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THE SUM OF DIGITS OF n AND n 2

Let s q (n) denote the sum of the digits in the q-ary expansion of an integer n. In 2005, Melfi examined the structure of n such that s 2 (n) = s 2 (n 2 ). We extend this study to the more general case of generic q and polynomials p(n), and obtain, in particular, a refinement of Melfi's result. We also give a more detailed analysis of the special case p(n) = n 2 , looking at the subsets of n where s q (n) = s q (n 2 ) = k for fixed k.

Introduction

Let q ≥ 2 and denote by s q (n) the sum of digits in the q-ary representation of an integer n. Recently, considerable progress has been made towards understanding the interplay between the sum-of-digits of some algebraically defined sequences, such as primes [START_REF] Mauduit | Sur un probléme de Gelfond: la somme des chiffres des nombres premiers[END_REF] and polynomials [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF] or, in particular, squares [START_REF] Mauduit | La somme des chiffres des carrés[END_REF]. In the latter, C. Mauduit and J. Rivat proved an asymptotic expansion of the sum of digits of squares [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] in arithmetic progressions. Their proof heavily relies on good estimates of quadratic Gauss sums. For the case of general polynomials p(n) of degree h > 2 there is still a great lack of knowledge regarding their distribution with respect to digitally defined functionals [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF].

Several authors studied the pointwise properties and relationships of s q (p(n)), e.g., K. Stolarsky [START_REF] Stolarsky | The binary digits of a power[END_REF], B. Lindström [START_REF] Lindström | On the binary digits of a power[END_REF], G. Melfi [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF], and M. Drmota and J. Rivat [START_REF] Drmota | The sum-of-digits function of squares[END_REF]. In particular, a conjecture of Stolarsky [START_REF] Stolarsky | The binary digits of a power[END_REF] about some extremal distribution properties of the ratio s q (p(n))/s q (n) has been recently settled by the authors [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF]. Melfi [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF] proposed to study the set of n's such that s 2 (n 2 ) = s 2 (n), and he obtained that [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF] # n < N :

s 2 (n 2 ) = s 2 (n) N 1/40 .
Using heuristic arguments, Melfi conjectured a much stronger result that

(2) # n < N : s 2 (n 2 ) = s 2 (n) ≈ N β log N with β ≈ 0.75488 . . . , giving an explicit formula for β. The aim of the present paper is to provide a generalization to general p(n) and base q of Melfi's result as well as to use the method of proof to sharpen Melfi's exponent in [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF]. Moreover, we provide a local analog, i.e., getting a lower bound for the number of n's such that s q (n 2 ) = s q (n) = k for some fixed k.

Theorem 1.1. Let p(x) ∈ Z[x] have degree at least 2, and positive leading coefficient. Then there exists an explicitly computable γ > 0, dependent only on q and p(x), such that

(3) # n < N, q n : |s q (p(n)) -s q (n)| ≤ q -1 2 N γ ,
where the implied constant depends only on q and p(x).

This result is given in Section 2. In the general case of q-ary digits and polynomials p(x), the bound (q -1)/2 in (3) cannot be improved. This is easily seen by recalling the well-known fact [START_REF] Lindström | On the binary digits of a power[END_REF] s q (n) ≡ n mod (q -1).

Indeed, if we set p(x) = (q -1)x 2 + x + a for a ∈ N then we find that

s q (p(n)) -s q (n) ≡ p(n) -n ≡ a mod (q -1)
which could be any of 0, 1, . . . , q -2 depending only on the choice of a.

The method of proof of Theorem (1.1) allows to improve on Melfi's result (1). Theorem 1.2.

(5)

# n < N :

s 2 (n 2 ) = s 2 (n) N 1/19 .
Following on Melfi's paper [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF], we examine the case when p(n) = n 2 and q = 2 in more detail. We consider the set of all n's such that s 2 (n) = s 2 (n 2 ), and partition the set into the subsets dependent upon the value of s 2 (n). By noticing that s 2 (n) = s 2 (2n) and s 2 (n 2 ) = s 2 ((2n) 2 ) we see that we can restrict our attention to odd n.

Theorem 1.3. Let k ≤ 8. Then {n odd : s 2 (n 2 ) = s 2 (n) = k} is a finite set.
This was done by explicit computation of all such n which are given in Tables 1 and2. A discussion of how these computations were made is given in Section 3.

