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Introduction

The aim of this short note is to make explicit two observations about algebraic properties of the ring H ∞ of bounded Dirichlet series. In particular we will show that (1) H ∞ is not a coherent ring. (This is essentially an immediate consequence of Eric Amar's proof of the noncoherence of the Hardy algebra H ∞ (D n ) of the polydisk D n for n ≥ 3 [START_REF] Amar | Non cohérence de certains anneaux de fonctions holomorphes[END_REF].) (2) H ∞ has infinite Bass stable rank. (This is a straightforward adaptation of the first author's proof of the fact that the stable rank of the infinite polydisk algebra is infinite [START_REF] Mortini | An example of a subalgebra of H on the unit disk whose stable rank is not finite[END_REF]). As corollaries, we obtain that H ∞ has infinite topological stable rank, and infinite Krull dimension.

Before giving the relevant definitions, we briefly mention that H ∞ is a closed Banach subalgebra of the classical Hardy algebra H ∞ (C >0 ) consisting of all bounded and holomorphic functions in the open right half plane

C >0 := {s ∈ C : Re(s) > 0},
and it is striking to compare our findings with the corresponding results for H ∞ (C >0 ):

H ∞ (C >0 ) H ∞ Coherent?
Yes (See [START_REF] Mcvoy | Coherence of some rings of functions[END_REF]) No Bass stable rank 1 (See [START_REF] Treil | The stable rank of the algebra H ∞ equals 1[END_REF]) ∞ Topological stable rank 2 (See [START_REF] Suárez | Trivial Gleason parts and the topological stable rank of H ∞[END_REF]) ∞ Krull dimension ∞ (See [START_REF] Von Renteln | Primideale in der topologischen Algebra H ∞ (β)[END_REF]) ∞

Nevertheless the above results for H ∞ lend support to Harald Bohr's idea of interpreting Dirichlet series as functions of infinitely many complex variables, a key theme used in the proofs of the main results in this note. We recall the pertinent definitions below.

1.1. The algebra H ∞ of bounded Dirichlet series. H ∞ denotes the set of Dirichlet series

f (s) = ∞ n=1 a n n s , (1.1) 
where (a n ) n∈N is a sequence of complex numbers, such that f is holomorphic and bounded in C >0 . Equipped with pointwise operations and the supremum norm,

f ∞ := sup s∈C >0 |f (s)|, f ∈ H ∞ ,
H ∞ is a unital commutative Banach algebra. In [8, Theorem 3.1], it was shown that the Banach algebra H ∞ is precisely the multiplier space of the Hilbert space H of Dirichlet series

f (s) = ∞ n=0 a n n s
for which

f 2 H := ∞ n=1 |a n | 2 < ∞.
The importance of the Hilbert space H stems from the fact that its kernel function K H (z, w) is related to the Riemann zeta function ζ:

K H (z, w) = ζ(z + w).
For m ∈ N, let H ∞ m be the closed subalgebra of H ∞ consisting of Dirichlet series of the form (1.1) involving only integers n generated by the first m primes 2, 3,

• • • , p m . 1.2. H ∞ = H ∞ (D ∞ ).
In [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF]Lemma 2.3 and the proof of Theorem 3.1], it was established that H ∞ is isometrically (Banach algebra) isomorphic to H ∞ (D ∞ ), a certain algebra of functions analytic in the infinite dimensional polydisk, defined below. As this plays a central role in what follows, we give an outline of this based on [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF], [START_REF] Seip | Interpolation by Dirichlet series in H ∞[END_REF] and [START_REF] Maurizi | Some remarks on the algebra of bounded Dirichlet series[END_REF].

A seminal observation made by H. Bohr [START_REF] Bohr | Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletscher Reihen an/n s[END_REF], is that if we put

z 1 = 1 2 s , z 2 = 1 3 s , z 3 = 1 5 s , • • • , z n = 1 p s n , • • • ,
where p n denotes the nth prime, then, in view of the Fundamental Theorem of Arithmetic, formally a Dirichlet series in H ∞ n or H ∞ can be considered as a power series of infinitely many variables. Indeed, each n has a unique expansion

n = p α 1 (n) 1 • • • p α r(n) (n) r(n)
, with nonnegative α j (n)s, and so, from (1.1), we obtain the formal power series

