
HAL Id: hal-01278903
https://hal.science/hal-01278903

Submitted on 25 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and verification of Functional and
Non-Functional Requirements of ambient Self-Adaptive

Systems
Manzoor Ahmad, Nicolas Belloir, Jean-Michel Bruel

To cite this version:
Manzoor Ahmad, Nicolas Belloir, Jean-Michel Bruel. Modeling and verification of Functional and
Non-Functional Requirements of ambient Self-Adaptive Systems. Journal of Systems and Software,
2015, vol. 107, pp. 50-70. �10.1016/j.jss.2015.05.028�. �hal-01278903�

https://hal.science/hal-01278903
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15015

To link to this article : DOI :10.1016/j.jss.2015.05.028
URL : http://dx.doi.org/10.1016/j.jss.2015.05.028

To cite this version : Ahmad, Manzoor and Belloir, Nicolas and Bruel,
Jean-Michel Modeling and verification of Functional and Non-
Functional Requirements of ambient Self-Adaptive Systems. (2015)
Journal of Systems and Software, vol. 107. pp. 50-70. ISSN 0164-1212

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.jss.2015.05.028
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Modeling and verification of Functional and Non-Functional
Requirements of ambient Self-Adaptive Systems

Manzoor Ahmad a, Nicolas Belloir a,∗, Jean-Michel Bruelb

aUniversity of Pau and the Pays of the Adour, LIUPPA, 64000 Cedex, France
bUniversity of Toulouse, CNRS/IRIT, F-31062 Toulouse Université Cedex, France

a b s t r a c t

Self-Adaptive Systems modify their behavior at run-time in response to changing environmental conditions.

For these systems, Non-Functional Requirements play an important role, and one has to identify as early as

possible the requirements that are adaptable. We propose an integrated approach for modeling and verify-

ing the requirements of Self-Adaptive Systems using Model Driven Engineering techniques. For this, we use

Relax, which is a Requirements Engineering languagewhich introduces flexibility in Non-Functional Require-

ments. We then use the concepts of Goal-Oriented Requirements Engineering for eliciting and modeling the

requirements of Self-Adaptive Systems. For properties verification, we use OMEGA2/IFx profile and toolset.

We illustrate our proposed approach by applying it on an academic case study.

1. Introduction

As applications continue to grow in size, complexity, and het-

erogeneity, it becomes increasingly necessary for computing-based

systems to dynamically self-adapt to changing environmental condi-

tions. These systems are called Dynamically-Adaptive Systems (DASs)

(Whittle et al., 2009). Example applications that require DASs capabil-

ities include automotive systems, telecommunication systems, envi-

ronmental monitoring, and power grid management systems. In this

context, an adaptive system is a set of interacting or interdependent

entities, real or abstract, forming an integrated whole that together

are able to respond to environmental changes or changes in the in-

teracting parts. Self Adaptive Systems (SAS) like other systems, have

goals that must be satisfied and, whether these goals are explicitly

identified or not, system requirements should be formulated to guar-

antee goal satisfaction. This fundamental principle has served sys-

tems development well for several decades but is founded on an as-

sumption that goals are fixed. In general, goals can remain fixed if the

environment in which the system operates is stable (Whittle et al.,

2008). The distributed nature of SAS and changing environmental fac-

tors (including human interaction) makes it difficult to anticipate all

the explicit states in which the system will be during its lifetime.

∗ Corresponding author. Tel.: +33559407571; fax: +33559407654.

E-mail addresses: manzoor.ahmad@univ-pau.fr (M. Ahmad), nicolas.belloir@univ-

pau.fr, nbelloir@gmail.com (N. Belloir), bruel@irit.fr (J.-M. Bruel).

It is generally accepted that errors in requirements are very costly

to fix (Lutz, 1993). The avoidance of erroneous requirements is partic-

ularly important for the emerging class of systems that need to adapt

dynamically to changes in their environment. Many such DASs are be-

ing conceived for applications that require a high degree of assurance

(Kasten et al., 2003), inwhich an erroneous requirementmay result in

a failure at run-time that has serious consequences. The requirement

for high assurance is not unique to DASs, but the requirement for dy-

namic adaptation introduces complexity of a kind not seen in conven-

tional systemswhere adaptation, if it is needed at all, can be done off-

line. The consequent dynamic adaptation complexity is manifested at

all levels, from the services offered by the run-time platform, to the

analytical tools needed to understand the environment in which the

DASs must operate.

Requirements Engineering (RE) is concerned with what a system

ought to do and within which constraints it must do it. RE for SAS,

therefore, must address what adaptations are possible and how those

adaptations are carried out. In particular, questions to be addressed

include: what aspects of the environment are relevant for adapta-

tion? Which requirements are allowed to vary or evolve at run-time

andwhichmust always bemaintained? In short, RE for SASmust deal

with uncertainty because the expectations on the environment fre-

quently vary over time. We identify the uncertainty in requirements

of these systems and show how to verify it.

We are of the view that, on one hand, requirements for SAS should

consider the notion of uncertainty while defining it; on the other

hand, there should be a way to verify these requirements as early

as possible, even before the development of these systems starts.

In order to handle the notion of uncertainty in SAS, RE languages

for these systems should include explicit constructs for identifying

the point of flexibility in its requirements (Whittle et al., 2009).

In this context, we provide an integrated approach to achieve this

objective. We have used two approaches for defining and modeling

requirements, i.e., Goal-Oriented Requirements Engineering (GORE)

techniques are used to define and model the requirements of SAS

(Goldsby et al., 2008; Lapouchnian et al., 2005; Yu et al., 2008; 2004)

and SysML is used to specify the system and to provide a link with

the requirements.

We propose a model-based requirements modeling and verifica-

tion process for SAS that takes into account the uncertainty in re-

quirements of these systems. We provide some tools to implement

our approach and then apply it on an academic case study. The no-

tion of goals is added to take into account the advantages offered

by GORE. Requirements verification is done using a model checking

technique.

This paper is organized as follows: In Section 2, we describe the

background and the concepts which form the basis of this work,

Section 3 shows the state of the art regarding RE for SAS and prop-

erties verification of these systems, Section 4 illustrates our proposed

approach through an example and the tools that we have developed,

Section 5 shows the case study that we used for the validation of our

approach, and Section 6 concludes the paper and shows the future

work.

2. Background

2.1. RELAX

Relax is an RE language for DASs in which explicit constructs are

included to handle uncertainty. For example, the system might wish

to temporarily Relax a non-critical requirement in order to ensure

that critical requirements can still be met. The need for DASs is typ-

ically due to two key sources of uncertainty. First is the uncertainty

due to changing environmental conditions, such as sensor failures,

noisy networks, malicious threats, and unexpected (human) input;

the term environmental uncertainty is used to capture this class of

uncertainty. A second form of uncertainty is behavioral uncertainty,

which refers to situations where the requirements themselves need

to change. It is difficult to know all requirements changes at design

time and, in particular, it may not be possible to enumerate all possi-

ble alternatives (Whittle et al., 2009).

2.1.1. RELAX vocabulary

The vocabulary of Relax is designed to enable the analysts to iden-

tify the requirements that may be Relax-ed when the environment

changes. Relax addresses both types of uncertainties. Relax also out-

lines a process for translating traditional requirements into Relax re-

quirements. The only focal point is for the requirement engineers to

identify the point of flexibility in their requirements. Relax identifies

two types of requirements: one that can be Relax-ed in favor of other

ones, called variant or Relax-ed, and other that should never change,

called invariant. It is important to note that the decision of whether a

requirement is invariant or not is an issue for the system stakehold-

ers, aided by the requirements engineers.

Relax takes the form of a structured natural language, including

operators designed specifically to capture uncertainty (Whittle et al.,

2008); their semantics is also defined. Fig. 1 shows the set of Relax

operators, organized into modal, temporal, ordinal operators and un-

certainty factors. The conventional modal verb SHALL is retained for

expressing a requirement, with Relax operators providing more flex-

ibility in how and when that functionality may be delivered. More

specifically, for a requirement that contributes to the satisfaction of

goals that may be temporarily left unsatisfied, the inclusion of an al-

ternative, temporal or ordinal Relax-ation modifier, will define the

requirement as Relax-able.

Fig. 1. Relax operators (Whittle et al., 2009).

Fig. 2. Relax grammar (Whittle et al., 2009).

2.1.2. RELAX grammar

The syntax of Relax expressions is defined by the grammar shown

in Fig. 2. Parameters of Relax operators are typed as follows: p is an

atomic proposition, e is an event, t is a time interval, f is a frequency

and q is a quantity. An event is a notable occurrence that takes place

at a particular instant in time. A time interval is any length of time

bounded by two time instants. A frequency defines the number of oc-

currences of an event within a given time interval. If the number of

occurrences is unspecified, then it is assumed to be one. A quantity is

something measurable, meaning it can be enumerated. In particular,

a Relax expression ϕ is said to be quantifiable if, and only if, there

exists a function 1 such that 1(ϕ) is a quantity. A valid Relax ex-

pression is any conjunction of statements s1, . . . ,sm, where each si is

generated by the grammar.

