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Abstract

In this paper we give new bounds for the period of solutions to certain Hamil-
tonian system involving a function φ. We also obtain upper and lower bounds
which are uniform with respect to the function φ. Furthermore, the optimality of
this lower bound is established.

1 Introduction and main results
The main aim of this paper is to give estimates for the period of solutions of the quasi-
linear ODE

d

dt

(
φ(x′)

)
+ λφ(x) = 0. (1)

Throughout this article we consider φ : R→ R an increasing odd homeomorphism of
R, Φ the primitive of φ with Φ(0) = 0, and x a real function depending on the variable
t. Henceforth we denote by F the set of all functions Φ satisfying previous conditions.

As usual we call φ-Laplace operator the differential operator x 7→ d
dt

(
φ(x′)

)
. This

is named p-Laplace operator or more briefly p-Laplacian in the particular case that
Φ(x) = |x|p/p, 1 < p <∞.

Boundary values problems containing φ-Laplace operator have been extensively
studied ( see e.g [4, 7, 10, 11, 12, 13, 14] and the references therein). A large part of
the associated literature is devoted to the question of existence of solutions.

The problem of estimating the period of solutions is closely related to the eigen-
value problem on some interval (a, b) of R:{

d
dt

(
φ(x′)

)
+ λφ(x) = 0

x(a) = x(b) = 0.
(2)

The number λ is an eigenvalue if and only if 2(b − a) is an integer multiple of the
period of some solution x(t) of equation (1) (see [4]).

For certain functions φ there exists T > 0 such that all solutions of (1) have period
T . In this case, T depends on λ but does not depend on the initial conditions satisfied
by x then, following [2], we say that the equation (1) is isochronus. As a consequence
the set of eigenvalues is a sequence going to infinity. A well known case of isochrony,
although it is not in the form (1), is the equation defining tautochrone curve.

The equation (1) is the Lagrange equation with respect to the LagrangianL(x, x′) =
Φ(x′)− λΦ(x). The associated Hamiltonian is the function

H(ρ, x) = Ψ(ρ) + λΦ(x).

The variable ρ = φ(x′) is the generalized momentum and Ψ is the complementary
function (Legendre transform) of Φ defined by

Ψ(x) = sup
y∈R
{xy − Φ(y)}.

The lowercase symbol ψ denotes the derivative function of Ψ. The function ψ becomes
the inverse of φ and therefore Ψ ∈ F (see [8]).

2



1 Introduction and main results

As it is known, the Hamiltonian is a conserved quantity along solutions. In this
paper we call the quantitiesH and λ energy and frequency respectively. Since x is one-
dimensional, two solutions corresponding to same energy differ in a time translation.
Therefore, instead of talking about solutions associated to initial conditions, we will
use energy H to indicate solutions of (1). Positions x and generalized momentums ρ
are solutions of the Hamiltonian system{

x′(t) = ∂H
∂ρ = ψ(ρ)

ρ′(t) =−∂H∂x = −λφ(x)
(3)

(see [1]).
For convenience, we will consider 1/4 times the period of solutions of the equation

(1) and we will denote it by TΦ(H,λ) (we note that the period depends only on energy
H and frequency λ). In [5] it was obtained the following explicit formula:

TΦ(H,λ) =

ˆ Φ−1(Hλ )

0

du

ψ (Ψ−1(H − λΦ(u)))
. (4)

If we consider the change of variable v = H − λΦ(u) in the integral (4), then we
obtain

TΦ(H,λ) =
1

λ

ˆ H

0

dv

ψ (Ψ−1(v))φ
(
Φ−1

(
H−v
λ

)) . (5)

This symmetric convolution formula shows the following relation between periods and
frequencies of complementary functions.

Lemma 1.1. For every H > 0 and λ > 0

TΦ(H,λ) =
1

λ
TΨ

(
H

λ
,

1

λ

)
. (6)

Alternatively, (6) can be deduced observing that changes of variables
(x, ρ, t) → (ρ, x,−λ−1t) transform solutions of (3) into solutions of its dual sys-
tem, i.e the system obtained from (3) by means of the substitutions φ ↔ ψ and
(H,λ)→ (H/λ, 1/λ). Note that a↔ b means exchange a and b.

