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1. Introduction and Preliminaries

Let sb(n) denote the sum of the digits of n when expressed in base b, and
let

tn = s2(n) mod 2, n ≥ 0,

be the Thue-Morse sequence t. In an e-mail message dated June 7 2010, Jorge
Buescu of the Universidade de Lisboa observed that the Thue-Morse sequence
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can be regarded as a 2-coloring of the integers, and therefore, by van der
Waerden’s theorem, must contain arbitrarily long monochromatic arithmetic
progressions.2 (By a monochromatic arithmetic progression we mean a series
of indices i, i+ j, i+ 2j, . . . , i+ (n− 1)j such that ti = ti+j = · · · = ti+(n−1)j.)
He then asked, is it true that t has no infinite monochromatic arithmetic
progressions?

The answer is yes: t has no infinite monochromatic arithmetic progres-
sions. This is a consequence of the following result of Gelfond [5], which says
that the values of sb(n) are equally distributed in residue classes, even if the
residue class of n is fixed. (A weaker result, applicable in the case of the
Thue-Morse sequence, had previously been given by Fine [4].)

Theorem 1. Let b, r,m be positive integers with gcd(b − 1, r) = 1, and let
a, c be any integers. Then the number of integers n ≤ x congruent to a mod
k such that sb(n) ≡ c (mod r) is equal to x

kr
+ O(xλ) for some λ < 1 that

does not depend on x, k, a, or c.

Gelfond’s theorem, however, concerns the average distribution of the val-
ues of sb(n) in residue classes. It suggests the following question: how
large can the smallest n be that is congruent to a mod k and satisfies
sb(n) ≡ c (mod r)?

In this paper we answer the question for the case a = 0, k arbitrary,
c = 1, b = r = 2. In other words, we find a bound on the number of terms in
a fixed arithmetic progression of the Thue-Morse sequence we have to look
at in order to see a “1”. We include some weaker results for arbitrary b and
give some conjectures.

Remark 1. Jean-Paul Allouche notes that Buescu’s original question can also
be answered by appealing to a lemma in his paper [1, p. 284]. His lemma
states that if a, b, c are integers with b− c > a, then tan+b − tan+c cannot be
constant for large n. If tAn+B were constant for some integers A,B then it
would have the same value when replacing n by n+2. Thus tAn+2A+B−tAn+B
would be constant and equal to 0, but 2A + B − B = 2A > A and we are
done.

Remark 2. Dartyge, Luca and Stănică [3] recently investigated another prob-
lem on the pointwise behavior of sb on integer multiples, namely, to bound the

2We do not need the power of van der Waerden’s theorem to prove this. For example,
as we will see later, if k = 2r − 1 for some r ≥ 1, then s2(kn) = r for 1 ≤ n ≤ k.
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smallest nontrivial n that is congruent to 0 mod k and satisfies sb(n) = sb(k).
For other distributional properties of sb on integer multiples we refer the in-
terested reader to the bibliographic list in [3].

To begin with, for k ≥ 1 we write

Nk = {n : tkn = 1}, f(k) = min{n : n ∈ Nk}.

The first few values of (f(k))k>1 are given by

1, 1, 7, 1, 5, 7, 1, 1, 9, 5, 1, 7, 1, 1, 19, 1, 17, 9, 1, 5 . . . (1)

The function f is of interest because of some old work of Newman [7].
Leo Moser observed that the first 7 multiples of 3 all have an even number
of digits in their base-2 expansion. In our notation, this means f(3) = 7.
Newman showed that among the first multiples of 3, there is always a small
preponderance of those with even parity. More precisely, he showed that for
all x ≥ 2,

1

20
· (3x)α < | (N0 \ N3) ∩ [0, x− 1]| − |N3 ∩ [0, x− 1]| < 5 · (3x)α, (2)

where α = log4 3. Coquet [2] gave a precise expression for the middle term
in (2) that involves a continuous periodic fractal function with a completely
explicit Fourier expansion.

From Gelfond’s theorem we get that f(k) <∞ for all k. Indeed, a simple
observation shows that f(k) = O(k). To see this, we need the following result
(see [6] for the base b generalization). For the convenience of the reader we
here include a full proof for b = 2.

Proposition 1. Let t, p ≥ 1. For all k with 1 ≤ k < 2t we have

s2(p2
t − k) = s2(p− 1) + t− s2(k − 1).

