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Introduction

Let q ≥ 2 and denote by s q (n) the sum of digits in the q-ary representation of an integer n. In recent years, much effort has been made to get a better understanding of the distribution properties of s q regarding certain subsequences of the positive integers. We mention the ground-breaking work by C. Mauduit and J. Rivat on the distribution of s q of primes [START_REF] Mauduit | Sur un probléme de Gelfond: la somme des chiffres des nombres premiers[END_REF] and of squares [START_REF] Mauduit | La somme des chiffres des carrés[END_REF]. In the case of general polynomials p(n) of degree h ≥ 2 very little is known. For the current state of knowledge, we refer to the work of C. Dartyge and G. Tenenbaum [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF], who provided some density estimates for the evaluation of s q (p(n)) in arithmetic progressions. The authors [START_REF] Hare | The sum of digits of n and n 2[END_REF] recently examined the special case when s q (p(n)) ≈ s q (n).

A problem of a more elementary (though, non-trivial) nature is to study extremal properties of s q (p(n)). Here we will always assume that [START_REF] Bassily | Distribution of the values of q-additive functions on polynomial sequences[END_REF] p

(x) = a h x h + a h-1 x h-1 + • • • + a 0 ∈ Z[x]
is a polynomial of degree h ≥ 2 with leading coefficient a h > 0.

In the binary case when q = 2, B. Lindström [START_REF] Lindström | On the binary digits of a power[END_REF] showed that

(2) lim sup

n→∞ s 2 (p(n)) log 2 n = h.
In the proof of (2), Lindström uses a sequence of integers n with many 1's in their binary expansions such that p(n) also has many 1's. The special case p(n) = n 2 of (2) has been reproved by M. Drmota and J. Rivat [START_REF] Drmota | The sum-of-digits function of squares[END_REF] with constructions due to J. Cassaigne and G. Baron. On the other hand, it is an intriguing question whether it is possible to generate infinitely many integers n such that p(n) has few 1's compared to n. If this is possible, then this is indeed a rare event. It is well-known [START_REF] Delange | Sur la fonction sommatoire de la fonction "somme des chiffres[END_REF][START_REF] Peter | The summatory function of the sum-of-digits function on polynomial sequences[END_REF] that the average order of magnitude of s q (n) and

s q (n h ) is (3) n<N s q (n) ∼ 1 h n<N s q (n h ) ∼ q -1 2 log q N log N.
In particular, the average value of s q (n h ) is h times larger than the average value of s q (n).

In 1978, K. Stolarsky [START_REF] Stolarsky | The binary digits of a power[END_REF] proved several results on the extremal values of s q (p(n))/s q (n) for the special case when q = 2 and p(n) = n h . He showed that the maximal order of magnitude is

c(h)(log 2 n) 1-1/h ,
where c(h) only depends on h. This result is best possible, which follows from the Bose-Chowla theorem [START_REF] Bose | Theorems in the additive theory of numbers[END_REF][START_REF] Halberstam | Sequences, Second edition[END_REF]. His proof can be generalized to base q and to general polynomials p(n). Although this generalization is straightforward, we include it here for completeness. Recall that p(n) may have negative coefficients as well. (1) If p(n) has only nonnegative coefficients then there exists c 1 , dependent only on p(x) and q, such that for all n ≥ 2,

s q (p(n)) s q (n) ≤ c 1 (log q n) 1-1/h .
This is best possible in that there is a constant c 1 , dependent only on p(x), such that

s q (p(n)) s q (n) > c 1 (log q n) 1-1/h
infinitely often. (2) If p(n) has at least one negative coefficient then there exists c 2 and n 0 , dependent only on p(x) and q, such that for all n ≥ n 0 ,

s q (p(n)) s q (n) ≤ c 2 log q n.
This is best possible in that for all ε > 0 we have

s q (p(n)) s q (n) > (q -1 -ε) log q n infinitely often.
The proof of this result along with some useful preliminary results are given in Section 2.