Based on these initial small values of k, one might expect that this is always true. Let [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] n 2 = 1101111 00 . . . 00 r 1101111 be written in base 2. Then s 2 (n) = s 2 (n 2 ) = 12 for all r ≥ 8. This is in fact a special case of a more general property.

Theorem 1.4. Let k ≥ 16 or k ∈ {12, 13}. Then {n < N, n odd : s 2 (n 2 ) = s 2 (n) = k} is an infinite set.
The proof of this result is given in Section 4. Despite of great effort we are not able to decide the finiteness problem in the remaining cases k ∈ {9, 10, 11, 14, 15}. However, we will comment on some heuristic evidence that it seems unlikely that there are infinitely many solutions in the cases k = 9 and k = 10, respectively, in Section 5.

Somewhat surprisingly, a similar answer can be given if q ≥ 3.

Theorem 1.5. Let q ≥ 3 and assume k ≥ 94(q -1).

Then the equation

(7) s q (n 2 ) = s q (n) = k
has infinitely many solutions in n with q n if and only if

(8) k(k -1) ≡ 0 mod (q -1).
We show this result in Section 6.

2. Proof of Theorems 1.1 and 1.2

Following Lindström [START_REF] Lindström | On the binary digits of a power[END_REF] we say that terms are noninterfering if we can use the following splitting formulae: Proposition 2.1. For 1 ≤ b < q k and a, k ≥ 1, s q (aq k + b) = s q (a) + s q (b), (9)

s q (aq k -b) = s q (a -1) + (q -1)k -s q (b -1). ( 10 
)
Proof. See [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF].

Proof of Theorem 1.1: The proof uses a construction of a sequence with noninterfering terms which has already been used in [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF]. However, to obtain the bound N γ in (3) instead of a logarithmic bound, we have to make a delicate refinement. To begin with, define the polynomial

t m (x) = mx 4 + mx 3 -x 2 + mx + m
where m ∈ Z. Set m = q l -r with 1 ≤ r ≤ q αl , q r and 0 < α < 1. Obviously, for α < 1 there exists l 0 (α) such that for all l > l 0 (α) we have m ≥ 3. Furthermore let k be such that q k > m. By consecutively employing (9) and (10) we see that s q (t m (q k )) = (q -1)k + s q (m -1) + 3s q (m) = (q -1)k + s q (q l -(r + 1)) + 3s q (q l -r) = (q -1)k + (q -1)l -s q (r) + 3((q -1)l -s q (r -1)) (11) = (q -1)k + 4(q -1)l -K(q, r)

where K is depends only on q and r, and does not depend on k. First consider the easier case of monomials p(n) = n h , h ≥ 2 where we can give a somewhat more direct proof. We have

t m (x) h = (mx 4 + mx 3 -x 2 + mx + m) h = 4h j=0 c j,h (m)x j (12) = m h x 4h + hm h x 4h-1 + h 2 m h -hm h-1 x 4h-2 + h + h 3 m h -2 h 2 m h-1 x 4h-3 + smaller powers.
From [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF]Lemma 3.1] we have that t m (x) h has only positive coefficients and 0 < c j,h (m) ≤ (2mh) h . This means that s q (t m (q k ) h ) does not depend on k if k is sufficiently large (see ( 9)). More precisely, if q k > (2mh) h (which is true if q k > (2h) h q lh , or equivalently if k > (h+1)l for sufficiently large l), then by a symmetry argument for the coefficients of t m (x) h ,

s q (t m (q k ) h ) ≥ 2 s q (m h ) + s q (hm h ) + s q h 2 m h -hm h-1 +s q h + h 3 m h -2 h 2 m h-1 . ( 13 
)
Consider the first summand s q (m h ) in (13). We have

m h = (q l -r) h = h j=0 h j (-1) h-j q jl r h-j = h j=0 (-1) h-j d j q jl (14)
which shows that m h is a polynomial in q l with coefficients of alternating signs. Now there are exactly h/2 negative signs in this expansion. All coefficients in (14) are bounded in modulus by

(15) 0 < d j ≤ (2r) h ≤ (2q αl ) h ≤ q (αl+1)h ,
and in turn their q-ary sum of digits is less than s q (d j ) ≤ (q-1)(αl+1)h. (Note if equality is strict in (15) then s q (d j ) = 1, otherwise it will have at most (αl+1)h digits.) Therefore, by using (10), for h/2 times, and observing that s q (d j ) ≤ (q -1)(αl + 1)h we get that for fixed α < 1/h and sufficiently large l we have

s q (m h ) ≥ h/2 (q -1)l -h/2 (q -1)(αl + 1)h ≥ h 2 (q -1)(l(1 -αh) -h). (16) 
A similar argument can be applied to the other three summands in (13). This yields