Proof. Write k − 1 =
∑t−1

i=0 κi2
i with κi ∈ {0, 1}. Then

s2(p2
t − k) = s2((p− 1)2t + 2t − k) = s2(p− 1) + s2((2

t − 1)− (k − 1))

= s2(p− 1) + s2

(
t−1∑
i=0

(1− κi)2i
)

= s2(p− 1) +
t−1∑
i=0

(1− κi)

= s2(p− 1) + t−
t−1∑
i=0

κi = s2(p− 1) + t− s2(k − 1).
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Now, consider n = 22r+1 − 1 ≥ k. Then

s2(kn) = s2(k22r+1 − k) = s2(k − 1) + 2r + 1− s2(k − 1) ≡ 1 (mod 2),

so that f(k) < 4k.

Our main result shows that k = 3 is the first of an infinite class of integers
that maximize f(k)− k.

Theorem 2. For all k ≥ 1 we have

f(k) 6 k + 4. (3)

Moreover, we have

(i) f(k) = k + 4 if and only if k = 22r − 1 for some r > 1.

(ii) There are no k with f(k) = k + 3 or f(k) = k + 2.

(iii) f(k) = k + 1 if and only if k = 6.

(iv) f(k) = k if and only if k = 1 or k = 2r + 1 for some r > 2.

The proof of Theorem 2 is constructive. It allows to show that for all
k ≥ 1 we can always find a small n with tkn = 1 having Hamming weight at
most 3.

Corollary 1. For all k there is an n ∈ Nk with n ≤ k + 4 and s2(n) ≤ 3.

This is optimal in the sense that there are infinitely many k such that
all n ∈ Nk satisfy s2(n) ≥ 3. In the following proposition we give such an
infinite family.

Proposition 2. Let r ≥ 4 and set k = 3 · 2r + 3. If s2(kn) ≡ 1 (mod 2) then
s2(n) ≥ 3.

Proof. Suppose that n = 2j, j ≥ 0. Then s2(k · 2j) = s2(k) = s2(2
r+1 + 2r +

2 + 1) = 4 ≡ 0 (mod 2). Let n = (2j + 1) · 2j′ for j ≥ 1 and j′ ≥ 0. Then we
have

s2(kn) = s2(3 · 2r+j + 3 · 2r + 3 · 2j + 3). (4)

If j = 1 then s2(kn) = s2(9 · 2r + 9) = 4. Suppose j > 1 and without
loss of generality assume that r ≥ j. If r > j + 1 then the summands
in (4) are noninterfering. This yields s2(kn) = 8. If r = j + 1 then s2(kn) =
s2(3 ·22j+1+9 ·2j+3) equals 6 or 4 depending on whether j > 2 or j = 2. The
same is true in the case where r = j and s2(kn) = s2(3 ·22j +3 ·2j+1 +3).
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The paper is structured as follows. We introduce some useful notation
in Section 2 which allows us to perform addition in the binary expansion of
integers in a well-arranged way. In Section 3 we shortly outline the idea of the
proof of our main result. In Section 4 we state some auxiliary results which
are based on a detailed investigation of various cases. Section 5 is devoted to
the proof of Theorem 2. We conclude with some results in the general case,
where the condition s2(kn) ≡ 1 (mod 2) is changed to sb(kn) ≡ c (mod r)
(Section 6).

2. Notation

In this section we introduce some notation. If

k = ε`−1(k)2`−1 + ε`−2(k)2`−2 + · · ·+ ε0(k)

is the canonical base-2 representation of k, satisfying εj ∈ {0, 1} for all
0 6 j < ` and ε`−1(k) 6= 0, then we let (k)2 denote the binary word

ε`−1(k)ε`−2(k) · · · ε0(k).

Additionally, for each k ∈ N we let `(k) denote the length of (k)2; for k ≥ 1
this is `(k) = blog2 kc + 1. If w1 and w2 are two binary words, then w1w2

denotes the binary word obtained by concatenation. The symbol an, n > 1,
a ∈ {0, 1} is an abbreviation for the word

n︷ ︸︸ ︷
aa · · · a,

and a0 is equal to the empty word. For a ∈ { 0 , 1}, we use the notation
ā = 1− a. We define the function s for all binary words w = εj−1 · · · ε0 by

s(w) = #{i, 0 6 i < j : εi = 1},

and in particular, we have s((k)2) = s2(k) ≡ tk (mod 2). If 1 6 j 6 `(k), we
set

Lj(k) = εj−1 · · · ε0,

the j least significant bits of k in base 2, and

Uj(k) = ε`(k)−1 · · · ε`(k)−j,
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the j most significant bits of k. For example, if k = 119759, then we have
(k)2 = 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1, `(k) = 17 and

U12(k)︷ ︸︸ ︷
1 1 1 0 1 0 0 1 1 0 1 1 1 1︸ ︷︷ ︸

L8(k)

1 1 0 .

