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Abstract

Let q,m ≥ 2 be integers with (m, q − 1) = 1. Denote by sq(n)
the sum of digits of n in the q-ary digital expansion. Further let
p(x) ∈ Z[x] be a polynomial of degree h ≥ 3 with p(N) ⊂ N. We
show that there exist C = C(q,m, p) > 0 and N0 = N0(q,m, p) ≥ 1,
such that for all g ∈ Z and all N ≥ N0,

#{0 ≤ n < N : sq(p(n)) ≡ g mod m} ≥ CN4/(3h+1).

This is an improvement over the general lower bound given by Dar-
tyge and Tenenbaum (2006), which is CN2/h!.

1 Introduction

Let q,m ≥ 2 be integers and denote by sq(n) the sum of digits of n in the

q-ary digital expansion of integers. In 1967/68, Gelfond [1] proved that for

nonnegative integers a1, a0 with a1 6= 0, the sequence (sq(a1n+ a0))n∈N is

well distributed in arithmetic progressions mod m, provided (m, q− 1) = 1.

At the end of his paper, he posed the problem of finding the distribution

of sq in arithmetic progressions where the argument is restricted to values

of polynomials of degree ≥ 2. Recently, Mauduit and Rivat [8] answered

Gelfond’s question in the case of squares.
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Theorem 1.1 (Mauduit & Rivat (2009)). For any q,m ≥ 2 there exists

σq,m > 0 such that for any g ∈ Z, as N →∞,

#{0 ≤ n < N : sq(n
2) ≡ g mod m} =

N

m
Q(g, d) +Oq,m(N1−σq,m),

where d = (m, q − 1) and

Q(g, d) = #{0 ≤ n < d : n2 ≡ g mod d}.

The proof can be adapted to values of general quadratic polynomial

instead of squares. We refer the reader to [7] and [8] for detailed references

and further historical remarks. The case of polynomials of higher degree

remains elusive so far. The Fourier-analytic approach, as put forward in [7]

and [8], seems not to yield results of the above strength. In a recent paper,

Drmota, Mauduit and Rivat [4] applied the Fourier-analytic method to show

that well distribution in arithmetic progressions is obtained whenever q is

sufficiently large.

In the sequel, and unless otherwise stated, we write

p(x) = ahx
h + · · ·+ a0

for an arbitrary, but fixed polynomial p(x) ∈ Z[x] of degree h ≥ 3 with

p(N) ⊂ N.

Theorem 1.2 (Drmota, Mauduit & Rivat (2011)). Let

q ≥ exp(67h3(log h)2)

be a sufficiently large prime number and suppose (ah, q) = 1. Then there

exists σq,m > 0 such that for any g ∈ Z, as N →∞,

#{0 ≤ n < N : sq(p(n)) ≡ g mod m} =
N

m
Q?(g, d) +Oq,m,p(N

1−σq,m),

where d = (m, q − 1) and

Q?(g, d) = #{0 ≤ n < d : p(n) ≡ g mod d}.

It seems impossible to even find a single “nice” polynomial of degree 3,

say, that allows to conclude for well distribution in arithmetic progressions

for small bases, let alone that the binary case q = 2 is an emblematic case.

Another line of attack to Gelfond’s problem is to find lower bounds that

are valid for all q ≥ 2. Dartyge and Tenenbaum [3] provided such a general

lower bound by a method of descent on the degree of the polynomial and

the estimations obtained in [2].
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Theorem 1.3 (Dartyge & Tenenbaum (2006)). Let q,m ≥ 2 with (m, q −
1) = 1. Then there exist C = C(q,m, p) > 0 and N0 = N0(q,m, p) ≥ 1,

such that for all g ∈ Z and all N ≥ N0,

#{0 ≤ n < N : sq(p(n)) ≡ g mod m} ≥ CN2/h!.

The aim of the present work is to improve this lower bound for all h ≥ 3.

More importantly, we get a substantial improvement of the bound as a

function of h. The main result is as follows.1

Theorem 1.4. Let q,m ≥ 2 with (m, q − 1) = 1. Then there exist C =

C(q,m, p) > 0 and N0 = N0(q,m, p) ≥ 1, such that for all g ∈ Z and all

N ≥ N0,

#{0 ≤ n < N : sq(p(n)) ≡ g mod m} ≥ CN4/(3h+1).

Moreover, for monomials p(x) = xh, h ≥ 3, we can take

N0 = q3(2h+m)
(

2hq2 (6q)h
)3h+1

,

C =
(

16hq5 (6q)h · q(24h+12m)/(3h+1)
)−1

.