(17) s q (t m (q k ) h ) ≥ 4h(q -1)(l(1 -αh) -h).
We recall that s q (t m (q k ) h ) is independent of k (see discussion after (12), whereas from (11) we have s q (t m (q k )) will increase by q -1 for each increase in k. Take α = 1/(5h 2 ). Note that h ≥ 2 and take k and l sufficiently large so that

k + 4h 2 ≤ 4l 5h -6 5 
and

(h + 1)l < k
The second requirement is necessary for the validity of equation ( 17). This then implies that

k + 4h 2 ≤ 4l 5h-6 5 =⇒ k ≤ 4hl 1 -1 5h -1 h -4h 2 =⇒ k + 4l ≤ 4hl(1 -αh) -4h 2 =⇒ (q -1)k + 4(q -1)l -K(q, r) ≤ 4h(q -1)(l(1 -αh) -h) =⇒ s q (t m (q k )) ≤ s q (t m (q k ) h )
Recall that for each increase of k by 1, the left hand side will increase by q -1, (by (11)), and the right hand side will remain fixed. Hence, for l sufficiently large, we can find a k ≥ k such that

(18) |s q (t m (q k ) h ) -s q (t m (q k ))| ≤ q -1 2 .
Summing up, we have obtained that for sufficiently large l we can find q αl values r where we in turn can provide a value k satisfying (18). In addition, each triple (l, r, k) gives rise to a different value of t m (q k ). We thus have [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF]. Now consider the case of a general polynomial p

(x) = a h x h +a h-1 x h-1 + • • • + a 0 ∈ Z[x].
There exist positive integers s 1 and s 2 , both only depending on the polynomial p(x) such that

p(q s 1 x + q s 2 + 1) = a h x h + a h-1 x h-1 + • • • + a 0
has only positive coefficients. With the notation of (12) we obtain

p(q s 1 t m (x) + q s 2 + 1) = 3 i=0 a h c 4h-i,h (m) x 4h-i (19) + 7 i=4 a h c 4h-i,h (m) + a h-1 c 4h-i,h-1 (m) x 4h-i + smaller powers.
First suppose h ≥ 4. By choosing s 1 sufficiently large (this choice again only depends on p(x)) we get that the coefficients of x j in p(q s 1 t m (x) + q s 2 + 1) with 4h -7 ≤ j ≤ 4h are polynomials in m of degree h since we can avoid unwanted cancellation for these coefficients. The coefficients of these terms (as polynomials in m) are alternating in sign, since for h ≥ 4 and i = 0, 1, . . . , 2h -1 we have

c i,h (m) = c 4h-i,h (m) = h j=h-i/2 d j,i,h m j (20)
where d j,i,h d j+1,i,h < 0 for all j with h -i/2 ≤ j < h. Setting m = q l -r we therefore can choose s 1 , s 2 in the way that a h c 4h-i,h (m)+ a h-1 c 4h-i,h-1 (m) as a polynomial in q l has h/2 negative coefficients for each = 0, 1, . . . , 2h -1. Now, for q s 2 + 1 < q s 1 , we get by (11) that s q (q s 1 t m (q k ) + q s 2 + 1) ≤ (q -1)k + 4(q -1)l + 2.

In (19) we have therefore found eight summands sharing the property of the eight summands in the monomial case (see ( 13)). From this we proceed as in the case of monomials to get the statement.