Written in short form, this means that (k)2 = 13 0 1 02 14 02 14,

U12(k) = 13 0 1 02 14 0 and L8(k) = 12 02 14.

In what follows, we use the convention that if we are talking about Lj(k) or
Uj(k), we assume that `(k) > j. Note that for all k ∈ N and j < `(k) we
have

s(L`(k)−j(k)) ≡ s(Uj(k)) + tk (mod 2).

Furthermore, this function also satisfies

s(w1w2) = s(w1) + s(w2)

for two binary words w1 and w2.

3. Idea of proof

It is relatively easy to show that f(k) = k + 4 if k = 22r − 1 for some
r > 1 and f(k) = k if k = 2n+1 for some n > 2 (see the proofs of Theorem 2
and Lemma 1). Moreover, since f(k) = f(2k) for all k > 1, in order to prove
Theorem 2, it suffices to show that f(k) < k for all odd integers k other than
those stated above. Thus, we assume in Section 4 that k is an odd integer.

We use two different ideas in order to succeed, depending on the base-2
representation of k. We show for a large set of integers k that there exists an
integer n < k with Hamming weight 2 such that tkn = 1. To be more precise,
we find for such integers k a positive integer a < `(k) such that tkn = 1 with
n = 2a + 1 6 2`(k)−1 + 1 < k. For the remaining odd integers k we show that
there exist positive odd integers m < k with Hamming weight 2 and n < k
with Hamming weight 3 such that

tkn ≡ 1 + tk + tkm (mod 2).

This implies that f(k) < k since at least one of the three numbers tk, tkm
and tkn has to be equal to 1.

6



4. Auxiliary results

We have to distinguish several cases according to the beginning and the
ending part of the binary expansion of k.

Lemma 1. Let k ∈ N be such that there exists an odd integer u > 1 with
Lu+1(k) = 01u. Then we have f(k) 6 k. Furthermore, f(k) = k if and only
if k = 2r + 1 for some r > 2.

Proof. Let ` = `(k) and set n = 2`−1 + 1. In what follows we show that
tkn = 1. We have

(kn)2 = U`−(u+1)(k) 1 0u L`−1(k).

The following figure explains this fact:

· · · 0 1u−1 1
1 · · ·

· · · 1 0u−1 0 · · ·
.

The first line (· · · 0 1u−1 1) corresponds to the expansion of k2`−1 and
the second line (1 · · · ) to the expansion of k. By “· · · ” we refer to digits
that are not important for our argument. Since

s(U`−(u+1)(k)) ≡ s(Lu+1(k)) + tk ≡ u+ tk (mod 2),

and
s(L`−1(k)) ≡ s(U1(k)) + tk ≡ 1 + tk (mod 2),

we obtain

tkn ≡ s((kn)2) ≡ u+ tk + 1 + 1 + tk ≡ u ≡ 1 (mod 2),

which shows that tkn = 1. The definition of ` = `(k) implies that 2`−1+1 6 k.
If k = 2`−1 + 1, we have tkm = 0 for all 1 6 m < k. Indeed, if 1 6 m < 2`−1,
then the 2-additivity of the binary sum-of-digits function s2 implies

s2(km) = s2(2
`−1m+m) = s2(m) + s2(m).

Thus we have tkm ≡ s2(km) ≡ 0 (mod 2) for all 1 6 m < 2`−1. If m = 2`−1,
then we clearly have tkm = 0. This finally proves that f(k) = k if k = 2`−1+1
and f(k) < k if k satisfies the assumptions of Lemma 1 but k 6= 2`−1 + 1.
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Lemma 2. Let k ∈ N. If there exist an even integer u > 2 with Lu+2(k) =
101u, then we have f(k) < k.