For the minimal order of s q (p(n))/s q (n), Stolarsky treated the special case q = 2 and p(n) = n 2 . He proved that there are infinitely many integers n such that (4)

s 2 (n 2 ) s 2 (n) ≤ 4(log log n) 2 log n .
He conjectured that an analogous result is true for every fixed h ≥ 2 but he did "not see how to prove this".

Conjecture 1.2 (Stolarsky [14], 1978).

For fixed h ≥ 2, lim inf n→∞ s 2 (n h ) s 2 (n) = 0.
By naive methods, it can be quite hard to find even a single value n such that s 2 (n h ) < s 2 (n) for some h, let alone observe that the limit infimum goes to 0. For example, an extremely brute force calculation shows that the minimal n such that s 2 (n

3 ) < s 2 (n) is n = 407182835067 ≈ 2 39 .
In Section 3 we prove and generalize Conjecture 1.2.

Theorem 1.3. We have

lim inf n→∞ s q (p(n)) s q (n) = 0.
In view of our generalization, it is natural to ask how quickly we can expect this ratio to go to zero. Recall that h = deg p. Theorem 1.4. There exist explicitly computable constants B and C, dependent only on p(x) and q, such that for all ε with 0 < ε < h(4h+1) there exists an n < B • C 1/ε with s q (p(n))

s q (n) < ε.
The proof of this result along with an explicit construction for B and C is given in Section 4. As a nice Corollary to this result we have Corollary 1.5. There exists a constant C 0 , dependent only on p(x) and q, such that there exists infinitely many n with

s q (p(n)) s q (n) ≤ C 0 log n .
This is an improvement and generalization upon (4).

Proof. By solving for ε in n < B • C 1/ε , one easily sees that ε < log C log n-log B .
Without loss of generality we may assume that B > 1, hence we can take C 0 = log C.

One might expect that the ratio s q (p(n))/s q (n) is small only rarely, with most of its time being spent near h = deg p. It turns out that this ratio is small somewhat more often than expected.

Theorem 1.6. For any ε > 0 there exists an explicitly computable α > 0, dependent only on ε, p(x) and q, such that

# n < N : s q (p(n)) s q (n) < ε N α
where the implied constant also only depends on ε, p(x) and q.

The proof of this result is given in Section 5.

In Section 6 we collect together questions raised in this paper and pose some further lines of inquiry for this research.

Preliminaries and Proof of Theorem 1.1

First we prove some preliminary results about s q which we need in the proofs. Recall (cf. [START_REF] Lindström | On the binary digits of a power[END_REF]) that terms are said to be noninterfering if we can use the following splitting formulae:

Proposition 2.1. For 1 ≤ b < q k and a, k ≥ 1, s q (aq k + b) = s q (a) + s q (b), (5) s q (aq k -b) = s q (a -1) + (q -1)k -s q (b -1). (6)
Proof. Relation ( 5) is a consequence of the (strong) q-additivity of s q . For (6) we write b -

1 = k-1 i=0 b i q i with 0 ≤ b i ≤ q -1. Then s q (aq k -b) = s q ((a -1)q k + q k -b) = s q (a -1) + s q (q k -b) = s q (a -1) + s q k-1 i=0 (q -1 -b i )q i = s q (a -1) + k-1 i=0 (q -1 -b i ) implying (6).
Proposition 2.2. The function s q is subadditive and submultiplicative, i.e., for all a, b ∈ N we have s q (a + b) ≤ s q (a) + s q (b), [START_REF] Hare | The sum of digits of n and n 2[END_REF] s q (ab) ≤ s q (a)s q (b). ( 8)

Proof. The proof follows on the lines of [START_REF]On the bits counting function of real numbers[END_REF]Section 2]. As for [START_REF] Hare | The sum of digits of n and n 2[END_REF], an even stronger result is true, namely that s q (a + b) = s q (a) + s q (b) -(q -1) • r where r is the number of "carry" operations needed when adding a and b. Writing b = k-1 i=0 b i q i we also have

s q (ab) = s q a k-1 i=0 b i q i ≤ k-1 i=0 s q (ab i ) = k-1 i=0 s q (a + • • • + a b i times ) ≤ s(a) k-1 i=0 b i ,
where we used twice the subadditivity of s q and we get [START_REF] Lindström | On the binary digits of a power[END_REF].