Let us take a moment to show as the classical theory on Hamiltonian system allows
us to get (4). First, we point out that energy levels of the Hamiltonian function are
closed trajectories; hence the solutions are periodic. The solutions with energy H > 0
intersect the positive coordinate semi-axis at the points P := (0,Ψ−1(H)) and Q :=
(Φ−1(H/λ), 0). Second, we note that equations (3) are invariant with respect to the
changes of variables (x, ρ, t) → (x,−ρ,−t), (−x, ρ,−t), therefore trajectories are
symmetric with respect to coordinate axis. These facts imply that the period is four
times as long as to go from P to Q. Last, we invoke action-angles variables [1, Section
50] and we consider the generating function

W (x, I) =

ˆ x

Ψ−1(H − λΦ(u))du.
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Here we assume that I is the action variable and H is function of I . For the angle
variable we have that

ω =
∂W

∂I
=

ˆ x du

ψ (Ψ−1(H − λΦ(u)))

∂H

∂I
.

Now, from [1, p. 280] we know that ω = (∂H/∂I)t, therefore

t =

ˆ x du

ψ (Ψ−1(H − λΦ(u)))

and integrating from 0 to Φ−1(H/λ) we get formula (4).
For the p-Laplace operator the problem (1) is isochronus and, in this case, the

formula (4) reduces to

Tp(λ) := TΦ(H,λ) =
B
(

1
p ,−

1
p + 2

)
(p− 1)

1
q λ

1
p

=
π(p− 1)

1
p

p sin
(
π
p

)
λ

1
p

, (7)

where B denotes the beta function. As a consequence, the spectrum of the one-
dimensional p-Laplace operator is discrete. It is a remarkable open problem whether
the multidimensional p-Laplacian is discrete or continuous.

In [5], M. Garcı́a-Huidobro, R. Manásevich and F. Zanolin were interested in es-
timating the spectrum of the φ-Laplace operator with the purpose of obtaining, what
they called, non resonance intervals, i.e. intervals without eigenvalues. Clearly a sharp
bound is better for this goal. In [5] it was obtained the estimate

1

1 + λ
≤ TΦ(H,λ) ≤ 2(λ+ 1)

λ
. (8)

In this paper we wish to improve these estimates and discuss the possible optimality
of the new bounds. That is, we would like to characterize the quantities:

U(λ) := sup
H>0,Φ∈F

TΦ(H,λ)

L(λ) := inf
H>0,Φ∈F

TΦ(H,λ).

Remark 1.2. It is easy to show that

TΦ(H,λ) = TΦαβ (βH, λ) ,

where Φαβ(x) = βΦ(αx). Therefore, taking β = H−1 we get

U(λ) = sup
Φ∈F

TΦ(1, λ) and L(λ) = inf
Φ∈F

TΦ(1, λ).

We note that we can use the parameter α in order to introduce an extra condition on
functions Φ, for example that Φ(1) = 1.
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1 Introduction and main results

Let AΦ(H,λ) and CΦ(H,λ) be defined by

AΦ(H,λ) :=
Ψ−1

(
H
2

)
λφ(Φ−1

(
H
2λ

)
)

+
Φ−1

(
H
2λ

)
ψ
(
Ψ−1(H2 )

) , (9)

CΦ(H,λ) := max

{
Φ−1

(
H
λ

)
ψ(Ψ−1(H))

,
Ψ−1(H)

λφ
(
Φ−1(Hλ )

)}. (10)

The following theorem is our starting point.

Theorem 1.3. If Φ ∈ F then

CΦ(H,λ) ≤ TΦ(H,λ) ≤ AΦ(H,λ). (11)

Throughout this article, we denote by K a positive constant that may depend on Φ
and on an arbitrary positive parameter ε, and we assume that the value thatK represents
may change in different occurrences in the same chain of inequalities.