Proof. Set ` = `(k). First, we show that if there exist a positive integer r 6= u
such that Ur+1(k) = 1r0, then f(k) < k. If r < u, we set n = 2`−(r+1)+1 < k.
Then we have

(kn)2 = U`−(u+1)(k) 1 0u−(r+1) 1r−1 0 1L`−r−1(k),

as illustrated below:

· · · 0 1u−(r+1) 1r−1 1 1
1r−1 1 0 · · ·

· · · 1 0u−(r+1) 1r−1 0 1 · · ·
.

Since s(U`−(u+1)(k)) ≡ s(Lu+1(k)) + tk ≡ u+ tk (mod 2) and s(L`−r−1(k)) ≡
s(Ur+1) + tk ≡ r + tk, we get

tkn ≡ u+ tk + 1 + (r − 1) + 1 + r + tk ≡ u+ 1 (mod 2). (5)

This shows that f(k) < k if r < u since u is even. If r > u, we set n =
2`−u + 2`−u−1 + 1. Since `− u < `− 1 we have n < k. We get

(kn)2 = U`+2−(u+2)(3k) 1 0 1u−2 02L`−(u+1)(k),

as illustrated below:

· · · 1 0 1 1u−2 1
· · · 1 0 1u−2 1 1

1 1u−2 1 1 · · ·
· · · 1 0 1u−2 0 0 · · ·

.

Noting that 3k has `+ 2 digits, i.e., `(3k) = `+ 2, we obtain

tkn ≡ s(Lu+2(3k)) + t3k + 1 + (u− 2) + s(Uu+1(k)) + tk

≡ s(Lu+2(3k)) + t3k + u− 1 + u+ 1 + tk

≡ s(Lu+2(3k)) + t3k + tk (mod 2).

Since

Lu+2(3k) = 021u−2 0 1,
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we have tkn ≡ 1+ tk + t3k (mod 2). As we have seen in Section 3, this implies
f(k) < k.

For the rest of the proof we assume that Uu+1(k) = 1u0 for some integer
u ≥ 2. If (k)2 = 1u01u, then it is easy to see that f(k) = 3. Thus we can
assume that there exists a positive integer v such that Lv+u+2(k) = 01v01u.
If v is odd, then we set n = 2`−(u+1) + 1 < k. We get

(kn)2 = U`−(v+u+2)(k) 1 0v+1 1u−2 0 1L`−(u+1)(k),

as illustrated below:

· · · 0 1v 0 1u−2 1 1
1 1u−2 1 0 · · ·

· · · 1 0v 0 1u−2 0 1 · · ·
.

This implies

tkn ≡ s(Lv+u+2(k)) + tk + 1 + (u− 2) + 1 + s(Uu+1(k)) + tk

≡ u+ v + u ≡ 1 (mod 2).

If v is even, we have two cases to consider: u > 4 and u = 2.
If u > 4, we set n = 2`−u + 2`−u−1 + 1 < k. Then we have

(kn)2 = U`+2−(v+u+2)(3k) 0 1v 0 1u−3 0 12L`−(u+1)(k),

as illustrated below:

· · · 0 1 1v−1 0 1 1u−3 1 1
· · · 0 1v−11 0 1u−3 1 1 1

1 1u−3 1 1 0 · · ·
· · · 0 1v−11 0 1u−3 0 1 1 · · ·

.

Note that

Lv+u+2(3k) = 0 1v−1 02 1u−2 0 1. (6)

Thus we get

tkn ≡ s(Lv+u+2(3k)) + t3k + v + (u− 3) + 2 + s(Uu+1(k)) + tk

≡ (v − 1) + (u− 2) + 1 + t3k + v + (u− 3) + 2 + u+ tk

≡ 1 + t3k + tk (mod 2),

9



and we obtain f(k) < k.
Now we consider the case u = 2. In order to complete the proof of the

lemma, it remains to show that f(k) < k for integers k with U3(k) = 120
and Lv+4(k) = 01v012 for an even positive integer v. If U4(k) = 1201, then
we set n = 2`−4 + 1. Here we get

(kn)2 = U`−(v+4)(k) 1 0v−1 1 03 L`−4(k),

as illustrated below:

· · · 0 1v−1 1 0 1 1
1 1 0 1 · · ·

· · · 1 0v−1 1 0 0 0 · · ·
,

and we obtain

tkn ≡ s(Lv+4(k)) + tk + 1 + 1 + s(U4(k)) + tk

≡ (v + 2) + 3 ≡ 1 (mod 2).