It remains to deal with the cases of general quadratic and cubic polynomials, where we cannot directly resort to (20) (note that 8 > (2h -1) + 1 for h = 2, 3). We instead do a more direct calculation. Let h = deg p = 2 which is the case of quadratic polynomials. By suitably shifting the argument x → q s 1 x + q s 2 + 1 we can arrange for a polynomial p(q s 1 x + q s 2 + 1) = a 2 x 2 + a 1 x + a 0 with a 2 , a 1 , a 0 > 0 and 2a 2 > a 1 . Each coefficient of x i in p(q s 1 t m (x) + q s 2 + 1), 0 ≤ i ≤ 8, is a function of m and of a 2 , a 1 and a 0 . In a similar way as before (here we use 9 summands instead of the 8 in the case of h ≥ 4) we obtain for sufficiently large l, s q (p(q s 1 t m (q k ) + q s 2 + 1)) > 8(q -1)l ≥ 4h(q -1)l. Now we can choose k suitably to get the assertion. Finally, for a cubic polynomial, we are able to achieve p(q s 1 x + q s 2 + 1) = a 3 x 3 + a 2 x 2 + a 1 x+a 0 with a 3 , a 2 , a 1 , a 0 > 0 and 3a 3 > a 2 . Then, each coefficient of x i in p(q s 1 t m (x) + q s 2 + 1), 0 ≤ i ≤ 12, is a function of m and a 3 , a 2 , a 1 , a 0 , and thus we get for sufficiently large l, s q (p(q s 1 t m (q k ) + q s 2 + 1)) > 12(q -1)l ≥ 4h(q -1)l.

By choosing k suitably, we obtain the result. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2: We apply the method of proof of Theorem 1.1 to the special case q = 2 and p(n) = n 2 . Instead of using the rather crude bounds, we here use exact values to get our result. To begin with, we observe that the largest coefficient (as m → ∞) of t m (x) 2 is the coefficient of x 4 , namely 4m 2 +1. Therefore we get noninterfering terms when

2 k > 4m 2 +1. A sufficient condition for this is 2 k ≥ 4•2 2l = 2 2l+2 , or equivalently, (21) k ≥ 2l + 2.
On the other hand, the coefficients of x 8 and x 7 (resp. x 1 and x 0 ) in t m (x) 2 are m 2 and 2m 2 which have the same binary sum of digits. Now assume α < 1/2 and l > l 0 (α) be sufficiently large. We then use Proposition 2.1 and set m = 2 l -r with 1 ≤ r ≤ 2 αl to obtain

s 2 (t m (2 k ) 2 ) ≥ 4s 2 (m 2 ) + s 2 (4m 2 + 1) (22) = 5s 2 (2 l-1 -r)2 l+1 + r 2 + 1 ≥ 5s 2 (2 l-1 -r) = 5 ((l -1) -s 2 (r -1)) ≥ 5(l -1) -5αl ≥ (2 + ε)l
for any 0 < ε < 1/2. This means that for any α < 1/2 we have q αl values r where we in turn can provide a value k satisfying (18) which is due to 2l

+ 2 ≤ k ≤ (2 + ε)l.
This yields t m (q k ) ≤ 2q 4k+l ≤ 2q 4(2+ε)l+l ≤ q (9+5ε)l .

Hence, letting N = q (9+5ε)l we note that we have

q αl = N 1 (9+5ε)l αl = N α/(9+5ε) ≥ N 1/19
solutions to (18). This finishes the proof.

Proof of Theorem 1.3

The proof that there is only a finite number of odd n such that s 2 (n 2 ) = s 2 (n) ≤ 8 is a strictly computational one. We discuss how our algorithm works.

Consider

n = k i=1 2 r i = 2 r 1 + 2 r 2 + • • • + 2 r k with 0 = r 1 < r 2 < r 3 < • • • < r k . We have n 2 = k i=1 k j=1 2 r i +r j = k i=1 2 2r i + k i=1 k j=i+1 2 r i +r j +1 .
We therefore need to examine the exponents

{2r 1 , 2r 2 , . . . , 2r k , r 1 + r 2 + 1, r 1 + r 3 + 1, . . . , r k-1 + r k + 1}
and the possible iterations between these exponents by carry propagation.

Clearly, 2r 1 is the strict minimum within these exponents. Other relationships between exponents are not as clear. For example, r 1 + r 3 + 1 could be less than, equal to, or greater than 2r 2 depending on the choices of r 3 and r 2 . Each of these cases must be examined in turn. Numerous of these inequalities have implications for the order of other exponents in the binary expansion of n 2 . So, once we make an assumption in our case by case analysis, this might rule out future possibilities. For example, if we assume that 2r 3 < 1 + r 1 + r 4 , then we have as a consequence that 1 + r 2 + r 3 < 1 + r 1 + r 4 (by noticing that r 2 < r 3 ). In the case of equality we "group" terms. For example, if we assumed that 2r 3 = 1 + r 2 + r 4 , then we could, first, replace all occurrences of r 2 with 2r 3 -1 -r 4 , and second replace 2 2r 3 + 2 1+r 2 +r 4 by 2 2r 3 +1 .

