R + U (t) -max 0 h H	R + U (t + h) -R + U (t) dt	T U 1/2 ,
	2T					
	T	R + U (t) -max 0 h H	R + U (t + h) -R + U (t)

.

With the Cauchy-Schwarz inequality, we deduce that (6.6)

T 2 U t ∈ [T, 2T ] : R + U (t) > δU 1/2 2T T |R U (t)| 2 dt.

2 dt T U, provided H(log T ) 2 δU . Repeating the argument in (6.5)-(6.6), we have (6.7) t ∈ [T, 2T ] : R + U (t) -max
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