We recall that a nondecreasing function ϕ is a ∆2-function when there exists a
constant K such that

ϕ(2x) ≤ Kϕ(x), x ≥ 0.

We remark that if Φ,Ψ are ∆2-functions, we get from the previous theorem an estimate
of the period by powers of λ.

Corollary 1.4. If Φ,Ψ are ∆2-functions then for every ε > 0 there exist a constant K
such that

K−1 min

{
1

λ
1
βΦ
−ε
,

1

λ
1
αΦ

+ε

}
≤ TΦ(H,λ) ≤ K max

{
1

λ
1
βΦ
−ε
,

1

λ
1
αΦ

+ε

}
(12)

where αΦ and βΦ are the Matuszewska-Orlicz indices (see Section 2 for definitions).

The next proposition gives better estimates than (8) and it also establishes the opti-
mality of the lower bound.

Proposition 1.5. For any λ > 0, we have that

min

{
1,

1

λ

}
≤ L(λ) ≤ U(λ) ≤ max

{
λ+ 2

λ
,

2λ+ 1

λ

}
.

Moreover,

L(λ) = inf
p>1

Tp(λ) = min

{
1,

1

λ

}
≤ max

{
1,

1

λ

}
≤ sup

p>1
Tp(λ) ≤ U(λ).

We can show that the quantity max
{
λ+2
λ , 2λ+1

λ

}
is optimal with respect toAΦ(H,λ).

More precisely,

Proposition 1.6. For any λ > 0, we have that

sup
H>0,Φ∈F

AΦ(H,λ) = max

{
λ+ 2

λ
,

2λ+ 1

λ

}
.

The article continues as follows. In Section 2 we present the proofs of the above
results. In Section 3 we discuss improvements in the upper bounds of the period.
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2 Proofs
Proof. Theorem 1.3. Let (x, ρ) be any non-trivial solution of (3) and let

H = Ψ(ρ(t)) + λΦ(x(t)) (13)

be the energy constant. As we have mentioned above the solutions with energy
H > 0 intersect the positive coordinate semi-axis at the points P := (0,Ψ−1(H)) and
Q := (Φ−1(Hλ ), 0). Now, we take R =

(
Φ−1( H2λ ),Ψ−1(H2 )

)
(see Figure 1).

- x

6ρ

Φ−1
(
H
λ

)
Φ−1

(
H
2λ

)

Ψ−1 (H)

Ψ−1
(
H
2

)
u

u

u

P

R

Q

τ1

τ2

Figure 1: A quarter of a trajectory

If τ1 is the time taken by a solution to go from P to R and τ2 is the respective time
from R to Q, then

TΦ(H,λ) = τ1 + τ2. (14)

For t ∈ [0, τ1] we have from (13) that ρ(t) ≥ Ψ−1(H/2). Using the first equation
of (3) we obtain

x′(t) ≥ ψ
(

Ψ−1

(
H

2

))
and integrating between 0 and τ1 we have

Φ−1

(
H

2λ

)
=

ˆ τ1

0

x′(t)dt ≥ ψ
(

Ψ−1

(
H

2

))
τ1,

thus

τ1 ≤
Φ−1( H2λ )

ψ
(
Ψ−1

(
H
2

)) . (15)

With the same procedure for t ∈ [τ1, τ1 + τ2], taking into account the second equation
of (3) and the inequality x(t) ≥ Φ−1( H2λ ), we obtain

τ2 ≤
Ψ−1(H2 )

λφ(Φ−1
(
H
2λ

)
)
. (16)
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2 Proofs

From (14), (15) and (16) we have the second inequality in (11).
In order to prove the first inequality, we note that ρ(t) ≤ Ψ−1(H) for

t ∈ [0, τ1 + τ2], thus
x′(t) = ψ(ρ(t)) ≤ ψ

(
Ψ−1(H)

)
,

integrating from 0 to τ1 + τ2, we get

TΦ(H,λ) ≥
Φ−1

(
H
λ

)
ψ (Ψ−1(H))

. (17)

Analogously, since x(t) ≤ Φ−1
(
H
λ

)
and ρ′(t) = −λφ(x(t)), we obtain

TΦ(H,λ) ≥ Ψ−1(H)

λφ
(
Φ−1(Hλ )

) . (18)

With the purpose of establishing Corollary 1.4 we recall some definitions and re-
sults from the theory of convex functions. We suggest [3, 6, 8, 9, 15] for definitions,
proofs and additional details.