Proof of Theorem 1.1. This is an almost direct generalization of Stolarsky's proof (see [START_REF] Stolarsky | The binary digits of a power[END_REF]Section 2]) and Propositions 2.1 and 2.2. First, suppose that p(n) has only nonnegative coefficients. Then using Proposition 2.2 we see that s q (p(n)) ≤ p(s q (n)). Therefore

s q (p(n)) s q (n) ≤ min{(q -1) log q p(n) + 1 , p(s q (n))} s q (n) ≤ c 1 • min{log q n, s q (n) h } s q (n) (9)
where c 1 only depends on p(x) and q. If log q n ≤ s q (n) h then we have (log q n) 1/h ≤ s q (n). From this and (9), we get that

s q (p(n)) s q (n) ≤ c 1 • log q n (log q n) 1/h = c 1 (log q n) 1-1/h .
Alternately, if log q n > s q (n) h then we have (log q n) 1/h > s q (n) and

s q (p(n)) s q (n) ≤ c 1 • s q (n) h-1 ≤ c 1 (log q n) 1-1/h .
For the lower bound, set

(10) k = log q (λ(h + 1)!) + 1,
where λ = max{a i : 0 ≤ i ≤ h}. By Stolarsky's use of the Bose-Chowla Theorem, there are infinitely many integers M ≥ 3(k + 1) such that there are integers y 1 , y 2 , . . . , y N with N := (M + 1)/(k + 1) -1, with the following three properties:

(i) 1 ≤ y 1 < y 2 < • • • < y N ≤ M h , (ii) y i ≡ 0 mod (k + 1), (iii) 
all sums y j 1 + • • • + y j h are distinct (distinct sum property); here j 1 , j 2 , . . . , j h ∈ {1, 2, . . . , N } with possible repetition. Note that (iii) implies the distinct sum property for all

y j 1 + • • • + y j i with 1 ≤ i ≤ h. Now set n = N i=1 q y i , such that (11) p(n) = h i=0 a i n i = h i=0 a i α(i; h 1 , . . . , h N )q y 1 h 1 +•••+y N h N
where the summation is over all vectors (h 1 , . . . , h N ) satisfying [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF] as a polynomial in q. By the distinct sum property (iii) we have for all 0 [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF] are nonzero and bounded by ( 12)

h 1 + • • • + h N = i, and α(i; h 1 , . . . , h N ) denote the multinomial coefficients i!/(h 1 ! . . . h N !) bounded by i!. Consider
≤ i ≤ h that #{y 1 h 1 + • • • + y N h N : h 1 + • • • + h N = i} = N + i -1 N -1 .

Thus the coefficients of q y

1 h 1 +•••+y N h N = q R with h 1 + • • • + h N = h in ( 
a h h! + a h-1 (h -1)! + • • • + a 0 ≤ λ(h + 1)h! < q k .
By ( 12) and (ii), the sums

y 1 h 1 + • • • + y N h N ≡ 0 mod (k + 1
) and hence the powers q R are noninterfering and we get

s q (p(n)) s q (n) ≥ N + h -1 N -1 • 1 N ≥ N h-1 h! .
By construction,

log q n ≤ y N + 1 ≤ 2 h+1 N h (k + 1) h .
The claim now follows by observing that k is largest for q = 2. Secondly suppose that p(n) has at least one negative coefficient. Then the first claim follows by observing that s q (p(n)) ≤ log q p(n) +1 for sufficiently large n. For the lower bound, denote by a j the negative coefficient with smallest index j, i.e., a j < 0 and a j-l ≥ 0 for 1 ≤ l ≤ j. Then for all sufficiently large k we have