The semantics of Relax expressions is defined in terms of Fuzzy

Branching Temporal Logic (FBTL) (Moon et al., 2004). FBTL can de-

scribe a branching temporal model with uncertain temporal and log-

ical information. It is the representation of uncertainty in FBTL that

makes it suitable as a formalism for Relax.

2.1.3. RELAX process

Fig. 3 shows the Relax process. The conventional process of re-

quirement discovery has been applied to get SHALL statements. Re-

lax process is then used to identify the requirements as invariant and

Relax-ed.

First of all, for each SHALL statement, we check whether it must

always be satisfied or not. Then for each potentially Relax-able re-

quirement, we identify the uncertainty factors. Here also the observ-

able properties of the environment are identified. The ENV/MON re-

lationship is made explicit by REL, and DEP is used to identify the

Fig. 3. Relax process (Whittle et al., 2009).

inter-dependencies between requirements. Then we check whether

the SHALL statement should be Relax-ed to handle uncertainty fac-

tors or not. Here we analyze the uncertainty factors to determine if

sufficient uncertainty exists in the environment that makes absolute

satisfaction of the requirement problematic or undesirable. If so, then

this SHALL statement needs to proceed to the next step for introduc-

ing Relax operators. If, however, the analysis reveals no uncertainty

in its scope of the environment, then the requirement is potentially

always satisfiable and therefore identified as an invariant.

After the application of Relax process on traditional requirements,

we obtain invariant and Relax-ed requirements. Relax-ed require-

ments support a high degree of flexibility that goes well beyond the

original requirements. Once the requirements engineer determines

that indeed a level of flexibility can be tolerated, then the down-

stream developers, including the designers and programmers, have

the flexibility to incorporate the most suitable adaptive mechanisms

to support the desired functionality. These decisions may be made at

design time and/or runtime (Blair et al., 2009; Cheng et al. , 2009b).

2.2. SysML/KAOS

The SysML/Kaos (Gnaho and Semmak, 2010) model is an exten-

sion of the SysML1 requirements model, with concepts of the Kaos

goal model (Lamsweerde, 2009). SysML is an extension of Uml,2 so

it provides concepts to represent requirements and to relate them

to other model elements, allowing the definition of traceability links

between requirements and system models. The SysML/Kaos meta-

model is implemented as a new profile, importing the SysML profile.

2.2.1. SysML

SysML is a general purpose modeling language for systems engi-

neering applications. SysML is a Uml profile that represents a sub-

set of Uml 2.0 with extensions. It supports the specification, analysis,

design, verification and validation of a broad range of systems and

systems-of-systems. These systems may include hardware, software,

information, processes, personnel, and facilities. In particular, the

language provides graphical representations with a semantic founda-

tion for modeling system requirements, behavior, structure, and con-

straints, which is used to integrate with other engineering analysis

models.

SysML includes a graphical construct to represent text-based re-

quirements and relate them to other model elements. The require-

ments diagram captures requirements hierarchies and requirements

derivation, and the <<satisfy>> and <<verify>> relationships

allow a modeler to relate a requirement to a model element, e.g.,

<<block>>, that satisfies or verifies the requirements. The require-

ment diagram provides a bridge between typical requirements man-

agement tools and system models.

2.2.2. KAOS

Kaos is a goal-oriented methodology for RE, enabling analysts to

build requirements models and to derive requirements documents

from Kaosmodels. The first key idea behind Kaos is to build a model

for the requirements, i.e., for describing the problem to be solved

and the constraints that must be fulfilled by any solution provider.

Kaos has been designed: (i) To fit problem descriptions by allow-

ing to define and manipulate concepts relevant to problem descrip-

tion; (ii) To improve the problem analysis process by providing a

systematic approach for discovering and structuring requirements;

(iii) To clarify the responsibilities of all the project stakeholders; (iv)

To let the stakeholders communicate easily and efficiently about the

requirements.

1 http://www.omgsysml.org/
2 http://www.omg.org/spec/UML/

2.2.3. Why SysML/KAOS?

SysML and Kaos have some advantages andweak points, but these

are complementary to each other based on the following points: (i)

Requirements description: A textual description in SysML and a de-

scription in the form of goals in Kaos; (ii) Relation between require-

ments: SysML has <<contain>> and <<derive>> relations; these

relations do not have precise semantics, which leads to confusion.

Kaos has refinement relations AND/OR; (iii) Traceability relations:

<<satisfy>> and <<verify>> relations in SysML allow to define

traceability. Kaos does not have explicit traceability relations; (iv)

Tools: A number of tools exist for SysML; most of them are open

source. Kaos propose a proprietary tool called Objectiver.3

Traditionally, requirements are divided into Functional Require-

ments (FRs) and Non-Functional Requirements (NFRs). Due to the

complexity of systems, NFRs should be processed much earlier than

when they are usually handled inmost development processes, at the

same level of abstraction as FRs which will allow taking into account

these properties for the evaluation of alternate options, risk and con-

flict analysis. The benefit of SysML is that it allows throughout the

development cycle to relate requirements to other model elements,

thus ensuring continuity from the requirements phase to the imple-

mentation phase. However, the proposed concepts of requirements in

SysML are not as rich as in the other RE methods (especially GORE).

SysML/Kaos is the result of motivation to benefit from the contribu-

tions of SysML, while ensuring a more precise definition of the con-

cepts. SysML/Kaos is inspired from the work of Chung et al. (1999)

and Cysneiros and Leite (2004). The SysML/Kaos model allows both

FRs (Laleau et al., 2010) and NFRs (Gnaho and Semmak, 2010) to be

modeled.

2.2.4. SysML/KAOS meta-model

Fig. 4 shows the extended meta-model of SysML/Kaos (Gnaho

and Semmak, 2010); non-functional concepts are represented as yel-

low boxes (bottom), the gray boxes (top) represent the SysML con-

cepts. The instantiation of the meta-model allows us to obtain a hi-

erarchy of NFRs in the form of goals. Non-Functional Goals (NFGs)

are organized in refinement hierarchies. The meta-class NonFunc-

tionalGoal represents the Non-Functional Goal (NFG), it is specified

as a sub-class of the meta-class Goal, which itself is a subclass of

the meta-class Requirement of SysML. An NFG represents a quality

that the future system must have. The nFGType specifies the type

of NFG and the attribute topic represents the domain concept con-

cerned by this type of requirement. An NFG can thus be represented

with the following syntax: nFGType [topic]. An NFG is either anAb-

stractNFG or an ElementaryNFG. A goal that cannot be further re-

fined is an ElementaryNFG. The refinement of an AbstractNFG by

either abstract or elementary goals is represented by the Associa-

tionClass Re nement. An AbstractNFGmay contain several com-

binations of subgoals (abstract or elementary). The relationship Re-

 nement becomes an AssociationClass between an AbstractNFG

and its subgoals. It can be specialized to represent And/Or goal re-

finements. At the end of the refinement process, it is necessary to

identify and express the various alternative ways to satisfy the Ele-

mentaryNFGs. For that, the SysML/Kaos meta-model considers the

concept of the meta-class ContributionGoal. A ContributionGoal

captures a possible way to satisfy an ElementaryNFG. The Asso-

ciationClass Contribution describes the characteristics of the con-

tribution. It provides two properties: contributionNature and con-

tributionType. The first one specifies whether the contribution is

positive or negative, whereas the second one specifies whether the

contribution is direct or indirect. A positive (resp. negative) contribu-

tion helps positively (resp. negatively) to the satisfaction of an Ele-

mentaryNFG. A direct contribution describes an explicit contribution

3 http://www.objectiver.com/

to the ElementaryNFG. An indirect contribution describes a kind of

contribution that is a direct contribution to a given goal but induces

an unexpected contribution to another goal. Finally, the concept of

Impact is used to connect NFGs to Functional Goals (FGs). It captures

the fact that a ContributionGoal has an effect on FGs.

2.3. The OMEGA2 UML/SysML profile and IFx toolset

Formal methods provide tools to verify the consistency and cor-

rectness of a specification, with respect to the desired properties of

the system. For this reason, we use these methods to prove some

of the properties of the system before the system development even

starts. We use OMEGA2/IFx profile and toolset for the properties ver-

ification and model simulation of our case study.

2.3.1. The OMEGA2 Profile

OMEGA2 profile (Ober and Dragomir, 2010) is an executable

Uml/SysML profile used for the formal specification and validation

of critical real-time systems. It is based on a subset of Uml 2.2/SysML

1.1 containing the main constructs for defining the system structure

and behavior.

The OMEGA2 Uml/SysML profile defines the semantics of

Uml/SysML elements providing themeans tomodel coherent and un-

ambiguous system models. In order to make the models verifiable,

it presents as extension the observers mechanism for specifying dy-

namic properties of models. The OMEGA2 Uml/SysML Profile is im-

plemented by the IFx toolbox which provides static analysis, simula-

tion and timed automaton-basedmodel-checking (Clarke et al., 1999)

techniques for validation.