We denote by αϕ and βϕ the so called Matuszewska-Orlicz indices of the func-
tion ϕ, which are defined next. Given an increasing, unbounded, continuous function
ϕ : [0,+∞)→ [0,+∞) such that ϕ(0) = 0 we define

αϕ := lim
t→0+

log

(
sup
u>0

ϕ(tu)
ϕ(u)

)
log(t)

, βϕ := lim
t→+∞

log

(
sup
u>0

ϕ(tu)
ϕ(u)

)
log(t)

. (19)

We have that 0 ≤ αϕ ≤ βϕ ≤ +∞. The relation βϕ < ∞ holds true if and only if ϕ
is a ∆2-function. If ϕ is a homeomorphism we have that

αϕ−1 =
1

βϕ
. (20)

Moreover ϕ ∈ F implies αϕ ≥ 1. As a consequence, ϕ−1 is a ∆2-function.
It is well known that if ϕ is an increasing ∆2-function, ϕ is controlled by above

and below by power functions. More concretely, for every ε > 0 there exists a constant
K = K(ϕ, ε) such that, for every t, u ≥ 0,

K−1 min
{
tβϕ+ε, tαϕ−ε

}
ϕ(u) ≤ ϕ(tu) ≤ K max

{
tβϕ+ε, tαϕ−ε

}
ϕ(u). (21)

We recall the very well known Young’s equality, for a pair (Φ,Ψ) of complemen-
tary functions in F × F

xφ(x) = Φ(x) + Ψ(φ(x)). (22)

If Φ and Ψ are ∆2-functions then the three terms in this formula become balanced.
That means

xφ(x) ∼ Φ(x) ∼ Ψ(φ(x)), x > 0 (23)

where the notation f ∼ g means that the ratio f/g remains bounded from above and
below by constants for positive x.
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Proof. Corollary 1.4. By virtue of Theorem 1.3 it is sufficient to prove that the follo-
wing inequalities

K−1 min

{
1

λ
1
βΦ
−ε
,

1

λ
1
αΦ

+ε

}
≤

Φ−1
(
H
λ

)
ψ(Ψ−1(H))

,
Ψ−1(H)

φ(Φ−1(
(
H
λ

)
))

≤ K max

{
1

λ
1
βΦ
−ε
,

1

λ
1
αΦ

+ε

} (24)

hold true for every pair (Φ,Ψ) of complementary ∆2-functions in F × F . Taking
account of (23) it is possible to substitute ψ(Ψ−1(H)) for Φ−1(H) in (24). Now using
(20) and (21) with ϕ = Φ−1 we have that

Φ−1
(
H
λ

)
ψ(Ψ−1(H))

≤ K
Φ−1

(
H
λ

)
Φ−1(H)

≤ K max

{
1

λ
1
βΦ
−ε
,

1

λ
1
αΦ

+ε

}
.

The lower bound is obtained by similar arguments. The other inequalities are obtained
by replacing Φ↔ Ψ and λ↔ 1/λ.

Proof. Proposition 1.5
Let A := Φ−1

(
H
λ

)
, B := Φ−1

(
H
2λ

)
, C := Ψ−1(H), D := Ψ−1(H2 ) (we note that

λ = Ψ(D)/Φ(B)), then from Theorem 1.3

max

{
A

ψ(C)
,

C

λφ(A)

}
≤ TΦ(H,λ) ≤ B

ψ(D)
+

D

λφ(B)
.