Our algorithm occasionally finds a solution set with fractional or negative values for r i , which is a contradiction. On the other hand, it is possible for the algorithm to find a solution, even if all of the exponents cannot be explicitly determined. This would happen if there is an infinite family of n with s 2 (n 2 ) = s 2 (n) = k with some nice structure, (as is the case for k = 12, see ( 6)). The algorithm will detect, and report this. We used the method for k up to 8. For each of these values, there was only a finite number of n, and all of them are enumerated in Tables 1 and2.

Proof of Theorem 1.4

For the proof of Theorem 1.4, we first state some auxiliary results. Denote by (n) 2 the binary representation of n, and 1 (k) a block of k binary 1. We begin with the following key observation. Proposition 4.1. If there exists u and v such that s 2 (u) + s 2 (v) = s 2 (u 2 ) + s 2 (uv) + s 2 (v 2 ) = k, then for i sufficiently large, the numbers of the form (n

) 2 = u0 i v satisfy s 2 (n 2 ) = s 2 (n) = k.
Proof. This follows at once from Proposition 2.1, relation (9).

Base 10 Base 2

Base 10 Base 2 

s 2 (n) = s 2 (n 2 ) = 1 s 2 (n) = s 2 (n 2 ) =
(n 2 ) = s 2 (n) ≤ 7.
We use Proposition 4.1 to prove the following lemma.

Lemma 4.2. Let (u) 2 = 1 (k 1 ) 01 (n 1 ) and (v) 2 = 1 (k 2 ) 01 (n 2 ) . Assume that n 1 ≥ k 1 + 2, n 2 ≥ k 2 + 2 and n 1 ≥ n 2 . Then s 2 (u 2 ) = n 1 and s 2 (v 2 ) = n 2 ,
Base 10 Base 2 Base 10 Base 2 

s 2 (n) = s 2 (n 2 ) = 8 s 2 (n) = s 2 (n 2 ) = 8 (
(n 2 ) = s(n) = 8.
and

s 2 (uv) =      k 1 + 2 if n 2 = k 1 + 1, n 1 = n 2 + k 2 + 1 n 2 + 1 if n 2 > k 1 + 1, n 1 = n 2 + k 2 + 1 n 1 + 1 if k 1 = k 2 , n 1 > n 2 .
Proof. Let (U ) 2 = 1 (k) 01 (n) with n ≥ k+2. Then U = 2 n -1+2 n+1 (2 k -1) and we calculate

U 2 = 2 2n -2 n+1 + 1 + 2 n+2 (2 n+k -2 n -2 k + 1) + 2 2n+2 (2 2k -2 k+1 + 1) = 1 + 2 n+1 + 2 2n + 2 n+k+2 (1 + 2 + 2 2 + • • • + 2 n+k-1 ) -2 2n+k+2 = 1 + 2 n+1 + 2 n+k+2 + • • • + 2 2n-1 + 2 2n+k+2 + 2 2n+k+3 + • • • + 2 2n+2k+1 .
Hence s 2 (U 2 ) = n and therefore s 2 (u 2 ) = n 1 and s 2 (v 2 ) = n 2 . Now, consider s 2 (uv). We have

uv =1 + 2 n 1 + 2 n 2 + 2 n 1 +n 2 -2 n 1 +k 1 +1 -2 n 2 +k 2 +1 -2 n 1 +n 2 +k 1 +1 - 2 n 1 +n 2 +k 2 +1 + 2 n 1 +n 2 +k 1 +k 2 +2 .
We may assume that k 1 ≥ k 2 . Then

W := 2 n 1 +n 2 +k 1 +k 2 +2 -2 n 1 +n 2 +k 2 +1 -2 n 1 +n 2 +k 1 +1 = 2 n 1 +n 2 +k 2 +1 (1 + 2 + • • • + 2 k 1 -k 2 -1 + 2 k 1 -k 2 +1 + • • • + 2 k 1 )
has s 2 (W ) = k 1 . We distinguish three cases to conclude:

(1) Let

n 1 = n 2 + k 2 + 1 and n 2 = k 1 + 1. Then uv = 1 + 2 n 2 + W and hence s 2 (uv) = k 1 + 2. (2) Let n 1 = n 2 + k 2 + 1 and n 2 > k 1 + 1. Then uv = 1 + 2 n 2 + W + 2 n 1 +k 1 +1 (2 n 2 -k 1 -1 -1) and hence s 2 (uv) = 2 + k 1 + n 2 -k 1 -1 = n 2 + 1. (3) Let k 1 = k 2 = k and n 1 > n 2 . Then uv = 1 + 2 n 2 + 2 n 1 + W + 2 n 2 +k+1 (2 n 1 -k-1 -1) -2 n 1 +k+1 and hence s 2 (uv) = 3 + k + n 1 - k -2 = n 1 + 1. This finishes the proof. Proof of Theorem 1.4. Let n 1 , n 2 , k 1 , k 2 be positive integers with n 1 ≥ k 1 + 2, n 2 ≥ k 2 + 2 and u, v be as in Lemma 4.2. Let (N ) 2 = u0 R v be the binary representation of N where R ≥ n 1 + n 2 + k 1 + k 2 . By Proposition 4.1 and Lemma 4.2 we have for any R ≥ n 1 + n 2 + k 1 + k 2 , s 2 (N ) = s 2 (u) + s 2 (v) = n 1 + n 2 + k 1 + k 2 , s 2 (N 2 ) = s 2 (u 2 ) + s 2 (v 2 ) + s 2 (uv) = n 1 + n 2 + s 2 (uv). Let k ≥ 2. Taking k 1 = k 2 = k and n 1 = n 2 = 2k, we find from Lemma 4.2 and 2k ≥ k + 2 that s 2 (N 2 ) = s 2 (N ) = 6k
implying there are infinite families of n such that s 2 (n) = s 2 (n 2 ) = s for s of the form 6k with k ≥ 2.

Let

k 2 = 2, k 1 ≥ 3, n 2 = k 1 + 2 and n 1 = n 2 + k 2 + 1 = k 1 + 4. Then s 2 (uv) = n 2 +1 by Lemma 4.2 implying s 2 (N 2 ) = s 2 (N ) = 3(k 1 +2)+1.
Hence there are infinite families of n such that s 2 (n) = s 2 (n 2 ) = s for s of the form 3k + 1 with k ≥ 5.

Let 

k 1 ≥ k 2 ≥ 3 and n 2 = k 1 + k 2 -1, n 1 = n 2 + k 2 + 1. Then s 2 (uv) = n 2 + 1 = k 1 + k 2 from Lemma 4.2 implying s 2 (N 2 ) = s 2 (N ) = 3k 1 + 4k 2 -1. Let k 2 = 3. Then s 2 (N 2 ) = s 2 (N ) = 3(k 1 + 3) + 2 for k 1 ≥ 3 giving infinite families of n such that s 2 (n) = s 2 (n 2 ) = s for s of the form 3k + 2 with k ≥ 6. Let k 2 = 4. Then s 2 (N 2 ) = s 2 (N ) = 3(k 1 + 5) for k 1 ≥ 4 giving infinite families of n such that s 2 (n) = s 2 (n 2 ) =

Evidence that s

2 (n 2 ) = s 2 (n) ≤ 10 is finite
All examples of infinite families with s 2 (n 2 ) = s 2 (n) = k have the form given from Lemma 4.1. We show that there do not exists u and v satisfying Proposition 4.1, with k ∈ {9, 10}. We illustrate this method for k = 8, as it contains all of the key ideas without being overly cumbersome. The case of k = 8 is actually proved to be finite by the techniques of Section 3, but this does not detract from this example. The other two cases are similar.

Assume the contrary, that there exists u and v such that

s 2 (u) + s 2 (v) = s 2 (u 2 ) + s 2 (v 2 ) + s 2 (uv) = 8
We easily see that s 2 (v), s 2 (u) ≥ 2. Furthermore, as s 2 (u), s 2 (v) ≥ 2, we see that s 2 (u 2 ), s 2 (v 2 ) ≥ 2. Also, we have that s 2 (uv) ≥ 2. Therefore, we have 2 ≤ s 2 (u 2 ), s 2 (v 2 ) ≤ k -4. Lastly, we see that one of u or v must be "deficient", that s 2 (u 2 ) < s 2 (u) or s 2 (v 2 ) < s 2 (v). Assume without loss of generality that s 2 (u 2 ) < s 2 (u). Given the restrictions, we have that 2 ≤ s 2 (u) ≤ 6. Using the same algorithm as in Section 3, we can find all u such that 2 ≤ s 2 (u) ≤ 6 and s 2 (u 2 ) < s 2 (u), s 2 (u 2 ) ≤ 4. These are the first three entries of Table 3.