The architecture of an OMEGA2 model is described in Class/Block

Definition Diagrams by classes/blocks with their relationships. Each

class/block defines properties and operations, as well as a state ma-

chine. The hierarchical structure of a model is defined in compos-

ite structures/Internal Block Diagram (IBD): parts that communicate

through ports and connectors. For the SysML Block Definition Dia-

gram (BDD), the following concepts are taken into account: blocks

and their relationships (association, aggregation, generalization), in-

terfaces, basic types, signals.

For the system behavior, the OMEGA2 profile takes into account

the following concepts: State machines (excluding: history states, en-

try point, exit point, junction) and Actions; for this, the profile defines

a concrete syntax. This syntax is used for example to define opera-

tion bodies and transition effects in state machines. The textual ac-

tion language is compatible with the Uml 2.2 action meta-model and

implements its main elements: object creation and destruction, oper-

ation calls, expression evaluation, variable assignment, signal output,

return action as well as control flow structuring statements.

For specifying and verifying dynamic properties of mod-

els, OMEGA2 uses the notion of observers. Observers are special

classes/blocks monitoring run-time state and events. They are de-

fined by classes/blocks stereotyped with <<observer>>. They may

have local memory (attributes) and a state machine describes their

behavior. States are classified as <<success>> and <<error>>

states to express the satisfaction (or not) of safety properties. The

main issue in modeling observers is the choice of events which trigger

their transitions.

The trigger of an observer transition is a match clause specifying

the type of event (e.g., receive), some related information (e.g., the

operation name) and observer variables that may receive related in-

formation (e.g., variables receiving the values of operation call param-

eters). Besides events, an observer may access any part of the state of

the Umlmodel: object attributes and state, signal queues.

2.3.2. IFx toolset

OMEGA2 models can be simulated and properties can be ver-

ified using the IFx toolset (Bozga et al., 2004). The IFx toolset

Fig. 4. SysML/Kaos meta model (Gnaho and Semmak, 2010). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

provides verification which ensures the automatic process of verify-

ing whether an OMEGA2 Uml/SysML model satisfies (some of) the

properties (i.e., observers) defined on it. The verification method em-

ployed in IFx is based on systematic exploration of the system state

space (i.e., enumerative model checking). The IFx toolset also pro-

vides simulation which designates the interactive execution of an

OMEGA2 Uml/SysML model. The execution can be performed step-

by-step, random, or guided by a simulation scenario (for example an

error scenario generated during a verification activity).

The IFx toolset relies on a translation of Uml/SysML models to-

ward a simple specification language based on an asynchronous com-

position of extended timed automata: the IF language,4 and on the

use of simulation and verification tools available for IF. The transla-

tion takes an input model in XML Metadata Interchange (XMI) 2.0

4 http://www-if.imag.fr/

format. The compiler verifies the set of well-formedness rules im-

posed by the profile and generates an IF model that can be further

reduced by static analysis techniques. This model is subject to verifi-

cation that either validates the model with respect to its properties

or produces a list of error scenarios that can be further debugged us-

ing the simulator. The OMEGA2/IFx approach has been applied for the

verification and validation of industry grade models (Dragomir et al.,

2012) providing interesting results.

3. State of the art

Different roadmap papers on Software Engineering (SE) for SAS

(Cheng et al., 2009b; Rogério de Lemos et al., 2013) discuss the state

of the art, its limitations, and identify critical challenges. Cheng

et al. (2009b) present a research roadmap for SE of SAS focusing

on four views, which are identified as essential: requirements,

modeling, engineering, and assurances. The focus is on development

methods, techniques, and tools that seem to be required to support

the systematic development of complex software systems with

dynamic self-adaptive behavior. The most recent roadmap paper

(Rogério de Lemos et al., 2013) discusses four essential topics of

self-adaptation: design space for self-adaptive solutions, software

engineering processes for self-adaptive systems, from centralized

to decentralized control, and practical run-time verification and

validation for SAS.

3.1. Requirements Engineering for Self-Adaptive Systems

An SAS is able to modify its behavior according to changes in its

environment. As such, an SAS must continuously monitor changes in

its context and react accordingly. But here the question arises as to

what aspects of the environment the SAS should monitor. Clearly, the

system cannot monitor everything and exactly what should the sys-

tem do if it detects a less than optimal pattern in the environment?

Presumably, the system still needs tomaintain a set of high level goals

that should be maintained regardless of the environmental condi-

tions. But non-critical goals could well be Relax-ed, thus allowing

the system a degree of flexibility during or after adaptation. It is im-

portant to identify these properties as early as possible.

Levels of Requirement Engineering for Modeling (LoREM)

(Goldsby et al., 2008) is an approach for modeling the requirements

of Dynamic-Adaptive Systems (DAS) using i∗ goal models (Yu, 1997).

The i∗ goal models are used to represent the stakeholder objectives,

non-adaptive system behavior (business logic), adaptive behavior,

and adaptation mechanism needs of DAS. Each of these i∗ goal mod-

els addresses the three RE concerns (conditions to monitor, decision-

making procedure, and possible adaptations) from a specific devel-

opers perspective.

Awareness Requirements (AwReqs) (Vítor et al., 2011) are require-

ments that talk about the success or failure of other requirements.

More generally, AwReqs talk about the states requirements can as-

sume during their execution at run-time. AwReqs are represented in

a formal language and can be directly monitored by a requirements

monitoring framework.

Claims (Welsh and Sawyer, 2010; Welsh et al., 2011) were applied

as markers of uncertainty to record the rationale for a decision made

with incomplete information in DASs. The work in Ramirez et al.

(2012a) integrates Relax and Claims to assess the validity of Claims

at run-time while tolerating minor and unanticipated environmental

conditions that can otherwise trigger adaptations.

Relax can be used in goal oriented modeling approaches for spec-

ifying and mitigating sources of uncertainty in DASs (Cheng et al.,

2009a). AutoRELAX (Ramirez et al., 2012b), is an approach that gen-

erates Relax-ed goal models that address environmental uncertainty

by identifying which goals to Relax, which Relax operators to apply,

and the shape of the fuzzy logic function that defines the goal satis-

faction criteria. AutoRELAX also requires an executable specification

of the DAS, such as a simulation or a prototype, which applies the set

of utility functions to measure how well the DAS satisfies its require-

ments in response to adverse conditions. For the experimental setup

of AutoRELAX, a null hypothesis is defined which states that there is

no difference between a Relax-ed and an unRelax-ed goal model.

Fuzzy Live Adaptive Goals for Self-Adaptive Systems (FLAGS)

(Baresi et al., 2010) is an innovative goal model which deals with the

challenges posed by SAS. Goal models have been used for represent-

ing systems requirements, and also for tracing them onto their un-

derlying operationalization.

The state of the art regarding RE for SAS shows different ap-

proaches from the point of view of its complementarity with Re-

lax. The different steps in LoREM are interesting but our focus is on

Relax-ed requirements as we want to identify the uncertainty in the

requirements of DASs. Regarding AwReqs, in future work, we want

to integrate this concept into our approach using Monitor-Analyze-

Plan-Execute (MAPE) (Kephart and Chess, 2003) feedback loop that

operationalizes the system’s adaptability mechanisms. Claims are

also subject to uncertainty, in the form of unanticipated environmen-

tal conditions and unreliable monitoring information, that can ad-

versely affect the behavior of the DAS if it spuriously falsifies a claim.

A Claim can also be monitored at runtime to prove or disprove its

validity (Welsh et al., 2011), thereby triggering adaptation to reach

more desirable system configurations if necessary. Claims therefore

complement Relax.

3.2. Properties verification of SAS

For the properties verification of SAS, we use the OMEGA2/IFx pro-

file and toolsetwhichwas developed in our team (Ober andDragomir,

2010). The advantage of the OMEGA2 profile is that it provides the

notion of observers for specifying and verifying dynamic properties of

models. In terms of properties verification, there exists a number of

techniques. In the following, we give a description of some of it.

Benghazi et al. (2009) present a verification approach based on

MEDISTAM-RT, which is a methodological framework for the design

and analysis of real-time systems and timed traces semantics, to

check the fulfillment of NFRs. It only focuses on safety and timeliness

properties, to assure the correct functioning of Ambient Assisted Liv-

ing (AAL) systems and to show the applicability of this methodology

in the context of this kind of system.

Apvrille et al. (2004) introduce a profile named Timed UML and

RTLOTOS Environment (TURTLE) which extends the Uml class and

activity diagrams with composition and temporal operators. TUR-

TLE is a real-time Uml profile with a formal semantics expressed in

Real-Time Language Of Temporal Ordering Specifications (RTLOTOS)

(Courtiat et al., 2000). With its formal semantics and toolkit, TURTLE

enables a priori detection of design errors through a combination of

simulation and verification/validation techniques.

In Laleau et al. (2010), the authors propose an extension to SysML

with concepts from the goal model of the Kaosmethod (SysML/Kaos)

with rules to derive a formal B (Abrial, 1996) specification from this

goal model. The B formal method is a complete method that supports

a large segment of the software development life cycle: specification,

refinement and implementation.