Firstly, dealing with the lower estimate, we have two possibilities φ(A) ≤ C or
ψ(C) ≤ A, therefore

max

{
A

ψ(C)
,

C

λφ(A)

}
≥ min

{
1,

1

λ

}
. (25)

Secondly, we work on the upper estimate as follows. IfD ≤ φ(B), using the inequality
Ψ(D) ≤ ψ(D)D and the Young’s inequality

BD ≤ Φ(B) + Ψ(D)

we have
B

ψ(D)
+

D

λφ(B)
=

BD

ψ(D)D
+

D

λφ(B)
≤ λ+ 2

λ
.

In this manner, we have seen that

D ≤ φ(B)⇒ TΦ(H,λ) ≤ λ+ 2

λ
. (26)

Now, exchanging Φ ↔ Ψ, B ↔ D (consequently λ ↔ 1/λ and H ↔ H/λ) and
using Lemma 1.1 we obtain

φ(B) ≤ D ⇒ TΦ(H,λ) =
1

λ
TΨ

(
H

λ
,

1

λ

)
≤ 2λ+ 1

λ
. (27)
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2 Proofs

The upper bound of TΦ(H,λ) follows from (26)-(27). This concludes the proof of
the first part of Proposition 1.5.

Now, we will prove the optimality of the lower bound considering power functions
Φ(x) = |x|p. By elementary limit arguments and performing some calculations we
obtain

lim
p→1

Tp(λ) =
1

λ
and lim

p→∞
Tp(λ) = 1.

Therefore

L(λ) ≤ min

{
lim
p→1

Tp(λ), lim
p→∞

Tp(λ)

}
= min

{
1,

1

λ

}
.

and

U(λ) ≥ max

{
lim
p→1

Tp(λ), lim
p→∞

Tp(λ)

}
= max

{
1,

1

λ

}
.

From these inequalities and (25) we obtain the desired result.

Proof. Proposition 1.6. The inequality

AΦ(H,λ) ≤ max

{
λ+ 2

λ
,

2λ+ 1

λ

}
(28)

was already proved in the previous proof.
For a > 0 we consider the odd functions satisfying for x > 0

φa(x) =

{
xa 0 ≤ x ≤ 1

1
ax+ a−1

a x > 1.

As usual, we denote Φa(x) =
´ x

0
φa(t) dt. It is easy to check that Φa ∈ F and

(φa)
−1

(x) = φ1/a(x). Consequently the complementary function of Φa is Φ1/a.
We have that

Φ−1
a (x) =

{
((a+ 1)x)

1
a+1 0 ≤ x ≤ 1/(a+ 1)

−a+ 1 +
√

a
a+1

√
2x(a+ 1) + (a+ 2)(a− 1) x > 1/(a+ 1)

and

dΦ−1
a

dx
(x) =

 ((a+ 1)x)
−a
a+1 0 ≤ x ≤ 1/(a+ 1)√

a+1
√
a√

2 (a+1)x+(a+2)(a−1)
x > 1/(a+ 1).

Thus, performing some computations we can deduce

lim
a→+∞

Φ−1
a (x) = 1 + x, lim

a→0+
Φ−1
a (x) = min(1, x) (29)

and

lim
a→+∞

dΦ−1
a

dx
≡ 1, lim

a→0+

dΦ−1
a

dx
= χ[0,1]. (30)

9
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Therefore

lim
a→+∞

AΦa(H,λ) = lim
a→+∞

 Φ−1
1/a

(
H
2

)
λφa

(
Φ−1
a

(
H
2λ

)) +
Φ−1
a

(
H
2λ

)
φ1/a

(
Φ−1

1/a

(
H
2

))


= lim
a→+∞

 1

λ
Φ−1

1/a

(
H

2

)
dΦ−1

a

dx

∣∣∣∣∣
x= H

2λ

+ Φ−1
a

(
H

2λ

)
dΦ−1

1/a

dx

∣∣∣∣∣
x=H

2


=

1

λ
min

(
1,
H

2

)
+

(
H

2λ
+ 1

)
χ[0,1]

(
H

2

)
=

{
H
λ + 1 if H ≤ 2
1
λ if H > 2.