s q (p(q k )) = s q (a h q hk + • • • + a j+1 q (j+1)k + a j q jk + a j-1 q (j-1)k + • • • + a 0 ) = s q (a h q (h-j)k + • • • + a j+1 q k + a j ) + j-1 l=0 s q (a l ) ≥ k(q -1) -s(-a j -1) > k(q -1 -ε).
Here we have used Proposition 2.1. As s q (q k ) = 1 and log q (q k ) = k, the result follows. This completes the proof of Theorem 1.1.

Proof of Theorem 1.3

The proof of Theorem 1.3 will use a construction of a sequence with noninterfering terms. First assume that p(x) = x h , h ≥ 2 and define the polynomial

t m (x) = mx 4 + mx 3 -x 2 + mx + m
where m ∈ Z with m ≥ 3. By consecutively employing ( 5) and ( 6) we see that for all k with q k > m, [START_REF]On the bits counting function of real numbers[END_REF] s q (t m (q k )) = (q -1)k + s q (m -1) + 3s q (m).

The appearance of k in ( 13) is crucial. The next lemma lies at the heart of the proofs. We will use it to see that s q (t m (q k ) h ), h ≥ 2, is independent of k whenever k is sufficiently large. Furthermore, we will exploit the fact that the coefficients of [x i ] in t m (x) h are polynomials in m with alternating signs.

Lemma 3.1. For fixed h ≥ 2 and m ≥ 3, we have

t m (x) h = 4h i=0 c i,h (m) x i satisfying (14) 0 < c i,h (m) ≤ (2mh) h i = 0, 1, . . . , 4h.
In fact, we have

c 0,h (m) = c 4h,h (m) = m h , c 1,h (m) = c 4h-1,h (m) = hm h . ( 15 
)
Proof. A direct calculation shows that t m (x) 2 and t m (x) 3 have property [START_REF] Stolarsky | The binary digits of a power[END_REF] 

provided m ≥ 3. Set h = 2h 1 + 3h 2 with max(h 1 , h 2 ) ≥ 1. Then t m (x) h = t m (x) 2 . . . t m (x) 2 h 1 times • t m (x) 3 . . . t m (x) 3 h 2 times .
Since products of polynomials with all positive coefficients have all positive coefficients too, we get c i,h (m) > 0 for all i = 0, 1, . . . , 4h. On the other hand, the coefficients of t m (x) h are clearly bounded by the corresponding coefficients of the polynomial

m h (1 + x + x 2 + x 3 + x 4 ) h = m h 0≤l≤k≤j≤i≤h h i i j j k k l x i+j+k+l .
Therefore, for all i with 0 ≤ i ≤ 4h, we have

c i,h (m) ≤ m h 0≤l≤k≤j≤i≤h h! (h -i)!(i -j)!(j -k)!(k -l)! (16) ≤ m h h! exp(h -i + i -j + j -k + k -l) ≤ m h h!e h ≤ (2mh) h .
Proof of Theorem 1.3. Now let k be such that q k > (2mh) h . By ( 14) and ( 5) we then have

s q (t m (q k ) h ) = s q (c 0,h (m)) + s q (c 1,h (m)) + • • • + s q (c 4h,h (m))
where s q (c i,h (m)) is bounded by a function which only depends on q, m and h. Together with [START_REF]On the bits counting function of real numbers[END_REF] and letting k → ∞ we thus conclude for fixed m ≥ 3, lim k→∞ s q (t m (q k ) h )/s q (t m (q k )) = 0, as wanted.