Therefore, it suffices to show that there do not exists v for u = 23, 47 or 111 with s 2 (u) + s 2 (v) = s 2 (u 2 ) + s 2 (v 2 ) + s 2 (uv) = 8.

(1) Let u = 23 = 10111. Given that s 2 (uv) ≥ 2 we have that s 2 (v) = 4 and s 2 (v 2 ) ≤ 3. The only possible solution by (3) Let u = 111 = 11101111. Given that s 2 (uv) ≥ 2 we have that s 2 (v) = 2 and s 2 (v 2 ) ≤ 2. There is one possible solution to this by Table 3, namely v = 3 = 11. But then s 2 (uv) = 5, a contradiction. A similar, but more elaborate analysis can be done for k = 9 and k = 10 using the additional information in Table 3. Here we look at 2 ≤ s 2 (u) ≤ 7, s 2 (u 2 ) < s 2 (u) and s 2 (u 2 ) ≤ 5.

Proof of Theorem 1.5

The proof uses the strategy adopted for the case q = 2 (see Section 3). However, in order to handle more possible digits in the case of q ≥ 3, the analysis is much more delicate. In the proof we will make frequent use of the fact (4) and of the splitting formulae of Proposition 2.1, which will apply if we have noninterfering terms at our disposal.

To begin with, the condition ( 8) is necessary, since (7) implies

s q (n 2 ) -s q (n) ≡ n 2 -n ≡ k 2 -k ≡ 0 mod (q -1).
For the construction of an infinite family, we first prove a crucial lemma.

Lemma 6.1. Let u = ((q -1) k 0 (q -1) n e) q with k ≥ 2, n ≥ k + 2 and 0 ≤ e ≤ q -2. Then s q (u) = (q -1)(n + k) + e and s q (u 2 ) = (q -1)(n + 1) + f (q, e) where (23) f (q, e) = s q ((q -e) 2 ) + s q (2(q -1)(q -e)) -s q (2(q -e) -1).

Proof. Since u = e + (q n -1)q + (q k -1)q n+2 , we get u 2 = (q -e) 2 + 2(q -1)(q -e)q n+1 -2(q -e)q n+k+2

+ (q -1) 2 q 2n+2 -2(q -1)q 2n+k+3 + q 2n+2k+4 . (24)

By assumption that n ≥ k + 2 and n, k ≥ 2, the terms in (24) are noninterfering. We therefore get s q (u 2 ) = s q ((q -e) 2 ) + s q (2(q -1)(q -e)) -s q (2(q -e) -1) + (n -k)(q -1) + s q ((q -1) 2 -1) -s q (2(q -1) -1) + (k + 1)(q -1). = (n + 1)(q -1) + s q (q 2 -2q) -s q (2q -3) + f (q, e).

The claimed value of s q (u 2 ) now follows by observing that s q (q 2 -2q) = s q (q -2) = q -2 and s q (2q -3) = s q (q + q -3) = 1 + q -3 = q -2. Now consider u = ((q -1) k 1 0 (q -1) n 1 ) q , v = ((q -1) k 2 0 (q -1) n 2 e) q where we suppose k 1 , n 1 , k 2 , n 2 ≥ 2 and n 1 ≥ k 1 + 2, n 2 ≥ k 2 + 2. Since q n we further suppose that e = 0. We want to construct an infinite family of solutions to [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF] of the form n = (u0 (i) v), where i is a sufficiently large integer, such that terms will be noninterfering. Our task is to find an admissible set of parameters k 1 , n 1 , k 2 , n 2 such that for sufficiently large n 1 + n 2 + k 1 + k 2 we have s q (u) + s q (v) = s q (u 2 ) + s q (2uv) + s q (v 2 ) = e + (q -1)(n

1 + n 2 + k 1 + k 2 ). ( 25 
)
First it is a straightforward calculation to show that 2uv = w 1 + w 2 with (26) w 1 = 2q n 1 +n 2 +k 1 +k 2 +3 -2(q -1)q n 1 +n 2 +k 1 +2 -2(q -1)q n 1 +n 2 +k 2 +2 and w 2 = 2(q -1) 2 q n 1 +n 2 +1 -2(q -e)q n 1 +k 1 +1 -2q n 2 +k 2 +2 + 2(q -1)(q -e)q n 1 + 2(q -1)q n 2 +1 + 2(q -e). (27) Note that w 1 and w 2 are noninterfering because of k 2 ≥ 2. Now, set (28)

k 1 = n 2 ≥ k 2 + 2, n 1 = 2k 2 -α,
where we will later suitably choose α = α(q, e) only depending on q and e. Then terms in (26) are again noninterfering and we get s q (w 1 ) = s q (2q k 1 +1 -2(q -1)q k 1 -k 2 -2(q -1))

= s q (2q k 2 +1 -2q + 1) + (q -1)(k 1 -k 2 ) -s q (2q -3) = 1 + k 2 (q -1) + (q -1)(k 1 -k 2 ) -(q -2) = (k 1 -1)(q -1) + 2.