In a similar way

lim
a→0+

AΦa(H,λ) =

{
H+1
λ if H ≤ 2λ

1 if H > 2λ.

Hence

sup
H>0,Φ∈F

AΦ(H,λ) ≥ sup
H>0

max

{
lim
a→0+

AΦa(H,λ), lim
a→+∞

AΦa(H,λ)

}
= max

{
λ+ 2

λ
,

2λ+ 1

λ

}
.

The result follows taking account of (28).

3 Additional results
We can improve the upper bound obtained in Theorem 1.3 with a similar argument to
that used in its demonstration employing piecewise linear functions instead of piece-
wise constant ones to bound trajectories.

We consider P , Q, R, τ1 and τ2 as in the proof of Theorem 1.3. Let
ρ̃ = ax+ b and x̃ = mρ+n be the equations of the straight lines connecting the points
P with R and R with Q respectively, then a = Ψ−1(H/2)−Ψ−1(H)

Φ−1(H/2λ) , b = Ψ−1(H),

m = Φ−1(H/2λ)−Φ−1(H/λ)
Ψ−1(H/2) and n = Ψ−1(H/2). Due to the concavity of the function

ρ = Ψ−1 (H − λΦ(x)), for x ≥ 0 and ρ ≥ 0, we have that the trajectory (x(t), ρ(t))
satisfies ρ(t) ≥ ρ̃(t) for t ∈ [0, τ1] and x(t) ≥ x̃(t) for t ∈ [τ1, τ1 + τ2].

Taking into account (3), we get x′(t) ≥ ψ(ρ̃(t)) for t ∈ [0, τ1] and
ρ′(t) ≥ λφ(x̃(t)) for t ∈ [τ1, τ1 + τ2]. Integrating from 0 to τ1, we obtain

τ1 ≤
ˆ τ1

0

x′(t)dt

ψ(ax(t) + b)
=

1

a

ˆ Ψ−1(H2 )

Ψ−1(H)

du

ψ(u)
= Φ−1

(
H

2λ

) Ψ−1(H)

Ψ−1(H2 )

du

ψ(u)
,

10
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where
ffl

denotes the averaged integral. In a similar way, integrating over the interval
[τ1, τ1 + τ2], we have

τ2 ≤ Ψ−1

(
H

2

)
λ−1

 Φ−1(Hλ )

Φ−1( H2λ )

du

φ(u)
.

If we define

BΦ(H,λ) := Φ−1

(
H

2λ

) Ψ−1(H)

Ψ−1(H2 )

du

ψ(u)
+ Ψ−1

(
H

2

)
λ−1

 Φ−1(Hλ )

Φ−1( H2λ )

du

φ(u)
(31)

then, according to our previous discussion, we have the following result.

Proposition 3.1. For any H > 0

TΦ(H,λ) ≤ BΦ(H,λ).

Recalling the definition of AΦ(H,λ) given in (9) and bounding the functions 1/φ
and 1/ψ by their maximum values over the corresponding integration intervals in (31),
we obtain

BΦ(H,λ) ≤ AΦ(H,λ).

However, as it is shown in the following result, the optimal upper bound forBΦ(H,λ)
is the same that for AΦ(H,λ).

Theorem 3.2. For any λ > 0

sup
H>0,Φ∈F

BΦ(H,λ) = max

{
λ+ 2

λ
,

2λ+ 1

λ

}
.

Proof. We consider the functions Φa defined in the proof of Proposition 1.6. By per-
forming the change of variables u = Ψ−1(v) and u = Φ−1(v) in the integrals (31) we
obtain

BΦa(H,λ) = Φ−1
a

(
H

2λ

) ´H
H
2

∣∣∣∣dΦ−1
1/a

dv

∣∣∣∣2 dv
´H
H
2

dΦ−1
1/a

dv dv

+
1

λ
Φ−1

1/a

(
H

2

) ´ H
λ
H
2λ

∣∣∣dΦ−1
a

dv

∣∣∣2 dv
´ H
λ
H
2λ

dΦ−1
a

dv dv

=: Φ−1
a

(
H

2λ

)
I1 +

1

λ
Φ−1

1/a

(
H

2

)
I2.