If U5(k) = 1203, we set n = 2`−4 + 2`−5 + 1. It follows that

(kn)2 = U`+2−(v+4)(3k) 1 0v−1 1 02 1L`−5(k),

as illustrated below:

· · · 0 1 1v−2 1 0 1 1
· · · 0 1v−2 1 1 0 1 1

1 1 0 0 0 · · ·
· · · 1 0v−2 0 1 0 0 1 · · ·

,

and we obtain

tkn ≡ s(Lv+4(3k)) + t3k + 1 + 1 + 1 + s(U5(k)) + tk

≡ v + t3k + 1 + 2 + tk ≡ 1 + t3k + tk (mod 2).

Here we used Eq. (6) and we get f(k) < k.
If U5(k) = 12021, we set n = 2`−3 + 2`−1 + 1. It is easy to see that

`(5k) = `+ 2 or `(5k) = `+ 3. We have

(kn)2 = U`(5k)−(v+4)(5k) 1 0v+3 L`−5(k),

as illustrated below:
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· · · 0 1 1 1v−2 0 1 1
· · · 0 1v−2 1 1 0 1 1

1 1 0 0 1 · · ·
· · · 1 0v−2 0 0 0 0 0 · · ·

.

Since
Lv+4(5k) = 0 1v−2 02 13,

we obtain

tkn ≡ s(Lv+4(5k)) + t5k + 1 + s(U5(k)) + tk

≡ (v + 1) + t5k + 1 + 3 + tk ≡ 1 + t5k + tk (mod 2).

Again, the considerations of Section 3 show that f(k) < k.

Lemma 3. Let k ∈ N. If there exist an even integer u > 2 and a positive
integer r 6= u such that Lu+2(k) = 021u and Ur+1(k) = 1r0, then we have
f(k) < k.

Proof. Let ` = `(k). If r < u, we set n = 2`−r−1 + 1 < k. In exactly the
same manner as at the beginning of the proof of Lemma 2 (see Eq. (5)), we
see that tkn = 1 and thus, f(k) < k.

If r > u, we set n = 2`−u−1 + 1 < k. Then we get

(kn)2 = U`−(u+2)(k) 1 0 1u−1 0L`−(u+1)(k),

as illustrated below:

· · · 0 0 1u−1 1
1 1u−1 1 · · ·

· · · 1 0 1u−1 0 · · ·
.

Similarly as before, we have s(U`−(u+2)(k)) ≡ s(Lu+2(k))+tk ≡ u+tk (mod 2)
and s(L`−(u+1)(k)) ≡ s(Uu+1) + tk ≡ u + 1 + tk (note that u + 1 6 r). We
obtain

tkn ≡ u+ tk + 1 + (u− 1) + (u+ 1) + tk ≡ u+ 1 ≡ 1 (mod 2).

This shows the desired result.

Lemma 4. Let k ∈ N. If there exist an even integer u > 2 and a positive
integer s < u− 1 such that Lu+2(k) = 021u and Uu+s+1(k) = 1u0s1, then we
have f(k) < k.

11



Proof. Let ` = `(k) and set n = 2`−1 + 2u−1 + 1. Since k is odd and starts
with at least two 1’s, we see that n < k. We have

(nk)2 = U`−(u+2)(k) 1 0u+s+1L`(km)−(s+u+1)(mk),

where m = 2u−1 + 1 < k and `(km) = `+ u, as illustrated below:

· · · 0 0 1u−1 1
1u−1 1 0s 1 · · ·

1 1s 1 · · ·
· · · 1 0 0u−1 0 0s · · ·

.

We have
Us+u+1(km) = 1 0u−110s.

In particular, we obtain

s(L`(km)−(s+u+1)(mk)) ≡ s(Us+u+1(km)) + tkm ≡ tkm (mod 2),

and we get

tnk ≡ s(Lu+2(k)) + tk + 1 + tkm ≡ u+ 1 + tk + tkm ≡ 1 + tk + tkm (mod 2).

As before, we get f(k) < k, which proves Lemma 4.

Lemma 5. Let k ∈ N. If there exist an even integer u > 2 and a positive
integer t > 2 such that Lu+t+2(k) = 010t1u and U2u−1(k) = 1u0u−1, then we
have f(k) < k.