F (z) = ∞ n=1 a n z α 1 (n) 1 • • • z α r(n) (n) r(n) , (1.2) 
where

z = (z 1 , • • • , z m ) or z = (z 1 , z 2 , z 3 , • • • ) depending on whether f is a function in H ∞ m or in H ∞ .
Let us recall Kronecker's Theorem on diophantine approximation [7, Chapter XXIII]:

Proposition 1.1. For each m ∈ N, the map t → (2 -it , 3 -it , • • • , p -it m ) : (0, ∞) → T m has dense range in T m , where T := {z ∈ C : |z| = 1}.
Using the above and the Maximum Principle, it can be shown that for

f ∈ H ∞ m , f ∞ = F ∞ , (1. 
3) where the norm on the right hand side is the H ∞ (D m ) norm. Here H ∞ (D m ) denotes the usual Hardy algebra of bounded holomorphic functions on the polydisk D m , endowed with the supremum norm:

F ∞ := sup z∈D m |F (z)|, F ∈ H ∞ (D m ).
In [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF], it was shown that this result also holds in the infinite dimensional case. In order to describe this result, we introduce some notation. Let c 0 be the Banach space of complex sequences tending to 0 at infinity, with the induced norm from ℓ ∞ , and let B be the open unit ball of that Banach space. Thus with N := {1, 2, 3, m) in the argument of F given formally by (1.2), we obtain a function

• • • } and D := {z ∈ C : |z| < 1}, B = c 0 ∩ D N . For a point z = (z 1 , • • • , z m , • • • ) ∈ B, we set z (m) := (z 1 , • • • , z m , 0, • • • ), that is, z k = 0 for k > m. Substituting z (
(z 1 , • • • , z m ) → F (z (m) ),
which we call the mth-section F m (after Bohr's terminology "mte abschnitt"). F is said to be in H ∞ (D ∞ ) if the H ∞ norm of these functions F m are uniformly bounded, and denote the supremum of these norms to be F ∞ . Using Schwarz's Lemma for the polydisk, it can be seen that for m < ℓ,

|F (z (m) ) -F (z (ℓ) )| ≤ 2 f ∞ • max{|z j | : m < j ≤ ℓ},
and so we may define

F (z) = lim m→∞ F (z (m) ).
It was shown in [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0, 1)[END_REF] that (1.3) remains true in the infinite dimensional case, and so we may associate H ∞ with H ∞ (D ∞ ).

Proposition 1.2 ([8]

). There exists a Banach algebra isometric isomorphism ι :

H ∞ → H ∞ (D ∞ ). 1.3. Coherence.
Definition 1.3. Let R be a unital commutative ring, and for n ∈ N, let

R n = R × • • • × R (n times). For f = (f 1 , • • • , f n ) ∈ R n , a relation g on f is an n-tuple g = (g 1 , • • • , g n ) in R n such that g 1 f 1 + • • • + g n f n = 0.
The set of all relations on f is denoted by f ⊥ . The ring R is said to be coherent if for each n and each f ∈ R n , the R-module f ⊥ is finitely generated.

A property which is equivalent to coherence is that the intersection of any two finitely generated ideals in R is finitely generated, and the annihilator of any element is finitely generated [START_REF] Chase | Direct products of modules[END_REF]. We refer the reader to the article [START_REF] Glaz | Commutative coherent rings: historical perspective and current developments[END_REF] and the monograph [START_REF] Glaz | Commutative coherent rings[END_REF] for the relevance of the property of coherence in commutative algebra. All Noetherian rings are coherent, but not all coherent rings are Noetherian. (For example, the polynomial ring

C[x 1 , x 2 , x 3 , • • • ] is not Noe- therian because the sequence of ideals x 1 ⊂ x 1 , x 2 ⊂ x 1 , x 2 , x 3 ⊂ • • • is ascending and not stationary, but C[x 1 , x 2 , x 3 , • • • ] is coherent [6, Corol- lary 2.3.4].)
In the context of algebras of holomorphic functions in the unit disk D, we mention [START_REF] Mcvoy | Coherence of some rings of functions[END_REF], where it was shown that the Hardy algebra H ∞ (D) is coherent, while the disk algebra A(D) isn't. For n ≥ 3, Amar [START_REF] Amar | Non cohérence de certains anneaux de fonctions holomorphes[END_REF] showed that the Hardy algebra H ∞ (D n ) is not coherent. (It is worth mentioning that whether the Hardy algebra H ∞ (D 2 ) of the bidisk is coherent or not seems to be an open problem.) Using Amar's result, we will prove the following result: Theorem 1.4. H ∞ is not coherent.