The proof is inspired from the constructions used in [5] and [6] that were

helpful in the proof of a conjecture of Stolarsky [9] concerning the pointwise

distribution of sq(p(n)) versus sq(n). As a drawback of the method of proof,

however, it seems impossible to completely eliminate the dependency on h

in the lower bound.

2 Proof of Theorem 1.4

Consider the polynomial

t(x) = m3x
3 +m2x

2 −m1x+m0, (2.1)

where the parameters m0,m1,m2,m3 are positive real numbers that will be

chosen later on in a suitable way. For all integers l ≥ 1 we write

Tl(x) = t(x)l =
3l∑
i=0

cix
i (2.2)

1Gelfond’s work and Theorem 1.1 give precise answers for linear and quadratic poly-
nomials, so we do not include the cases h = 1, 2 in our statement though our approach
works without change.
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to denote its l-th power. (For the sake of simplicity we omit to mark the

dependency on l of the coefficients ci.) The following technical result is the

key in the proof of Theorem 1.4. It shows that, within a certain degree of

uniformity in the parameters mi, all coefficients but one of Tl(x) are positive.

Lemma 2.1. For all integers q ≥ 2, l ≥ 1 and m0,m1,m2,m3 ∈ R+ with

1 ≤ m0,m2,m3 < q, 0 < m1 < l−1(6q)−l

we have that ci > 0 for i = 0, 2, 3, . . . , 3l and ci < 0 for i = 1. Moreover,

for all i,

|ci| ≤ (4q)l. (2.3)

Proof. The coefficients of Tl(x) in (2.2) are clearly bounded above in abso-

lute value by the corresponding coefficients of the polynomial (qx3 + qx2 +

qx + q)l. Since the sum of all coefficients of this polynomial is (4q)l and

all coefficients are positive, each individual coefficient is bounded by (4q)l.

This proves (2.3). We now show the first part. To begin with, observe that

c0 = ml
0 > 0 and c1 = −lm1m

l−1
0 which is negative for all m1 > 0. Suppose

now that 2 ≤ i ≤ 3l and consider the coefficient of xi in

Tl(x) = (m3x
3 +m2x

2 +m0)
l + r(x), (2.4)

where

r(x) =
l∑

j=1

(
l

j

)
(−m1x)j

(
m3x

3 +m2x
2 +m0

)l−j
=

3l−2∑
j=1

djx
j.

First, consider the first summand in (2.4). Since m0,m2,m3 ≥ 1 the coeffi-

cient of xi in the expansion of (m3x
3 + m2x

2 + m0)
l is ≥ 1. Note also that

all the powers x2, x3, . . . , x3l appear in the expansion of this term due to the

fact that every i ≥ 2 allows at least one representation as i = 3i1 + 2i2 with

non-negative integers i1, i2. We now want to show that for sufficiently small

m1 > 0 the coefficient of xi in the first summand in (2.4) is dominant. To

this end, we assume m1 < 1 so that m1 > mj
1 for 2 ≤ j ≤ l. Using

(
l
j

)
< 2l

and a similar reasoning as above we get that

|dj| < l2lm1(3q)
l = l (6q)lm1, 1 ≤ j ≤ 3l − 2.

This means that if m1 < l−1(6q)−l then the powers x2, . . . , x3l in the poly-

nomial Tl(x) indeed have positive coefficients. This finishes the proof.
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To proceed we recall the following splitting formulas for sq which are

simple consequences of the q-additivity of the function sq (see [5] for the

proofs).

Proposition 2.2. For 1 ≤ b < qk and a, k ≥ 1, we have

sq(aq
k + b) = sq(a) + sq(b),

sq(aq
k − b) = sq(a− 1) + k(q − 1)− sq(b− 1).

We now turn to the proof of Theorem 1.4. To clarify the construction we

consider first the simpler case of monomials,

p(x) = xh, h ≥ 1.

(We here include the cases h = 1 and h = 2 because we will need them to

deal with general polynomials with linear and quadratic terms.) Let u ≥ 1

and multiply t(x) in (2.1) by qu−1. Lemma 2.1 then shows that for all integers

m0,m1,m2,m3 with

qu−1 ≤ m0,m2,m3 < qu, 1 ≤ m1 < qu/(hq(6q)h), (2.5)

the polynomial Th(x) = (t(x))h = p(t(x)) has all positive (integral) coeffi-

cients with the only exception of the coefficient of x1 which is negative. Let

u be an integer such that

qu ≥ 2hq(6q)h (2.6)

and let k ∈ Z be such that

k > hu+ 2h. (2.7)