Proof. Let ` = `(k) and let us first assume that 2 6 t 6 u − 1. We set
n = 2`−(u+t) + 1 < k. Then we get

(kn)2 = U`−(u+t+2)(k) 1 0t+1 1u−(t+1) 0 1t L`−(u+t)(k),

as illustrated below:

· · · 0 1 0t 1u−(t+1) 1 1t

1t 1u−(t+1) 1 0t · · ·
· · · 1 0 0t 1u−(t+1) 0 1t · · ·

.
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Since u < u+ t 6 2u− 1, we have

s(L`−(u+t)(k)) ≡ s(Uu+t(k)) + tk ≡ u+ tk (mod 2).

This implies

tkn ≡ s(Lu+t+2(k)) + tk + 1 + (u− (t+ 1)) + t+ u+ tk ≡ u+ 1 ≡ 1 (mod 2).

If t = u and U2u(k) = 1u0u−11, we again set n = 2`−(u+t) + 1 < k. This time
we can write

(kn)2 = U`−(u+t+2)(k) 1 0t+u+1 L`−(u+t)(k),

as illustrated below:

· · · 0 1 0t 1u−1 1
1t 0u−1 1 · · ·

· · · 1 0 0t 0u−1 0 · · ·
,

and we get

tkn ≡ s(Lu+t+2(k))+tk+1+s(Uu+t(k))+tk ≡ (u+1)+1+(u+1) ≡ 1 (mod 2).

Alternatively, if t = u and U2u+1(k) = 1u0ua for some a ∈ {0, 1}, then we set
n = 2`−(t+u+1) + 1 < k. Since we have (recall that ā = 1− a)

(kn)2 = U`−(u+t+2)(k) 1 0 1t−1 a āu L`−(u+t+1)(k),

as illustrated below,

· · · 0 1 0t−1 0 1u−1 1
1 1t−1 0 0u−1 a · · ·

· · · 1 0 1t−1 a āu−1 ā · · ·
,

and we finally obtain

tkn ≡ s(Lu+t+2(k)) + tk + 1 + (t− 1) + a+ au+ s(Uu+t+1(k)) + tk

≡ (u+ 1) + 1 + (t− 1) + a(u+ 1) + (u+ a)

≡ 1 (mod 2).

This shows the desired result.

Lemma 6. Let k ∈ N. If there exist an even integer u > 2 and positive
integers t > 2 such that Lu+t+2(k) = 110t1u and U2u−1(k) = 1u0u−1, then we
have f(k) < k.
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Proof. Let ` = `(k). First, we consider the case 2 6 t 6 u − 1. Set n =
2`−(t+u−1) + 2`−(t+u) + 1 < k. Then we have

(kn)2 = U`+2−(t+u+2)(3k) 1 0t−1 1 0 1u−(t+1) 0 1t−2 0 1L`−(u+t)(k),

as illustrated below:

· · · 1 1 0 0t−2 0 1 1u−(t+1) 1 1t−2 1
· · · 1 1 0t−2 0 0 1u−(t+1) 1 1t−2 1 1

1t−2 1 1 1u−(t+1) 1 0t−2 0 0 · · ·
· · · 1 0 0t−2 1 0 1u−(t+1) 0 1t−2 0 1 · · ·

.

Noting that `(3k) = `+ 2, we obtain

tkn ≡ s(Lu+t+2(3k)) + t3k + (u− (t+ 1)) + (t− 2) + s(Uu+t(k)) + tk + 3

≡ s(Lu+t+2(3k)) + t3k + u+ u+ tk

≡ s(Lu+t+2(3k)) + t3k + tk (mod 2).

Since

Lu+t+2(3k) = 0 1 0t−2 1 0 1u−2 0 1, (7)

we have tkn ≡ 1 + t3k + tk (mod 2) and consequently f(k) < k.
If t = u, then we have to consider three different cases. If U2u(k) =

1u0u−11 we again set n = 2`−(t+u−1) + 2`−(t+u) + 1 < k. This time we get

(kn)2 = U`+2−(t+u+2)(3k) 1 0t 1u 0L`−(2u)(k),

as illustrated below,

· · · 1 1 0 0t−1 1 1u−1

· · · 1 1 0t−1 0 1u−1 1
1t−1 1 0u−1 1 · · ·

· · · 1 0 0t−1 1 1u−1 0 · · ·
,

which yields

tkn ≡ s(Lu+t+2(3k)) + t3k + 1 + u+ s(U2u(k)) + tk

≡ s(Lu+t+2(3k)) + t3k + 1 + u+ (u+ 1) + tk

≡ s(Lu+t+2(3k)) + t3k + tk (mod 2).
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As above (see Eq. (7)), we get that f(k) < k. If t = u and U2u+1(k) = 1u0u1,
then we set n = 2`−(t+u) + 2`−(t+u)−1 + 1 < k. We have

(kn)2 = U`+2−(t+u+2)(3k) 12 0t 1u−1 0L`−(2u+1)(k),

as illustrated below.