In MEDISTAM-RT, the focus is on safety and timeliness properties,

we do not treat any specific type of properties. We verify those re-

quirements that are of interest for adaptation in SAS. In TURTLE, de-

sign errors can be detected through simulation and verification. That

is the reason why we plan to explore the complementarity of this ap-

proach with our approach. The use of formal methods like B can help

avoid the state space explosion problem which is inherent in model

checking techniques. We have worked on studying the complemen-

tarity of these two approaches and we plan to integrate them in our

approach in the future work.

4. Proposed approach

In this section, we introduce the overall view of our proposed

approach (Ahmad, 2013). We show our contribution then we de-

scribe the overall process of our approach. To illustrate our proposed

approach, we use requirements from the barbados Car Crash Crisis

Management System (bCMS) case study. At the end, we show the

integrated tooling environment that we developed to validate our

approach.

4.1. Contribution

To properly define the scope of our contribution, it is necessary

to identify the work we have done. Firstly, we have found that al-

though the use of traditional process of SysML/Kaos was interesting

for modeling the requirements of SAS, it does not take into account

the notion of uncertainty. On the other hand, Relax is a process tai-

lored to identify and highlight the uncertainty, but it does not provide

tools for its implementation. Finally, the verification techniques used

for these models do not take into account the uncertainty posed by

these systems. Based on this observation, we contributed toward the

definition of an integrated tool-based process. For this, we developed

support for Relax. Then we developed rules to transform require-

ments addressed by Relax to SysML/Kaos, using model transforma-

tion techniques. Finally, we integrated formal verification techniques

i.e., OMEGA2/IFx in the process. To reduce the risk of state space

explosion problem (Clarke et al., 2012) when we take into account

the whole system using OMEGA2/IFx, we limited its use to verify only

adaptable properties. We present in detail the work and the overall

process in the next section.

4.2. The proposed approach

In the following, each step of the proposed approach is explained

with associated input and output. Fig. 5 shows the overall view of our

proposed approach.

Fig. 5. Overall view of our approach.

1. The overall approach that we propose takes requirements as in-

put. These requirements are elicited in the form of SHALL state-

ments by a requirement engineer which are then divided into FRs

and NFRs.

2. We apply Relax process (see Section 2.1.3) on these FRs and NFRs

to get those requirements that are associated with the adaptabil-

ity features of SAS called Relax-ed requirements and those that

are fixed called invariant requirements.

3. Here, we validate the Relax-ed requirement with the help of an

expert i.e., for each Relax-ed property, we check whether the new

expression of the property is acceptable or not. By acceptable we

mean two things: (i) the Relax-ed expression is sound (it can be

operationalized), and (ii) the boundaries make sense (from the

domain expert point of view). If the Relax-ed expression is ac-

ceptable thenwe proceedwith the next step, if it is not acceptable,

we propose two options: cancel the Relax-ation and go back to

a SHALL invariant or complement the Relax-ed property with an

additional invariant (e.g., a max or min boundary that constraints

the Relax-ed expression).

4. The resulting Relax-ed requirements are then formalized using

an editor that we developed called Relax COOL editor. This editor

takes into account the uncertainty factors associated with each

Relax-ed requirement. Xtext5 is used for the development of this

editor.

5. At this point, we use a process for the conversion of Relax-ed re-

quirements into goal concepts i.e., SysML/Kaos. We use a corre-

lation table (see Section 4.3.1) for the correspondence between

Relax-ed requirements and SysML/Kaos concepts (Ahmad et al.,

2012b). For this purpose, we have developed a tool called Re-

lax2SysML/Kaos editor, which is based on Atlas Transformation

Language (ATL) transformations. For the time being, the tool helps

in mapping the Relax concepts to SysML/Kaos concepts but not

the inverse.

6. At this step, we have a full list of Relax-ed requirements with un-

certainty factors converted into SysML/Kaos goal concepts.

7. The non-functional Relax-ed requirements in the form of

SysML/Kaos goal concepts can now be modeled with the help of

SysML/Kaos editor.

8. This step shows the system design. The Relax-ed requirements of

the SAS are now modeled and we have a snapshot of the system

design.

9. Once we have the system design, we use the OMEGA2/IFx ob-

servers to verify the properties of SAS. The input to this step are

the OMEGA2/IFx observers which are the Relax-ed and invariant

requirements. The verification either results in the fulfillment of

all the properties or if there is an error produced during verifica-

tion, it can be simulated through the interactive simulation inter-

face of the IFx toolset in order to identify the source of the error

and then subsequently correct it in the model.

4.3. Integration of the approaches

In the following, we present how we defined the convergence be-

tween different methods used in our approach.

4.3.1. Relationship between RELAX, SysML/KAOS and SysML

In our integrated approach, we take benefit of SysML/Kaos while

modeling Relax-ed requirements of SAS. In Fig. 6, we show how sev-

eral key concepts are taken into account in the selected approaches.

The concepts are taken from Relax and are then compared with the

other approaches.

5 http://www.eclipse.org/Xtext/

• In SysML/Kaos, requirements are described in the form of goals;

SysML describes requirements in textual form; Relax require-

ments are also in textual form which contains more information

in the form of Relax operators.
• To deal with monitoring, SysML/Kaos has the Contribution Goal

concept which is used to satisfy an Elementary NFG, SysML has

<<satisfy>> which is used when a <<block>> satisfies a

<<requirement>> while for Relax, we have the concept ofMON

which is used to measure the environment, i.e., ENV.
• SysML/Kaos has the concept of Contribution which is an Associa-

tion Class between Contribution Goal and Elementary NFG. Contri-

bution describes the characteristics of the contribution. It provides

two properties: ContributionNature and ContributionType. SysML

has <<verify>> and <<refine>> relationships while for Re-

lax, we have REL variable which identifies the relationship be-

tween ENV andMON or more precisely howMON achieves ENV.
• For Dependency/Impact, SysML/Kaos describes it as an Impact of

a Contribution Goal on a Functional Goal (FG). It also has the same

two properties, i.e., ContributionNature and ContributionType. This

impact can be positive or negative and direct or indirect. In SysML,

we have the concept of <<derive>> which shows the depen-

dency between requirements, Relax has positive and negative de-

pendency which shows the dependency of a Relax-ed require-

ment on other requirements.
• For the tools available for each approach, SysML/Kaos has a

tool called SysML/Kaos editor, SysML has a number of tools e.g.,

eclipse,6 Papyrus,7 topcased,8 etc. and for Relax, we have devel-

oped an eclipse-based Relax COOL editor (Bascans et al., 2013).

We have also developed Relax2SysML/Kaos editorwhich does the

mapping between Relax uncertainty factors and SysML/Kaos goal

concepts.

4.3.2. Uncertainty factors/impacts

SysML/Kaos is a GORE approach that takes into account different

kinds of dependencies between Goals and Contribution Goals. Relax

deals with dependency in terms of the dependency of a Relax-ed re-

quirement on an invariant requirement but it does not say anything

about the dependency of aMonitor (Contribution Goal in SysML/Kaos)

on ENV (Goal in SysML/Kaos). So the injection of SysML/Kaos in our

approach helps in capturing the dependencies between different re-

quirements and also between the monitors and environment. Re-

lax uses a kind of vocabulary that only captures uncertainty in the

requirements of SAS while Kaos helps in allowing the stakeholders

communicate easily and efficiently about requirements.

Relax uncertainty factors, especially ENV and MON, are particu-

larly important for documenting whether the system has means for

monitoring the important aspects of the environment. By collecting

these ENV and MON attributes, we can build up a model of the envi-

ronment in which the system will operate, as well as a model of how

the system monitors its environment. In Relax, requirements depen-

dencies are delimited by the uncertainty factor DEP, as it is impor-

tant to assess the impact on dependent requirements after Relax-ing

a given requirement. Having said this, SysML/Kaos can complement

Relax by injecting more information in the form of positive/negative

and direct/indirect impacts (Ahmad et al., 2012a), which models the

impact of a Contribution Goal on an Elementary Goal. The grammar

of Relax acts as a meta-model for our Relax COOL editor, while

SysML/Kaos has extended the meta-model of SysML with goal con-

cept. As both meta-models are close to the SysML meta-model, we

have bridged Relax and SysML/Kaos using our proposed approach.

6 http://www.eclipse.org/
7 http://www.papyrusuml.org
8 http://www.topcased.org/

Fig. 6. Relationship b/w SysML/Kaos SysML and Relax.

4.3.3. Verification of ambient system’s properties through formal

methods

Using our proposed approach, we provide a strong consistency be-

tween models. This can be ensured thanks to the use of formal meth-

ods that provide verification tools for the properties verification and

model simulation of SAS. We have integrated OMEGA2/IFx for prop-

erties verification and model simulation of these systems in our pro-

posed approach. By doing this, we bridge the gap between the re-

quirements phase and the initial formal specification phase.