For all u with (2.6) the interval for m1 in (2.5) is non-empty. Furthermore,

relation (2.7) implies by (2.3) that

qk > qhu · q2h ≥ (4qu)h > |ci|, for all i = 0, 1, . . . , 3h,

where ci here denotes the coefficient of xi in Th(x). Roughly speaking, the

use of a large power of q (i.e. qk with k that satisfies (2.7)) is motivated by

the simple wish to split the digital structure of the h-power according to

Proposition 2.2. By doing so, we avoid to have to deal with carries when

adding terms in the expansion in base q since the appearing terms will not

interfere. We also remark that this is the point where we get the dependency

of h in the lower bound of Theorem 1.4.
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Now, by c2, |c1| ≥ 1 and the successive use of Proposition 2.2 we get

sq(t(q
k)h) = sq

(
3h∑
i=3

ciq
ik + c2q

2k − |c1|qk + c0

)

= sq

(
3h∑
i=3

ciq
(i−1)k + c2q

k − |c1|

)
+ sq(c0)

= sq

(
3h∑
i=3

ciq
(i−3)k

)
+ sq(c2 − 1) + k(q − 1)− sq(|c1| − 1) + sq(c0)

=
3h∑
i=3

sq(ci) + sq(c2 − 1) + k(q − 1)− sq(|c1| − 1) + sq(c0)

= k(q − 1) +M, (2.8)

where we write

M =
3h∑
i=3

sq(ci) + sq(c2 − 1)− sq(|c1| − 1) + sq(c0).

Note that M is an integer that depends (in some rather obscure way) on

the quantities m0,m1,m2,m3. Once we fix a quadruple (m0,m1,m2,m3) in

the ranges (2.5), the quantity M does not depend on k and is constant

whenever k satisfies (2.7). We now exploit the appearance of the single

summand k(q−1) in (2.8). Since by assumption (m, q−1) = 1, we find that

sq(t(q
k)h), for k = hu+ 2h+ 1, hu+ 2h+ 2, . . . , hu+ 2h+m, (2.9)

runs through a complete set of residues mod m. Hence, in any case, we hit

a fixed arithmetic progression mod m (which might be altered by M) for

some k with hu+ 2h+ 1 ≤ k ≤ hu+ 2h+m.

Summing up, for u with (2.6) and by (2.5) we find at least

(qu − qu−1)3(qu/(hq(6q)h)− 1) ≥ (1− 1/q)3

2hq (6q)h
q4u (2.10)

integers n that in turn by (2.1), (2.5), (2.7) and (2.9) are all smaller than

qu · q3(hu+2h+m) = q3(2h+m) · qu(3h+1)

and satisfy sq(n
h) ≡ g mod m for fixed g and m. By our construction and

by choosing k > hu+ 2h > u all these integers are distinct. We denote

N0 = N0(q,m, p) = q3(2h+m) · qu0(3h+1),
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where

u0 =
⌈
logq

(
2hq(6q)h

)⌉
≤ logq

(
2hq2(6q)h

)
.

Then for all N ≥ N0 we find u ≥ u0 with

q3(2h+m) · qu(3h+1) ≤ N < q3(2h+m) · q(u+1)(3h+1). (2.11)

By (2.10) and (2.11), and using (1− 1/q)3 ≥ 1/8 for q ≥ 2, we find at least

(1− 1/q)3

2hq (6q)h
q4u ≥

(
16hq5 (6q)h · q(24h+12m)/(3h+1)

)−1
N4/(3h+1)

integers n with 0 ≤ n < N and sq(n
h) ≡ g mod m. We therefore get the

statement of Theorem 1.4 for the case of monomials p(x) = xh with h ≥ 3.

The estimates are also valid for h = 1 and h = 2.

The general case of a polynomial p(x) = ahx
h + · · ·+ a0 of degree h ≥ 3

(or, more generally, of degree h ≥ 1) follows easily from what we have al-

ready proven. Without loss of generality we may assume that all coefficients

ai, 0 ≤ i ≤ h, are positive, since otherwise there exists e = e(p) depend-

ing only on p such that p(x + e) has all positive coefficients. Note that a

finite translation can be dealt with choosing C and N0 appropriately in the

statement. Since Lemma 2.1 holds for all l ≥ 1 and all negative coefficients

are found at the same power x1, we have that the polynomial p(t(x)) has

again all positive coefficients but one where the negative coefficient again

corresponds to the power x1. It is then sufficient to suppose that

k > hu+ 2h+ logq max
0≤i≤h

ai

in order to split the digital structure of p(t(qk)). In fact, this implies that

qk >

(
max
0≤i≤h

ai

)
· (4qu)h ,

and exactly the same reasoning as before yields �q,p q
4u distinct positive

integers that are�q,m,p q
u(3h+1) and satisfy sq(p(n)) ≡ g mod m. This com-

pletes the proof of Theorem 1.4.
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