· · · 1 1 0 0t−1 1 1u−1

· · · 1 1 0t−1 0 1u−1 1
1 1t−1 0 0u−1 1 · · ·

· · · 1 1 0t−1 0 1u−1 0 · · ·
.

Note that the dots in the first and second line of the figure have to be erased
if k = 51. (The binary representation of 51 is given by (51)2 = 110011.) We
get

tkn ≡ s(Lu+t+2(3k)) + t3k + 2 + (u− 1) + s(U2u+1(k)) + tk

≡ s(Lu+t+2(3k)) + t3k + 2 + (u− 1) + (u+ 1) + tk

≡ s(Lu+t+2(3k)) + t3k + tk (mod 2).

Using Eq. (7), we obtain f(k) < k. If t = u but U2u+1(k) = 1u0u+1, then we
choose n = 2`−1 + 2u + 1. Since k is odd and starts with at least two 1’s, we
again obtain that n < k. This leads us to

(kn)2 = U`−(u+2)(k) 1 0 1u−1 0 1u−1 L`+u−(2u)(km),

where m = 2u + 1 < k, as illustrated below:

· · · 0 0 1u−1 1
1 1u−1 0 0u−1 0 · · ·

1 1u−1 0 · · ·
· · · 1 0 1u−1 0 1u−1 · · ·

.

Note that `(km) = `+ u and

U2u(km) = 12u.

We obtain

tkn ≡ s(Lu+2(k)) + tk + 1 + (u− 1) + (u− 1) + s(U2u(km)) + tkm

≡ u+ tk + 1 + 2u+ tkm

≡ 1 + tk + tkm (mod 2),
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which shows f(k) < k in this case, too.
In order to prove the lemma, it remains to consider the case t > u. We

set n = 2`−1 + 2`−u−1 + 1 < k and we get

(kn)2 = U`+u−(2u+1)(km) 1 0u−1 1u−1 0 1L`−(u+1)(k)),

as illustrated below,

· · · 0 1u−1 1
· · · 0 0u−1 0 1u−2 1 1

1 1u−2 1 0 · · ·
· · · 1 0u−1 1 1u−2 0 1 · · ·

,

where m = 2u + 1 < k. Since

L2u+1(km) = 0 12u,

we obtain

tkn ≡ s(L2u+1(km)) + tkm + 1 + (u− 1) + 1 + s(Uu+1(k)) + tk

≡ 2u+ tkm + u− 1 + u+ tk

≡ 1 + tk + tkm (mod 2).

The same argument as before finally shows the desired result.

5. Proof of Theorem 2

Proof of Theorem 2. As already noted in Section 3, we have f(k) = f(2k)
for all k > 1. Consequently, it suffices to show that f(k) 6 k + 4 for odd
integers k.

If k = 22r+1 − 1, r > 0, then (k)2 = 12r+1 and we trivially have f(k) = 1.
If k = 22r − 1, r > 1, then we will show that f(k) = k + 4. In order to do
this, we note that the binary sum-of-digits function s2 satisfies the relation

s2(a2k − b) = s2(a− 1) + k − s2(b− 1)

for all positive integers a, b, k with 1 6 b < 2k. Thus we have for all 1 6 m 6
k,

tkm ≡ s2(2
2rm−m) = s2(m− 1) + 2r − s2(m− 1) ≡ 0 (mod 2).
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If m = 22r or m = 22r + 2, then we clearly have tkm = 0 since tkm/2 = 0. If
m = 22m + 1, then km = 24r − 1 and consequently tkm = 0. If m = 22r + 3,
then

tkm ≡ s2(2
4r + 22r+1 − 3) ≡ 1 + (2r + 1)− s2(2) ≡ 1 (mod 2),

which finally proves f(k) = k+4 for k = 22r−1, r > 1. If k is a positive inte-
ger different from ones already considered, then there exist positive integers
r, s, t and u such that

Ur+s+1(k) = 1r 0s 1 and Lt+u+1 = 1 0t 1u.