1.4. Stable rank. In algebraic K-theory, the notion of (Bass) stable rank of a ring was introduced in order to facilitate K-theoretic computations [START_REF] Bass | Algebraic K-theory[END_REF]. Definition 1.5. Let R be a commutative ring with an identity element (denoted by 1). An element (a

1 , • • • , a n ) ∈ R n is called unimodular if there exist elements b 1 , • • • , b n in R such that b 1 a 1 + • • • + b n a n = 1.
The set of all unimodular elements of R n is denoted by U n (R). We say that a = (a

1 , • • • , a n+1 ) ∈ U n+1 (R) is reducible if there exists an element (x 1 , • • • , x n ) ∈ R n such that (a 1 + x 1 a n+1 , • • • , a n + x n a n+1 ) ∈ U n (R).
The Bass stable rank of R is the least integer n ∈ N for which every a ∈ U n+1 (R) is reducible. If there is no such integer n, we say that R has infinite stable rank.

Using the same idea as in [12, Proposition 1] (that the infinite polydisk algebra A(D ∞ ) has infinite Bass stable rank), we show the following.

Theorem 1.6. The Bass stable rank of H ∞ is infinite.

For Banach algebras, an analogue of the Bass stable rank, called the topological stable rank, was introduced by Marc Rieffel in [START_REF] Rieffel | Dimension and stable rank in the K-theory of C -algebras[END_REF].

Definition 1.7. Let R be a commutative complex Banach algebra with unit element 1. The least integer n for which U n (R) is dense in R n is called the topological stable rank of R. We say R has infinite topological stable rank if no such integer n exists.

Corollary 1.8. The topological stable rank of H ∞ is infinite.

Proof. This follows from the inequality that the Bass stable rank of a commutative unital semisimple complex Banach algebra is at most equal to its topological stable rank; see [START_REF] Rieffel | Dimension and stable rank in the K-theory of C -algebras[END_REF]Corollary 2.4].

Definition 1.9. The Krull dimension of a commutative ring R is the supremum of the lengths of chains of distinct proper prime ideals of R.

Corollary 1.10. The Krull dimension of H ∞ is infinite.

Proof. This follows from the fact that if a ring has Krull dimension d, then its Bass stable rank is at most d + 2; see [START_REF] Heitmann | Generating ideals in Prüfer domains[END_REF].

Noncoherence of H ∞

We will use the following fact due to Amar [1, Proof of Theorem 1.(ii)].

Proposition 2.1. (z 1 -z 2 , z 2 -z 3 ) ⊥ is not a finitely generated H ∞ (D 3 )- module.
Proof of Theorem 1.4. The main idea of the proof is that, using the isomorphism ι, essentially we boil the problem down to working with H ∞ (D ∞ ). Let

f 1 := 1 2 s - 1 3 s , f 2 := 1 3 s - 1 5 s . Then ι(f 1 ) = z 1 -z 2 and ι(f 2 ) = z 2 -z 3 . Suppose that (f 1 , f 2 ) ⊥ is a finitely generated H ∞ -module, say by g (1) 1 g (2) 1 , • • • , g (1) r g 
(2) r ∈ (H ∞ ) 2 .
We will show that the 3rd section of the image under ι of the above elements generate (z

1 -z 2 , z 2 -z 3 ) ⊥ in H ∞ (D 3 ), contradicting Proposition 2.1. If G (1) G (2) ∈ (H ∞ (D 3 )) 2 ∩ (F 1 , F 2 ) ⊥ , then F 1 G (1) + F 2 G (2)
= 0, and by applying ι -1 , we see that

ι -1 G (1) ι -1 G (2) ∈ (f 1 , f 2 ) ⊥ .
So there exist α (1) ,

• • • , α (r) ∈ H ∞ such that ι -1 G (1) ι -1 G (2) = α (1) g (1) 1 g 
(2) 1

+ • • • + α (r) g (1) r g (2) r 
.