4.4. Proposed approach illustration

To illustrate our approach, we use the bCMS 9 case study. Here is

an excerpt of the case study.

The bCMS is a distributed crash management system that is respon-

sible for coordinating the communication between a Fire Station Coordi-

nator (FSC) and a Police Station Coordinator (PSC) to handle a crisis in a

timely manner. Information regarding the crisis as it pertains to the tasks

of the coordinators is updated andmaintained during and after the crisis.

There are two collaborative sub-systems. Thus, the global coordination is

the result of the parallel composition of the (software) coordination pro-

cesses controlled by the two (human) distributed coordinators. There is

no central database; fire and police stations maintain separate databases

and may only access information from the other database through the

bCMS system. Each coordination process is hence in charge of adding and

9 Available at http://cserg0.site.uottawa.ca/cma2013re/CaseStudy.pdf.

updating information in its respective database. Fig. 7 shows the overall

view of the bCMS case study.

We have chosen an (illustrative) subset of the bCMS requirements.

The requirements are numbered in a shared document.10

We have first applied the Relax process on bCMS requirements to

get invariant and Relax-ed requirements. For Relax-ed requirements,

all the uncertainty factors were identified. Then using the correla-

tion in Fig. 6, we have modeled the bCMS system requirements with

the SysML/Kaos approach. In Ahmad et al. (2013a), we have modeled

somemore requirements of the bCMS case study. Following are some

of the Relax-ed requirements that we identified:

• Relax-ed requirements: R4, R8.

Fig. 8 shows the uncertainty factors associated with the Integrity

R4 (The system shall ensure that the integrity of the communication be-

tween coordinators regarding crisis location, vehicle number, and vehi-

cle location is preserved AS CLOSE AS POSSIBLE TO 99.99% of the time.)

Relax-ed requirement.

Fig. 9 shows the uncertainty factors associated with the Availabil-

ity R8 (The crisis details and route plan of the fire station and the police

station shall be available with the exception of AS CLOSE AS POSSIBLE To

0minutes AND ≤ 30min for every 48 h when no crisis is active.) Relax-

ed requirement.

Fig. 10 shows a low level goal model of the bCMS case study.

We have identified a goal “Ensure the integrity of communications

b/wcoordinators[bCMS]”which is an abstract non-functional goal and

10 Available at http://goo.gl/uscP5

Fig. 7. bCMS case study overall view.

Fig. 8. R4 integrity RELAX-ed requirement uncertainty factors.

Fig. 9. R8 availability RELAX-ed requirement uncertainty factors.

is AND-refined into two sub-goals using refinement by type: (i) Integrity

of communication b/w coordinators[bCMS] and (ii) Authenticity of co-

ordinators[bCMS]. The goal Integrity of communication b/w coordina-

tors[bCMS] is satisfied by the Contribution Goal Secure communication

channel. Considering the goal Authenticity of coordinators[bCMS], one

possible way to achieve this goal is to use PIN code, another solu-

tion is to use additional information. The Contribution Goal Commu-

nication Compromiser has a direct and negative impact on the goal In-

tegrity of communication b/w coordinators[bCMS]. The functional goal

R3: A PSC maintains control over a crisis situation by communicating

with the FSC as well as policemen. This goal is AND-refined into two

sub-goals: To provide coordinated route plan and To estimate resources.

The Contribution Goal Communication Compromiser has an indirect

and negative impact on the functional goal To estimate resources. The

property verification part of our proposed approach is illustrated in

Section 5.2.1.

4.5. Tools support

In this section, we introduce the tools that implements our pro-

posed approach.

4.5.1. RELAX editor

For the generation of Relax editor, Xtext is used. Xtext is a frame-

work for the development of Domain Specific Languages (DSL) and

other textual programming languages and helps in the development

of an Integrated Development Environment (IDE) for the DSL. Some

of the IDE features that are either derived from the grammar or eas-

ily implementable are: syntax coloring, model navigation, code com-

pletion, outline view, and code templates. An initial version of the

Relax editor can be found in Ahmad (2010). The Relax grammar is

used as a meta-model for this editor which is generated by Xtext that

we call Relax.ecore. Fig. 11 shows an example of the Relax file with

Fig. 10. Low level goal model.

Fig. 11. RELAX file.

uncertainty factors. The Relax file is represented with an extension

.rlx. Once we have the .rlx file, we can transform it into an XMI model.

The XMI model can then be manipulated and will serve us for the

model transformation from Relax to SysML/Kaos as explained in the

next section.

4.5.2. RELAX to SysML/Kaos transformation

In our approach, wewant to transform Relax-ed requirements un-

certainty factors into SysML/Kaos goal concepts. This transformation

will help in taking into account the adaptability features associated

with SAS in the form of uncertainty factors of Relax-ed requirements

and then modeling these requirements in SysML/Kaos. In this way,

we can benefit from the advantages offered by GORE. For this pur-

pose, the Relax and SysML/Kaosmeta-models are used.

4.5.3. ATL rules

ATL is a model transformation language and toolkit. It provides a

way to produce a number of target models from a set of source mod-

els. An ATL transformation program is composed of rules that define

how source model elements are matched and navigated to create and

initialize the elements of the target models. The generation of target

model elements is achieved through the specification of transforma-

tion rules.

4.5.4. Mapping between RELAX and SysML/Kaos elements

Here, we present the relationship between Relax and SysML/Kaos

elements. The Relax abstract syntax is defined in the Relax meta-

model. In turn, the SysML/Kaos abstract syntax is defined in the

SysML/Kaosmeta-model.

Fig. 6 shows the mapping between the two concepts. For the ATL

transformation rules, a Relax-ed requirement is mapped to an Ab-

stract Goal as shown in Fig. 12, an ENV is mapped to an Elementary

Goal andMON is mapped to Contribution Goal. Fig. 13 shows the gen-

erated SysML/Kaos model after the application of ATL rules. Fig. 14

shows the SysML/Kaosmodel opened in the editor.

5. Proof of concepts

In this section, we apply our approach on an academic AAL case

study. The goal of AAL solutions is to apply ambient intelligence tech-

nology to enable people with specific demands, e.g., handicapped

or elderly, to live in their preferred environment (Benghazi et al.,

2009). In order to achieve this goal, different kinds of AAL systems

can be proposed and most of them pose reliability issues and de-

scribe important constraints upon the development of software sys-

tems (Cleland-Huang et al., 2007). We model the requirements of an

Fig. 12. Relaxed requirement to abstract goal mapping.

Fig. 13. SysML/Kaos model.

Fig. 14. Generated SysML/Kaos model using ATL transformations.

AAL11 homewhich ensures the health of a Patient like the one studied

by research teams at the IUT of Blagnac.12 We then show the verifica-

tion of some of the properties of the AAL system.

5.1. Requirements modeling of the AAL case study

Fig. 15 shows an excerpt of the case study which highlights the

need to ensure Patient’s health in the AAL home. Advanced smart

11 http://www.iese.fraunhofer.de/fhg/iese/projects/med_projects/aal–lab/index.jsp
12 http://mi.iut-blagnac.fr/

homes, such as Mary’s AAL, rely on adaptivity to work properly. For

example, the sensor-enabled cups may fail, but since maintaining a

minimum of liquid intake is a life-critical feature, the AAL should

be able to respond by achieving this requirement in some other way

(Whittle et al., 2009).

Fig. 16 shows an example of Relax-ed requirement from the

Mary’s AAL home, which results from the application of the Relax

process on the traditional requirement: The Fridge shall read, store and

communicate RFID information on food packages. Ahmad (2014) shows

the application of Relax process on some of the requirements of the

AAL case study.

Fig. 15. AAL case study.

Fig. 16. RELAX requirement example.

5.1.1. High level goal model

Fig. 17 shows the high level goal model of the AAL. From the AAL

system problem statement, we have identified Reliability [AAL system]

as a non-functional high level goal. In fact, one of the expected quali-

ties of the system is to run reliably. This is very important for several

reasons and particularly because frequent visits from a technician

could be a factor of disturbance for Mary and unfeasible due to the

large number of AAL houses across the world. The high level goal Re-

liability [AAL System] is AND-refined into four sub-goals using refine-

ment by type: Precision [AAL System], Security [AAL System], Robustness

[AAL System] and Performance [AAL System]. Each sub-goal can be fur-

ther refined until the refinement stops and we reach an Elementary

Goal which can then be assigned to a Contribution Goal. The sub-goal

Precision [AAL System] is AND-refined into two sub-goals: Precision

[Location Detection] and Precision [Sensors] using refinement by sub-

ject. The sub-goal Precision [Sensors] is then AND-refined into three

Elementary NFGs using refinement by subject. The sub-goal Precision

[Location Detection] can be satisfied by a positive and direct contri-

bution by one of the following Contribution Goals: combine data from

multiple sensors, combine multiple features and use redundant features.

The Contribution Goal combine data from multiple sensors, contribute

indirectly and negatively to the satisfaction of the sub-goal Perfor-

mance [AAL System].