We note that the functions dΦ−1
α

dv are decreasing and they verify (30). Therefore
they are uniformly bounded on closed intervals excluding 0. Hence, by the Lebesgue
dominated convergence theorem, we can see that lim

a→+∞
I2 = 1. To evaluate lim

a→+∞
I1

we consider several cases for H . If H < 2 then, using (30), we obtain lim
a→+∞

I1 = 1.

If H ≥ 2, taking account of Hölder inequality and the monotonicity of
dΦ−1

1/a

dv , we get

I1 ≤
dΦ−1

1/a

dv

∣∣∣∣∣
v=H

2

.

11



S. Acinas, G. Giubergia, F. Mazzone and E. Schwindt

Therefore, by elementary calculations we have

lim sup
a→+∞

I1 ≤ 1 if H = 2 and lim
a→+∞

I1 = 0 if H > 2.

Then, from (29)

lim
a→+∞

BΦa(H,λ) =

(
1 +

H

2λ

)
lim

a→+∞
I1 +

1

λ
min

{
1,
H

2

}
=

{
1 + H

λ if H < 2
1
λ if H > 2

and
lim sup
a→+∞

BΦa(2, λ) ≤ 1 +
2

λ
.

Finally, using that BΦ satifies the anolougous duality formula that TΦ, we have that
BΦa(H,λ) = 1

λBΦ1/a
(Hλ ,

1
λ ) and cosequently we conclude

sup
H>0,Φ∈F

BΦ(H,λ) ≥ sup
H>0

max

{
lim
a→0+

BΦa(H,λ), lim
a→+∞

BΦa(H,λ)

}
= max

{
λ+ 2

λ
,

2λ+ 1

λ

}
.

For the functions Φ(x) = |x|p/p with p > 1, the upper bound obtained in Proposi-
tion 1.5 can be improved.

Proposition 3.3. For any λ > 0 we have that

sup
p>1

Tp(λ) ≤ λ+ 1

λ
. (32)

Proof. From the formula (7) for the period Tp, proving (32) is equivalent to show that
for all p > 1

(p− 1)

 π

p sin
(
π
p

)
p

≤ λ
(

1 +
1

λ

)p
. (33)

As the function in the right hand side of (33) attains its minimum at (p− 1), inequality
(33) is implied by

1− x

π
≤ sinx

x
, (34)

where x = π/p. Now, since (34) is a well known inequality, the proof is complete.

In view of the previous result, we can hypothesize that the inequality
TΦ(H,λ) ≤ λ+1

λ holds for every Φ ∈ F and H > 0. We could not prove this inequal-
ity, however we performed various numerical experiments that support our hypothesis,
generating functions randomly in the class F and computing the period numerically
by means of a recursive adaptive Simpson quadrature. The result is consistent with the

12
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hypothesis. Nevertheless, likewise in the case of the bounds of AΦ and BΦ, the func-
tions Φa seem to be approximately extremals, at least among those we have checked.
In the Figure 2, we show the hypothetical bound and the graph of sup

H>0
TΦa(H,λ) for

several values of a. In order to compute the supreme, we consider energies H > 0 in
an equally spaced grid with extremals 0.1 and 11.

It is interesting to point out that the function U satisfies the inequalities in Propo-
sition 1.5 and U(λ) = 1

λU( 1
λ ). If we suppose that U is meromorphic with an unique

pole in 0 then the only option would be that U(λ) = κ 1+λ
λ with 1 ≤ κ ≤ 1.5.

Figure 2: sup
H>0

TΦa(H,λ) for a = 1
200 ,

1
198 , . . . , 1, 3, . . . , 70

13
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