If u is odd, then Lemma 1 implies that f(k) 6 k where equality occurs if
and only if k = 2r + 1 for some r > 2. If u is even but t = 1 or r 6= u, then
Lemma 2 and Lemma 3 imply f(k) < k. Let us assume that u is even, t > 2
and r = u. Then there exists a ∈ {0, 1}, such that

Lt+u+2 = a 1 0t 1u.

If s < u− 1, then Lemma 4 implies f(k) < k. Contrarily, if s > u− 1, then
Lemma 5 (if a = 0) or Lemma 6 (if a = 1) yields f(k) < k. Hence we have
for all positive integers k,

f(k) 6 k + 4,

where equality occurs if and only if k = 22r − 1, r > 1. Note that an even
positive integer 2m cannot satisfy f(2m) = 2m+ 4, since we then would get
f(m) = f(2m) = 2m + 4 6 m + 4 and consequently m 6 0. Moreover, we
see that for odd integers k there exist no solutions to the equation

f(k) = k + α

for α = 0, 1, 2, 3, except in the case α = 0 where we have f(k) = k if and only
if k = 2r+1 for some r > 2 or k = 1. If k = 2m is even, then f(2m) = 2m+α
implies f(m) = 2m+ α 6 m+ 4. Hence this can only happen if m 6 4− α.
We see that there exist no solutions to f(k) = k + α for α = 2 and α = 3,
there are no even solutions for α = 0 and the only solution to f(k) = k + 1
is k = 6 (compare with Eq. (1)). This finally proves Theorem 2.

Remark 3. By a similar case analysis it might be possible to prove that

min{n : tkn = 0} ≤ k + 2.

However, it does not seem possible to obtain this bound in a direct way from
the bound (2).
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6. Some weak general results

Given the generality of Gelfond’s theorem, it is natural to try to bound
the minimal n such that n ≡ a (mod k) and sb(n) ≡ c (mod r). Here we
only get a weaker upper bound.

Proposition 3. Let b, r, k be positive integers with gcd(b− 1, r) = 1, and let
c be any integer. Then there exists a non-negative integer n < brk such that
sb(kn) ≡ c (mod r).

Proof. We claim that if 1 ≤ k ≤ bt, then sb(k(bt− 1)) = (b− 1)t. To see this,
note that for p, t ≥ 1 and all k with 1 ≤ k < bt we have

sb(pb
t − k) = sb(p− 1) + (b− 1)t− sb(k − 1).

This is a direct generalization of Proposition 1, and a complete proof can be
found in [6]. Let s be the smallest integer such that k ≤ bs. Then bs−1 < k.
Choose t ∈ {s, s + 1, . . . , s + r − 1} such that (b − 1)t ≡ c (mod r). This is
possible since gcd(b − 1, r) = 1. Then sb(k(bt − 1)) = (b − 1)t ≡ c (mod r),
as desired. Furthermore, bt ≤ bs+r−1 ≤ brbs−1 < brk. Thus we can take
n = bt − 1.

Corollary 2. Let b, r, k be positive integers with gcd(b − 1, r) = 1, and let
a, c be any integers. Then there exists an integer n < br+1k3 such that n ≡
a (mod k) and sb(n) ≡ c (mod r).

Proof. Without loss of generality we can assume 0 ≤ a < k. As in the proof of
Proposition 3 let s be the smallest integer such that bs ≥ k, so bs−1 < k. From
Proposition 3 we know that there exists an integer t such that sb(k(bt−1)) ≡
(c− a) (mod r), and bt < brk. Then clearly sb(kb

s(bt − 1) + a) ≡ c (mod r),
so we can take n = kbs(bt − 1) + a. Then n < br+1k3.

In the setting of Proposition 3 we conjecture that a similar phenomenon
takes place as we have seen in the case of the classical Thue-Morse sequence.

Conjecture 3. Let b, r be positive integers with gcd(b−1, r) = 1, and let c be
any integer. There exists a constant C, depending only on b and r such that
for all k ≥ 1 there exists n ≤ k + C with sb(kn) ≡ c (mod r). Furthermore,
we can take C ≤ br+c.
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We guess that this conjecture is hard to prove. In the case of the Thue-
Morse sequence we used a detailed case study to succeed. In principle, in
each of our lemmas we make use of a new idea to get a parity change. We
do not see how this extends to the general setting where b, r and c all vary
freely.
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