5.1.2. Low level goal model

Fig. 18 shows the security goal model of AAL. In order to further

extract new goals from the AAL system, we identify another goal, Se-

curity [fridge data], which is an Abstract NFG that can be AND-refined

into three sub-goals using refinement by type: Confidentiality [fridge

data], Integrity [fridge data] and Availability [fridge data]. Similarly, the

sub-goal Availability [fridge data] can be refined into two sub-goals us-

ing refinement by subject: Availability [Storing RFID information] and

Availability [Sensors data]. The Contribution Goal having high-end sen-

sors contributes directly and positively to the goal Availability [Sensors

data], and may contribute indirectly and positively to Integrity [fridge

data].

5.2. Properties verification of the AAL system with OMEGA2/IFx profile

and toolset

The specification and verification of NFRs in the early stages of the

AAL development cycle is a crucial issue (Nehmer et al., 2006). In this

section, we show how we used OMEGA2/IFx (Verimag and Irit, 2011)

for the properties verification and model simulation of AAL system.

5.2.1. Modeling the AAL system with OMEGA2 profile

We start by taking into account the structural part of the AAL sys-

tem. Those parts are considered that are concerned with the daily

calorie intake of the Patient in the AAL house. The AAL system is com-

posed of Fridge and Patient; these parts are modeled along with the

interaction that takes place between them. The Fridge partially con-

tributes to the minimum liquid intake of the Patient; it also looks at

the calorie consumption of the Patient as the Patient needs not to ex-

ceed it after a certain threshold.

Fig. 19 shows the main Internal Block Diagram (IBD). The com-

munication between different blocks takes place through ports. In

Fig. 17. High level goal model.

Fig. 18. Security goal model.

Fig. 19, the Patient block has a standard port named pToFridge. This

port has a contract named Patient2Fridge and is acting as a provided

interface of the Patient block. The important parts of the AAL sys-

tem are Patient and Fridge. A Fridge in turn is composed of Display,

Alarm, Controller, and Food blocks. Fig. 20 shows the IBD for the Fridge

block. Each of the four blocks behaviors is modeled in a separate

State Machine Diagram (SMD). The Food block contains information

about the Food items in the Fridge, the calories contained in each

item, the total number of calories the Patient has accumulated and

the calorie threshold that should not be surpassed. The Fridge Display

is used to show the amount of calories consumed by the Patient. The

Alarm is activated in case the Patient calorie level surpasses a certain

threshold.

Fig. 21 shows the SMDfor the Patient block. Here, the exchange

of information between Patient and Fridge takes place. The number

and quantity of each item present in the Fridge is identified. If a cer-

tain product still present in the Fridge is chosen by the Patient then

the information is communicated with the Fridge and the list is up-

dated. Otherwise the Fridge is empty and the Patient will wait to be

refilled. Also, if the Alarm of the Fridge is raised due to high intake

of calories, the Patient stops eating and waits for the system to be

unblocked.

Fig. 19. Main Internal Block Diagram.

Fig. 20. Fridge Internal Block Diagram.

5.2.2. Properties verification of the AAL system

Below are the properties to be verified (Ahmad et al., 2013b).

Property 1: The Fridge SHALL detect and communicate information

with AS MANY Food packages AS POSSIBLE. A Relax-ed version of this

requirement with all the uncertainty factors is shown in Fig. 16.

The satisfaction of this requirement contributes to the balanced

diet of the Patient. The choice of this property for verification is moti-

vated by the fact that it is important for the AAL system to know about

asmany Food items present in the Fridge as possible. Fig. 22 shows the

SMD of the Property 1. The trigger for this property is an observer tran-

sition which is amatch clause specifying the type of event (e.g., send),

some related information (e.g., eat) and observer variable (e.g., p) that

may send related information. The first task is to identify the number

of items consumed by the Patient and the total number of items in

the Fridge. Then the identity of the Patient is verified, if the person is

identified as the Patient, then the next step is to calculate the number

of items consumed. After this, the number of items left in the Fridge

is calculated which is equal to the sum of all the items present in the

Fridge. Then in the last step, we calculate if ((total number of items -

number of items consumed - number of items left) >-1) and ((total

number of items - number of items consumed - number of items left)

<1), it means that we have reached the <<success>> state by hav-

ing information about all the items present in the Fridge, i.e., it should

be 0 (which means that there is no information loss). Inversely, if it

is less than or equal to -1 or greater than or equal to 1, then it means

that we are missing information about some of the items present in

the Fridge and the observer passes into the <<error>> state.

We now consider the invariant requirement. Property 2: The Alarm

SHALL be raised instantaneously if the total number of calories surpasses

the maximum calories allowed for the Patient.Fig. 23 shows the SMDfor

Fig. 21. Patient State Machine Diagram.

Fig. 22. Property1 State Machine Diagram.

property 2. This property ensures that the Patient should stop eating

as soon as the total number of calories surpasses the maximum calo-

ries allowed and that the Alarm should be raised. This requirement

implies that the Alarm shall be immediately raised as soon as the to-

tal number of calories equals or surpasses the maximum calories al-

lowed for the Patient. If it happens then the Patient should stop eating

and we will reach a <<success>> state but if the Patient continues

to eat, it means that we are reaching an <<error>> state.

5.2.3. Verification results

Until now, the AAL system is modeled along with the proper-

ties to be verified on the model. We now show how to verify these

Fig. 23. Property2 State Machine Diagram.

properties using the IFx toolset. The AAL2 model is first exported into

AAL2.xmi and then using the IFx toolset the AAL2.xmi is compiled into

AAL2.if (Fig. 25). The AAL2.if is compiled into an executable file i.e.,

AAL2.x (Fig. 26). While verifying the AAL model, the model checker

has found several error scenarios (Fig. 27). Any of the error scenarios

can then be loaded through the interactive simulation interface of the

IFx toolset to trace back the error in the model and then correct it.

In order to debug a model, firstly we import it into the simula-

tor. We check the states of the observers in order to identify which

property has not been satisfied. In this case, Property 2 fails. While

checking the state of the entire system for this property, we discover

that the <<error>> state contained the maximum allowed num-

ber of calories for the total number of calories consumed and sub-

sequently eat requests are sent by the Patient. This implies that the

Alarm function of the intelligent Fridge does not function properly

which is strictly linked to its Food process. One can observe in the

SMDof the Food block (Fig. 24) that the Alarm is raised only if the total

number of consumed calories is strictly superior to the maximum al-

lowed; a condition which does not satisfy the request that the Alarm

is raised as soon as possible. The correction consists of raising the

Alarm also in case the total number of consumed calories is equal to

the maximum allowed threshold. Once this error is corrected in the

SMDof the Food block, the verification succeeds.

6. Conclusion and future work

The context of this research work is situated in the field of SE for

SAS. This work resides in the very early stages of the software de-

velopment life cycle i.e., at the RE phase. The overall contribution is

to propose an integrated approach for modeling and verifying the

requirements of SAS using Model Driven Engineering (MDE) tech-

niques. It takes requirements as input and then by applying various

processes and tools, we integrate the notion of uncertainty in require-

ments which we model using GORE techniques. Once we have the

system design, we then introduce a mechanism for the properties

verification of SAS.

We used Relax which is an RE language for SAS and which can

introduce flexibility in NFRs to adapt to any changing environmen-

tal conditions. The essence of Relax for SAS is that it provides a way

to relax certain requirements against other requirements in situa-

tions where the resources are constrained or priority must be given

to requirements. For this purpose we have developed a tool called

Relax COOL editor which is used to automate the formalization of

SAS requirements by taking into account the different uncertainty

factors associated with each Relax-ed requirement. We then use

SysML/Kaoswhich is an extension of the SysML requirements model

with concepts of the Kaos goal model. Here, invariant requirements

are captured by the concept of FGs whereas Relax-ed requirements

are captured by the concept of NFGs. We have provided a correlation

table that helps in mapping the Relax and SysML/Kaos concepts. Us-

ing this table, the Relax-ed requirements are then transformed into

SysML/Kaos goal concepts. This mapping is done using ATL, which is

a model transformation technique and which takes as input a source

model and transforms it into a target model. We have developed a

tool called Relax2SysML/Kaos editor which is capable of modeling

the Relax-ed requirements in the form SysML/Kaos goal concepts.

We provide a mechanism to verify some adaptable and invariant

properties of the SAS using formal method technique OMEGA2/IFx.

In order to validate our proposed approach, we have applied it to an

academic Ambient Assisted Living case study.

Our work resides within the framework of self-adaptation, but

we do not treat the development of self-adaptation mechanisms.

We help SAS developers by providing a mechanism for identify-

ing the uncertainty associated with the requirements of these sys-

tems. Fig. 28 shows a table with the pros and cons of our proposed

approach.

In terms of the future work, we have applied our approach to an

academic case study. The next step is to apply it to a real industrial

Fig. 24. Food State Machine Diagram.

Fig. 25. XMI to IF compilation.

Fig. 26. IF to executable file compilation.

Fig. 27. Model checker results in error scenarios.