Finally we consider the case with a general polynomial instead of x h . Write ( 17)

p(t m (x)) = a h t m (x) h + a h-1 t m (x) h-1 + • • • + a 1 t m (x) + a 0
where a h > 0 and h ≥ 2. First suppose that all the coefficients are nonnegative. Lemma 3.1 shows that for i with 2 ≤ i ≤ h all the coefficients of t m (x) i are positive. Also, the coefficient [

x 2 ] in p(t m (x)) is nonnegative if we choose m ≥ 3 sufficiently large. In fact, a sufficient condition is a h h 2 m h -hm h-1 ≥ a 1 which is true whenever (18) m ≥ 2a 1 h(3h -5)a h 1/(h-1)
.

If the polynomial p(x) has negative coefficients then there is a positive integer b such that the polynomial p(x + b) has all positive coefficients. A good choice for b is

(19) b = 1 + λ a h = 1 + λ a h , λ = max{|a i | : 0 ≤ i ≤ h}.
This is easy to see since both

p(x + b) -(a h (x + b) h -λ h-1 i=0 (x + b) i ) and a h (x + b) h -λ h-1 i=0 (x + b) i = a h - λ x + b -1 (x + b) h + λ x + b -1 = 1 x + b -1 (a h x + (b -1)a h -λ)(x + b) h + λ have nonnegative coefficients when b ≥ 1 + λ a h . Thus if q k > m + b then s q (t m (q k ) + b) = (q -1)k + s q (m
-1) + 2s q (m) + s q (m + b) and one similarly obtains for fixed m,

lim k→∞ s q (p(t m (q k ) + b))/s q (t m (q k ) + b) = 0.
This completes the proof of Theorem 1.3.

Proof of Theorem 1.4

The construction of an extremal sequence in the proof of Theorem 1.3 gives a rough bound on the minimal n such that s q (n h ) < s q (n). We first illustrate the method in the case q = 2, h = 3.

Set m = 3. Then for all k with 2 k > max 0≤i≤4h c i,h (m) = 225 we have

s 2 (t 3 (2 k )) = k + 1 + 6 = k + 7, s 2 (t 3 (2 k ) 3 ) = 2 • (4 + 3 + 4 + 4 + 4 + 4) + 4 = 50.
Therefore, by setting k = 44, we get min{n :

s 2 (n 3 ) < s 2 (n)} < 2 178 .
It is possible to show that the minimal such n to be n = 407182835067 ≈ 2 39 .

Proof of Theorem 1.4. Consider the general polynomial 

p(x) = a h x h + a h-1 x h-1 + • • • + a 0 ∈ Z[x] with a h > 0, h ≥ 2. Let λ = max |a i |.
(x) + b) ∈ Z[x].
To begin with, we estimate the coefficient of

x i , 0 ≤ i ≤ h of p(x + b), ( 20 
) h j=i a j b j-i j i ≤ h j=i a j b j-i j i ≤ λ(2b) h .
Combining (20) with (15), we find that the constant term of p(t m (x)+b) is bounded by

λ(2b) h h i=0 m i = λ(2b) h m h+1 -1 m -1 ≤ λh(4mbh) h
since m ≥ 3 and h ≥ 2. Again from (20) and ( 14), we find that the other coefficients of p(t m (x) + b) are bounded by

(21) λ(2b) h h i=1 (2mi) i ≤ λh(4mbh) h .
Therefore the coefficients of p(t m (x) + b) are bounded by λh(4mbh) h . Hence for q k > m + b, we have

(22) s q (p(t m (q k )) + b) ≤ (q -1)(4h + 1) log(λh(4mbh) h ) log q + 1 .
On the other hand, we clearly have s q (t m (q k ) + b) > (q -1)k for

q k > m + b. Let k = 4h + 1 ε log(λh(4mbh) h ) log q + 1 + 1.
Then for 0 < ε < h(4h + 1) we have q k > m + b and hence

s q (p(t m (q k ) + b)) s q (t m (q k ) + b) < ε.
Therefore, min n :

s q (p(n)) s q (n) < ε ≤ t m (q k ) + b < m(q 4k + q 3k + q k + 1) < 2mq 4k ≤ 2mq 4 qλh(4mbh) h (16h+4)/ε .
Setting B := 2mq 4 and C := qλh(4mbh) h 16h+4 , it gives the desired result.