Next, by (28), we find that w 2 = 2q k 1 +2k 2 -α+1 ((q -1) 2 -(q -e)) -2q k 1 +k 2 +2

+ 2(q -1)(q -e)q 2k 2 -α + 2(q -1)q k 1 +1 + 2(q -e). (29)

In order to have terms noninterfering in (29), we impose the following inequalities on the parameters,

2 ≤ k 1 + 1, (30) 2 ≤ (2k 2 -α) -(k 1 + 1), (31) 3 ≤ (k 1 + k 2 + 2) -(2k 2 -α) = k 1 -k 2 + 2 + α, (32) 1 ≤ (k 1 + 2k 2 -α + 1) -(k 1 + k 2 + 2) = k 2 -α -1. ( 33 
)
Then we get s(w 2 ) = (k 2 -α -1)(q -1) + g(q, e) where g(q, e) = s q (2(q -e)) + s q (2(q -1)) + s q (2(q -1)(q -e))

+ s q (2(q -1) 2 -(q -e) -1) -1. (34)

Summing up, we have s q (u 2 ) + s q (2uv) + s q (v 2 ) = (q -1)(n 1 + 1) + f (q, e) + (q -1)(n 2 + 1) + (k 1 -1)(q -1) + 2 + (k 2 -α -1)(q -1) + g(q, e) = (q -1)(2k 1 + 3k 2 -2α) + f (q, e) + g(q, e) + 2.

Combining with (25) and (28) we therefore have (35) (q -1)(2k 1 + 3k 2 -2α) + f (q, e) + g(q, e) + 2 = (q -1)(2k 1 + 3k 2 -α) + e and α(q -1) = f (q, e) + g(q, e) -e + 2.

Rule (4) applied to (23) and (34) shows that the right hand side is indeed divisible by q -1 since e 2 -e ≡ 0 mod (q -1) by assumption. Furthermore, we have by a crude estimation (using also [START_REF] Lindström | On the binary digits of a power[END_REF]) that (36) 0 ≤ α ≤ 15.

  s for s of the form 3k with k ≥ 27. Summing up, we have infinite families of n with s(n 2 ) = s(n) = s for all s ≥ 22, respectively, s ∈ {12, 16, 18, 19, 20}. For s ∈ {13, 17, 21}, we take (N ) 2 = u0 R v with s = 13 : u = 10111, v = 10110111111 s = 17 : u = 111011111, v = 10110111111 s = 21 : u = 11110111111, v = 111101111111. This completes the proof of Theorem 1.4.

Table 1 .

 1 Odd n such that s 2

	7

Table 2 .

 2 Odd n such that s 2

	cont)

Table 3

 3 Let u = 47 = 101111. Given that s 2 (uv) ≥ 2 we have that s 2 (v) = 3 and s 2 (v 2 ) ≤ 2. There are no solutions by Table3for this, a contradiction.

	is v = 23 = 10111, but s 2 (uv) = 3, a contradiction.
	(2)

Table 3

 3 

. s 2 (u) ≤ 8, s 2 (u 2 ) < s 2 (u) and s 2 (u 2 ) ≤ 6.
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Suppose k 2 ≥ 17. Then (30) and (33) are satisfied. Rewriting (31) and (32) gives

Note that k 1 ≥ k 2 +2 is more restrictive than the first inequality in (37).

On the other hand, since k 2 ≥ 2, the interval given for k 1 in (37) has at least (2 • 17 -α -1) -(1 + 17 -α) + 1 = 16 terms. Therefore, 2k 1 + 3k 2 hits all integers ≥ 2(1 + (k 2 + 1) -α) + 3(k 2 + 1) for k 2 ≥ 17. Thus, we find from (35) that all values (q -1)(2k

= 94(q -1) can be achieved. This completes the proof of Theorem 1.5.