Fig. 28. Pros and cons of our proposed approach.

case study, which will confront it to more rigorous and varied evalu-

ation criteria such as its usability and its performance.

In order to validate the Relax-ed requirement, we check whether

the new expression of the property is acceptable or not. If it is accept-

able then we proceed with the next step, in case if it is not acceptable,

we propose two options: i.e., to cancel the Relax-ation and go back

to a SHALL invariant or complement the Relax-ed property with an

additional invariant (e.g., amax ormin boundary that constraints the

Relax-ed expression). We would like to explore the validation step of

the Relax-ed requirement in more detail, so that to show howwe can

introduce the boundary values in the Relax-ed expression.

We plan to investigate the adaptation mechanism techniques so

that we can incorporate it in our proposed approach. Our approach

takes into account the uncertainty in requirements of SAS, we model

it using SysML/Kaos and then we verify it but we do not talk about

the underlying adaptation mechanisms.

For the time being, our Relax2SysML/Kaos tool is capable of map-

ping the Relax concepts to SysML/Kaos concepts but not the inverse.

A natural follow up of our work is to investigate how we could make

it a two-way process, so that those people who are familiar with

SysML/Kaos can map goal concepts to Relax concepts to which they

are unfamiliar, so that to provide an additional knowledge base re-

garding requirements modeling of SAS. This would help in taking into

account the informationmodeled in SysML/Kaos that we cannot cap-

ture in Relax.

The verification of Relax-ed requirements in our proposed

approach is done using OMEGA2/IFx. To take into account the

complexity of large systems, we can do the validation of their

requirements at execution time. A promising approach to manag-

ing complexity in run-time environments is to develop adaptation

mechanisms that leverage software models, referred to as Mod-

els@run.time (Blair et al., 2009). Research on Models@run.time seeks

to extend the applicability of models and abstractions to the run-

time environment, with the goal of providing effective technologies

for managing the complexity of evolving software behavior while it

is executing (Aßmann et al., 2011).

In our proposed approach, for the properties verification using

OMEGA2/IFx, we model the observers and then we check these ob-

servers against the system design to see if the properties are verified

or not. Right now, we model these observers as an SMD. We would

like to automate this process of observers modeling by automatically

generating it from Relax-ed and invariant requirements.

The use of model checking techniques used by OMEGA2/IFx ex-

poses us to the problem of state space explosion which is inherent in

these techniques. We handle this problem in our proposed approach

by only injecting Relax-ed or invariant requirements, i.e., those re-

quirements that are of interest for SAS. But we hope to tackle this

problem using formal methods like B. There are already some works

done for the mapping between SysML/Kaos and B in this regard. In

Laleau et al. (2010), a method is defined for bridging the gap between

the requirements analysis level (Extended SysML) and the formal

specification level (B). This method derives the architecture of B spec-

ifications from SysML goal hierarchies. We believe that using proof-

based formal methods like B can help in overcoming the state space

explosion problem associated with model-checking techniques.

References

Abrial, Jean R., 1996. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, New York, NY, USA.

Ahmad, Manzoor, 2010. First step towards a domain specific language for self-adaptive
systems. In: 10th Annual International Conference on New Technologies of Dis-
tributed Systems (NOTERE’10). IEEE, pp. 285–290.

Ahmad, Manzoor, 2013. Modeling and Verification of Functional and Non Functional
Requirements of Ambient, Self Adaptive Systems (Ph.D. thesis). Mathématique In-
formatique Télécommunications, University of Toulouse Mirail, France.

Ahmad, Manzoor, Araújo, João, Belloir, Nicolas, Laleau, Régine, Bruel, Jean-Michel,
Gnaho, Christophe, Semmak, Farrida, 2013a. Self-adaptive systems requirements
modelling: Four related approaches comparison. In: Comparing ∗Requirements∗
Modeling Approaches Workshop (CMA@RE) RE’13. IEEE Computer Society Press,
Rio de Janeiro Brazil, pp. 37–42.

Ahmad, Manzoor, Bruel, Jean-Michel, 2014. A comparative study of
RELAX and SysML/Kaos. Technical Report. Institut de Recherche
en Informatique de Toulouse, University Toulouse II Le Mirail,
France.

Ahmad, Manzoor, Bruel, Jean-Michel, Laleau, Régine, Gnaho, Christophe, 2012a.
Modélisation des Exigences pour les Systmes Auto-adaptatifs: Intégra-
tion des Techniques Relax/SysML/Kaos. In: Journées GDR - GPL - CIEL
http://gpl2012.irisa.fr/sites/default/files/CIEL2012-Ahmad-paper22/index.pdf.

Ahmad, Manzoor, Bruel, Jean-Michel, Laleau, Régine, Gnaho, Christophe, 2012b. Us-
ing RELAX, SysML and KAOS for ambient systems requirements modeling. In: The
3rd International Conference on Ambient Systems, Networks and Technologies
(ANT’12). Elsevier Procedia Computer Science, pp. 474–481.

Ahmad, Manzoor, Dragomir, Iulia, Bruel, Jean-Michel, Ober, Iulian, Belloir, Nicolas,
2013b. Early analysis of ambient systems sysml properties using omega2-ifx. In:
3rd International Conference on Simulation and Modeling Methodologies, Tech-
nologies and Applications (SIMULTECH’13) SciTePress.

Apvrille, Ludovic, Courtiat, Jean P., Lohr, Christophe, de Saqui-Sannes, Pierre, 2004.
TURTLE: A real-time UML profile supported by a formal validation toolkit. IEEE
Trans. Softw. Eng. 30 (7), 473–487.

Aßmann, Uwe, Bencomo, Nelly, Cheng, Betty H.C., France, Robert B., 2011. Mod-
els@Run.Time (Dagstuhl Seminar 11481). DagstuhlReports 1 (11) http://www.
dagstuhl.de/de/programm/kalender/semhp/?semnr=11481.

Baresi, Luciano, Pasquale, Liliana, Spoletini, Paola, 2010. Fuzzy goals for requirements-
driven adaptation. In: Proceedings of the 2010 18th IEEE International Require-
ments Engineering Conference. IEEE Computer Society, Washington, DC, USA,
pp. 125–134.

Bascans, Jérémy, Walczak, Jérémy, Zeghoudi, Jérôme, Ahmad, Manzoor, Geisel, Ja-
cob, Bruel, Jean-Michel, 2013. COOL RELAX Editor, M2ICE Project, Université de
Toulouse le Mirail.

Benghazi, Kawtar, Visitación Hurtado, María, Rodríguez, María Luisa, Noguera, Manuel,
2009. Applying formal verification techniques to ambient assisted living systems.
In: OnTheMoveWorkshop (OTM ’09). Springer-Verlag, Berlin/Heidelberg, pp. 381–
390.

Blair, Gordon S., Bencomo, Nelly, France, Robert B., 2009. Models@ Run.Time. Computer
42 (10), 22–27.

Bozga, Marius, Graf, Susanne, Ober, Ileana, Ober, Iulian, Sifakis, Joseph, 2004. The IF
toolset. In: Formal Methods for the Design of Real-Time Systems (FMDRTS ’04).
Springer-Verlag, Berlin/Heidelberg, pp. 237–267.

Cheng, Betty H.C., Sawyer, Pete, Bencomo, Nelly, Whittle, Jon, 2009a. A goal-based
modeling approach to develop requirements of an adaptive system with envi-
ronmental uncertainty. In: Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (MODELS’09). Springer-Verlag,
Berlin/Heidelberg, pp. 468–483.

Cheng, Betty H.C., de Lemos, Rogério, Giese, Holger, Inverardi, Paola, Magee, Jeff,
Andersson, Jesper, et al., 2009b. Software engineering for self-adaptive systems:
A research roadmap. In: Software Engineering for Self-Adaptive Systems. Springer-
Verlag, Berlin, Heidelberg, pp. 1–26.

Chung, Lawrence, Nixon, Brian A., Yu, Eric, Mylopoulos, John, 1999. Non-Functional Re-
quirements in Software Engineering, 1st Springer-Verlag.

Clarke, Edmund M., Grumberg, Orna, Peled, Doron, 1999. Model Checking. MIT Press,
London.

Clarke, EdmundM., Klieber, William, Novek, Milo, Zuliani, Paolo, 2012. Model checking
and the state explosion problem. In: Meyer, Bertrand, Nordio, Martin (Eds.), Tools
for Practical Software Verification. In: Lecture Notes in Computer Science, 7682.
Springer-Verlag, Berlin Heidelberg, pp. 1–30.

Cleland-Huang, Jane, Settimi, Raffaella, Zou, Xuchang, Solc, Peter, 2007. Automated
classification of non-functional requirements. Requir. Eng. 12 (2), 103–120.

Courtiat, Jean P., Santos, Celso A.S., Lohr, Christophe, Outtaj, B., 2000. Experience with
RT-LOTOS, a temporal extension of the LOTOS formal description technique. Com-
put. Commun. 23 (12), 1104–1123.