Proof of Theorem 1.6

We start our analysis with the simple case of p

(n) = n h . Let t m (x) = mx 4 + mx 3 -x 2 + mx + m as in Section 3. Letting n = n k,m = t m (q k )
we see from equation ( 13) that, for m < q k , s q (n) = (q -1)k + s q (m -1) + 3s q (m) ≥ (q -1)k.

If m has i q-ary digits then n will have 4k + i q-ary digits. We see that t m (q k ) h is of length at most h(4k + i).

Let t m (q k ) h = 4h j=0 c j q kj . These c j are dependent upon m and h, but are independent of k for k sufficiently large. We see from equation ( 16) that c j ≤ (mh • 2) h and hence has at most hi + h log q h + h q-ary digits. As there are (4h+1) coefficients c j and s q (c j ) ≤ (q-1)(hi+h log q h+h), we get s q (n h ) ≤ (q -1)(4h + 1) hi + h log q h + h .

Combining these together we have

s q (n h ) s q (n) ≤ (q -1)(4h + 1) hi + h log q h + h (q -1)k = (4h + 1) hi + h log q h + h k .
Without loss of generality suppose that 0 < ε < h(4h + 1). Let k 0 be large enough so that k 0 > i and (4h + 1) hi + h log q h + h k 0 < ε.

For i sufficiently large, we can take k 0 = (4h+1)(hi+i) ε . Then this says that for every sufficiently large m having i q-ary digits, there is an integer n having 4k 0 + i q-ary digits such that

s q (n h ) s q (n) < ε.
Moreover, by construction, each distinct m will give rise to a distinct n. Letting

α = i 4k 0 + i ≥ i 4(4h + 1)(h + 1)i/ε + i = ε 4(4h + 1)(h + 1) + ε we get as N → ∞ that # n < N : s q (n h ) s q (n) < ε N α .
Now to extend this for general p(x), we proceed as we did in the proof of Theorem 1.3. First consider the case where p(x) has only nonnegative coefficients. There is a lower bound on m such that p(t m (x)) will have only nonnegative coefficients and we proceed as before, after which the result follows as before. Second, if p(x) has at least one negative coefficient, then consider instead the polynomial p(x + b) for sufficiently large b, which will have only nonnegative coefficients, and the result follows.

Conclusions and further work

All results in this paper have explicitly computable constants for existence or density results. Many times these constants are far from the observed experimental values, and it is quite likely that many of them may be strengthened. Examples include Theorems 1.4 and 1.6. Some obvious generalizations of this problem are in looking at the ratios of s q (p 1 (n))

sq(p 2 (n)) , or even more generally of

s q 1 (p 1 (n))
sq 2 (p 2 (n)) with respect to two different bases q 1 , q 2 . Alternately, instead of looking at polynomials p(x) ∈ Z[x], we could look at quasi-polynomials p(n) with p(x) ∈ R[x].

As another direction, we could consider expansions in other numeration systems, e.g. the Zeckendorf expansion (or expansions with respect to linear recurrences) or the balanced based q representation. In the latter case, for example, 11 = 1•3 2 +1•3 1 -1•3 0 , and s 3 (11) = 1+1-1 = 1, being the sum-of-digits function in this representation. This value will quite often be 0, but its extremal distribution could still have some interesting properties.

Theorem 1 . 1 .

 11 Let p(x) ∈ Z[x] have degree at least 2 and positive leading coefficient.

  Pick b such that p(x+b) has only nonnegative coefficients, as in (19). Pick m ≥ 3 such that p(t m (x) + b) has only nonnegative coefficients, as in (18). Our task is to bound the coefficients of of p(t m
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