Applying ι, we obtain

G (1)
G (2) = ι(α (1) )

ι(g (1) 
1 ) ι(g

(2) 1 ) + • • • + ι(α (r) ) ι(g (1) 
r ) ι(g

(2) r )
.

Finally taking the 3rd section, we obtain

G (1) (z 1 , z 2 , z 3 ) G (2) (z 1 , z 2 , z 3 ) = r j=1 (ι(α (j) ))(z (3) ) (ι(g (1) 
j ))(z (3) ) (ι(g

(2) j ))(z (3) ) . So it follows that (ι(g (1) 1 ))(z (3) ) (ι(g (2) 1 ))(z (3) ) , • • • , (ι(g (1) 
r ))(z (3) ) (ι(g

(2)
r ))(z (3) ) generate (z 1 -z 2 , z 2 -z 3 ) ⊥ , a contradiction to Amar's result, Proposition 2.1.

Stable rank of H ∞

The proof of Theorem 1.6 is a straightforward adaptation of the first author's proof of the fact that the Bass stable rank of the infinite polydisk algebra is infinite [START_REF] Mortini | An example of a subalgebra of H on the unit disk whose stable rank is not finite[END_REF]Proposition 1]. In [START_REF] Mortini | An example of a subalgebra of H on the unit disk whose stable rank is not finite[END_REF], the infinite polydisk algebra A(D ∞ ) is the uniform closure of the algebra generated by the coordinate functions z

1 , z 2 , z 3 , • • • on the countably infinite polydisk D × D × D × • • • . Proof of Theorem 1.6: Fix n ∈ N. Let g ∈ H ∞ be given by g(s) := n j=1 1 - 1 (p j p n+j ) s ∈ H ∞ . (3.1) Set f := 1 2 s , • • • , 1 p s n , g ∈ (H ∞ ) n+1 .
We will show that f ∈ U n+1 (H ∞ ) is not reducible. First let us note that f is unimodular. Indeed, by expanding the product on the right hand side of (3.1), we obtain

g = 1 + 1 2 s • g 1 + • • • + 1 p s n • g n ,
for some appropriate g 1 , • • • , g n ∈ H ∞ . Now suppose that f is reducible, and that there exist h

1 , • • • , h n ∈ H ∞ such that 1 2 s + gh 1 , • • • , 1 p s n + gh n ∈ U n (H ∞ ). Let y 1 , • • • , y n ∈ H ∞ be such that 1 2 s + gh 1 y 1 + • • • + 1 p s n + gh n y n = 1.
Applying ι, we obtain (z j + ι(h j )ι(g))ι(y j ) = 1, and this contradicts (3.3). As the choice of n ∈ N was arbitrary, it follows that the Bass stable rank of H ∞ is infinite.

(z 1 + ι(g)ι(h 1 ))ι(y 1 ) + • • • + (z n + ι(g)ι(h n ))ι(y n ) = 1. (3.2) Let h := (ι(h 1 ), • • • , ι(h n )). For z = (z 1 , • • • , z n ) ∈ C n , we define Φ(z) =                -h(z 1 , • • • , z n , z 1 , • • • , z n , 0, • • • ) n j=1 ( 

Φ(z) 2 .( 1 -

 21 1 -|z j | 2 ) for |z j | < 1, j = 1, • • • , n, 0 otherwise. Then Φ is a continuous map from C n into C n . But Φ vanishes outside D n , and so max z∈D n Φ(z) 2 = sup z∈C nThis implies that there must exist an r ≥ 1 such that Φ maps K := rD n into K. As K is compact and convex, by Brouwer's Fixed Point Theorem it follows that there exists a z * ∈ K such thatΦ(z * ) = z * . Since Φ is zero outside D n , we see that z * ∈ D n . Let z * = (ζ 1 , • • • , ζ n ). Then for each j ∈ {1, • • • , n}, we obtain 0 = ζ j + (ι(h j ))(ζ 1 , • • • , ζ n , ζ 1 , • • • , ζ n , 0, • • • ) n k=1 |ζ k | 2 ) = ζ j + (ι(h j )ι(g))(ζ 1 , • • • , ζ n , ζ 1 , • • • , ζ n , 0, • • • ). (3.3)But from (3.2), we know that n j=1
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