Cysneiros, Luiz Marcio, Leite, Julio Cesar Sampaio do Prado, 2004. Non functional re-
quirements: From elicitation to conceptual models. IEEE Trans. Softw. Eng. 30,
328–350.

de Lemos, Rogério, Giese, Holger, Müller, A. Hausi, Shaw, Mary, Andersson, Jesper,
Litoiu, Marin, et al., 2013. Software engineering for self-adaptive systems: A second
research roadmap. In: de Lemos, R., Giese, H., Mller, H., Shaw, M. (Eds.), Software
Engineering for Self-Adaptive Systems II. In: Lecture Notes in Computer Science,
7475. Springer-Verlag, Berlin Heidelberg, pp. 1–32. doi:10.1007/978-3-642-35813-
5_1.

Dragomir, Iulia, Ober, Iulian, Lesens, David, 2012. A case study in formal system engi-
neering with SysML. In: 17th International Conference on Engineering of Complex
Computer Systems (ICECCS’12). IEEE, pp. 189–198.

Gnaho, Christophe, Semmak, Farida, 2010. Une Extension SysML pour l’ingénierie
des Exigences Non-Fonctionnelles Orientée But. In: Ingénierie des Systèmes
d’Information. Lavoisier Paris FRANCE, pp. 277–292.

Goldsby, Heather J., Sawyer, Pete, Bencomo, Nelly, Cheng, Betty H.C., Hughes, Danny,
2008. Goal-based modeling of dynamically adaptive system requirements. In: Pro-
ceedings of the 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems. IEEE Computer Society, Washington, DC,
USA, pp. 36–45.

Kasten, Eric P., Sadjadi, Seyed M., McKinley, Philip K., 2003. Architecture and operation
of an adaptable communication substrate. In: Proceedings of the Ninth IEEE
Workshop on Future Trends of Distributed Computing Systems (FTDCS’03) IEEE
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1204293&queryText=
Architecture+and+operation+of+an+adaptable+communication+substrate&
newsearch=true&searchField=Search_All.

Kephart, Jeffrey O., Chess, David M., 2003. The Vision of Autonomic Computing. Com-
puter 36 (1).

Laleau, Régine, Semmak, Farida, Matoussi, Abderrahman, Petit, Dorian,
Hammad, Ahmed, Tatibouet, Bruno, 2010. A First Attempt to Combine SysML
Requirements Diagrams and B. Innovations in Systems and Software Engineering
6.

Lamsweerde, Axel V., 2009. Requirements Engineering: From System Goals to UML
Models to Software Specifications, 1st edition Wiley.

Lapouchnian, Alexei, Liaskos, Sotirios, Mylopoulos, John, Yu, Yijun, 2005. Towards
Requirements-Driven Autonomic Systems Design. In: Proceedings of the 2005
workshop on Design and evolution of autonomic application software. ACM, New
York, NY, USA, pp. 1–7.

Lutz, Robyn R., 1993. Targeting safety-related errors during software requirements
analysis. J. Syst. Softw. 34 (3), 223–230.

Moon, Seong ick, Lee, K.H., Lee, Doheon, 2004. Fuzzy branching temporal logic. IEEE
Trans. Syst. Man Cybernet. B: Cybernet. 34 (2).

Nehmer, Jürgen, Becker, Martin, Karshmer, Arthur, Lamm, Rosemarie, 2006. Living as-
sistance systems: An ambient intelligence approach. In: Proceedings of the 28th
International Conference on Software Engineering (ICSE’06). ACM, pp. 43–50.

Ober, Iulian, Dragomir, Iulia, 2010. OMEGA2: A new version of the profile and the tools.
In: 15th International Conference on Engineering of Complex Computer Systems
(ICECCS ’10). IEEE, pp. 373–378.

Ramirez, Andres J., Cheng, Betty H.C., Bencomo, Nelly, Sawyer, Pete, 2012a. Relaxing
claims: Coping with uncertainty while evaluating assumptions at run time. In:
France, Robert B., Kazmeier, Jrgen, Breu, Ruth, Atkinson, Colin (Eds.), Model Driven
Engineering Languages and Systems. In: Lecture Notes in Computer Science, 7590.
Springer-Verlag, Berlin/Heidelberg, pp. 53–69.

Ramirez, Andres J., Fredericks, Erik M., Jensen, Adam C., Cheng, Betty H.C., 2012b. Auto-
matically RELAXing a goal model to cope with uncertainty. In: Proceedings of
the 4th International conference on Search Based Software Engineering. Springer-
Verlag, Berlin/Heidelberg, pp. 198–212.

Verimag, Irit, 2011. OMEGA2-IFx for UML/SysML v2.0, Profile and Toolset, User Manual
Document v1.1.

Vítor, E., Souza, S., Lapouchnian, Alexei, Robinson, William N., Mylopoulos, John, 2011.
Awareness requirements for adaptive systems. In: Proceedings of the 6th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems. ACM, New York, NY, USA, pp. 60–69.

Welsh, Kristopher, Sawyer, Pete, 2010. Understanding the scope of uncertainty in dy-
namically adaptive systems. In: Requirements Engineering: Foundation for Soft-
ware Quality. Springer-Verlag, Berlin Heidelberg, pp. 2–16.

Welsh, Kristopher, Sawyer, Pete, Bencomo, Nelly, 2011. Towards requirements aware
systems: Run-time resolution of design-time assumptions. In: Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Computer Society, pp. 560–563.

Whittle, Jon, Sawyer, Pete, Bencomo, Nelly, Cheng, Betty H.C., 2008. A language
for self-adaptive system requirements. In: International Workshop on Service-
Oriented Computing: Consequences for Engineering Requirements (SOCCER’08)
IEEE http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4797489&filter%
3DAND%28p_IS_Number%3A4797485%29.

Whittle, Jon, Sawyer, Pete, Bencomo, Nelly, Cheng, Betty H.C., Bruel, J.-M., 2009. RE-
LAX: Incorporating uncertainty into the specification of self-adaptive systems. In:
Proceedings of the 2009 17th IEEE International Requirements Engineering Con-
ference, RE. IEEE Computer Society, Washington, DC, USA, pp. 79–88.

Yu, Eric S.K., 1997. Towards modeling and reasoning support for early-phase require-
ments engineering. In: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering. IEEE Computer Society, pp. 226–235.

Yu, Yijun, Lapouchnian, Alexei, Liaskos, Sotirios, Mylopoulos, John, Leite, Julio C.S.P.,
2008. From goals to high-variability software design. In: Proceedings of the 17th
International Conference on Foundations of Intelligent Systems. Springer-Verlag,
Berlin, Heidelberg, pp. 1–16.

Yu, Yijun, Leite, Julio C.S.P., Mylopoulos, John, 2004. From goals to aspects: Discovering
Aspects from requirements goal models. In: Proceedings of the 12th IEEE Interna-
tional Requirements Engineering Conference. IEEE Computer Society, Washington,
DC, USA, pp. 38–47.

Manzoor Ahmad received his Ph.D. from the University of Toulouse Mirail in October
2013. He is working as research/teacher assistant at the University of Pau for the aca-
demic year 2013-2014. Currently member of the LIUPPA (Laboratoire d’Informatique
de l’Université de Pau et des Pays de l’Adour). Previous Member of the MACAO team
(Modèles, Aspects, Composants pour des Architectures à Objets) of the IRIT (Institut de
Recherche en Informatique de Toulouse) CNRS laboratory. His research areas include
requirements engineering, model driven engineering, goal based requirements engi-
neering, computer networks and use of formal methods for the properties verification
of self-adaptive systems.

Nicolas Belloir is an associate professor at the computer department of the University
of Pau, France, since 2005. It is member of the MOVIES research team at the LIUPPA
(Laboratoire d’Informatique de l’Université de Pau et des Pays de l’Adour). He received
a Ms. D. in computer science from the University of Toulouse in 1999. He worked as
software engineer between 1999 and 2001 in Transiciel Company on embedded and
real-time systems. He received its Ph. D. in computer science from the University of Pau
in 2004. His research interest deals with semi-formal modeling language (UML, SysML,
DSML …), model driven engineering, requirement engineering, and component-based
software engineering.

Jean-Michel Bruel received his Ph.D. from the University Paul Sabatier (Toulouse)
in December 1996. From September 1997 to August 2008, he was associate profes-

sor at the University of Pau. Member of the LIUPPA (Laboratoire d’Informatique de
l’Université de Pau et des Pays de l’Adour) from 2000 to 2008. Currently member of the
MACAO team (Modèles, Aspects, Composants pour des Architectures à Objets) of the
IRIT (Institut de Recherche en Informatique de Toulouse) CNRS laboratory. His research
areas include development of distributed, component-based applications, methods in-
tegration, and on the use of formal methods in the Component-Based Software Engi-
neering context. He has defended his "Habilitation à Diriger des Recherches" in Decem-
ber 2006 and obtained in 2008 a full professor position at the University of Toulouse.
He has been head of the Computer Science department of the Technical Institute of
Blagnac from 2009 to 2012.

