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, which is CN 2/h! .

Introduction

Let q, m ≥ 2 be integers and denote by s q (n) the sum of digits of n in the q-ary digital expansion of integers. In 1967/68, Gelfond [START_REF] Gelfond | Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF] proved that for nonnegative integers a 1 , a 0 with a 1 = 0, the sequence (s q (a 1 n + a 0 )) n∈N is well distributed in arithmetic progressions mod m, provided (m, q -1) = 1. At the end of his paper, he posed the problem of finding the distribution of s q in arithmetic progressions where the argument is restricted to values of polynomials of degree ≥ 2. Recently, Mauduit and Rivat [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] answered Gelfond's question in the case of squares.

Theorem 1.1 [START_REF] Mauduit | La somme des chiffres des carrés[END_REF]). For any q, m ≥ 2 there exists σ q,m > 0 such that for any g ∈ Z, as N → ∞, #{0 ≤ n < N : s q (n 2 ) ≡ g mod m} = N m Q(g, d) + O q,m (N 1-σq,m ),

where d = (m, q -1) and

Q(g, d) = #{0 ≤ n < d : n 2 ≡ g mod d}.
The proof can be adapted to values of general quadratic polynomial instead of squares. We refer the reader to [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] and [START_REF] Mauduit | La somme des chiffres des carrés[END_REF] for detailed references and further historical remarks. The case of polynomials of higher degree remains elusive so far. The Fourier-analytic approach, as put forward in [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] and [START_REF] Mauduit | La somme des chiffres des carrés[END_REF], seems not to yield results of the above strength. In a recent paper, Drmota, Mauduit and Rivat [START_REF] Drmota | The sum of digits function of polynomial sequences[END_REF] applied the Fourier-analytic method to show that well distribution in arithmetic progressions is obtained whenever q is sufficiently large.

In the sequel, and unless otherwise stated, we write

p(x) = a h x h + • • • + a 0 for an arbitrary, but fixed polynomial p(x) ∈ Z[x] of degree h ≥ 3 with p(N) ⊂ N. Theorem 1.2 (Drmota, Mauduit & Rivat (2011)). Let q ≥ exp(67h 3 (log h) 2 )
be a sufficiently large prime number and suppose (a h , q) = 1. Then there exists σ q,m > 0 such that for any g ∈ Z, as N → ∞,

#{0 ≤ n < N : s q (p(n)) ≡ g mod m} = N m Q (g, d) + O q,m,p (N 1-σq,m ),
where d = (m, q -1) and

Q (g, d) = #{0 ≤ n < d : p(n) ≡ g mod d}.
It seems impossible to even find a single "nice" polynomial of degree 3, say, that allows to conclude for well distribution in arithmetic progressions for small bases, let alone that the binary case q = 2 is an emblematic case. Another line of attack to Gelfond's problem is to find lower bounds that are valid for all q ≥ 2. Dartyge and Tenenbaum [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF] provided such a general lower bound by a method of descent on the degree of the polynomial and the estimations obtained in [START_REF] Dartyge | Sommes de chiffres de multiples d'entiers[END_REF].

Theorem 1.3 [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF]). Let q, m ≥ 2 with (m, q -1) = 1. Then there exist C = C(q, m, p) > 0 and N 0 = N 0 (q, m, p) ≥ 1, such that for all g ∈ Z and all N ≥ N 0 ,

#{0 ≤ n < N : s q (p(n)) ≡ g mod m} ≥ CN 2/h! .
The aim of the present work is to improve this lower bound for all h ≥ 3. More importantly, we get a substantial improvement of the bound as a function of h. The main result is as follows. 1Theorem 1.4. Let q, m ≥ 2 with (m, q -1) = 1. Then there exist C = C(q, m, p) > 0 and N 0 = N 0 (q, m, p) ≥ 1, such that for all g ∈ Z and all

N ≥ N 0 , #{0 ≤ n < N : s q (p(n)) ≡ g mod m} ≥ CN 4/(3h+1) .
Moreover, for monomials p(x) = x h , h ≥ 3, we can take

N 0 = q 3(2h+m) 2hq 2 (6q) h 3h+1 , C = 16hq 5 (6q) h • q (24h+12m)/(3h+1) -1 .
The proof is inspired from the constructions used in [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF] and [START_REF] Hare | The sum of digits of n and n 2[END_REF] that were helpful in the proof of a conjecture of Stolarsky [START_REF] Stolarsky | The binary digits of a power[END_REF] concerning the pointwise distribution of s q (p(n)) versus s q (n). As a drawback of the method of proof, however, it seems impossible to completely eliminate the dependency on h in the lower bound.

Proof of Theorem 1.4

Consider the polynomial

t(x) = m 3 x 3 + m 2 x 2 -m 1 x + m 0 , (2.1) 
where the parameters m 0 , m 1 , m 2 , m 3 are positive real numbers that will be chosen later on in a suitable way. For all integers l ≥ 1 we write

T l (x) = t(x) l = 3l i=0 c i x i (2.2)
to denote its l-th power. (For the sake of simplicity we omit to mark the dependency on l of the coefficients c i .) The following technical result is the key in the proof of Theorem 1.4. It shows that, within a certain degree of uniformity in the parameters m i , all coefficients but one of T l (x) are positive.

Lemma 2.1. For all integers q ≥ 2, l ≥ 1 and m 0 , m 1 , m 2 , m 3 ∈ R + with

1 ≤ m 0 , m 2 , m 3 < q, 0 < m 1 < l -1 (6q) -l
we have that c i > 0 for i = 0, 2, 3, . . . , 3l and c i < 0 for i = 1. Moreover, for all i,

|c i | ≤ (4q) l . (2.3)
Proof. The coefficients of T l (x) in (2.2) are clearly bounded above in absolute value by the corresponding coefficients of the polynomial (qx 3 + qx 2 + qx + q) l . Since the sum of all coefficients of this polynomial is (4q) l and all coefficients are positive, each individual coefficient is bounded by (4q) l . This proves (2.3). We now show the first part. To begin with, observe that c 0 = m l 0 > 0 and c 1 = -lm 1 m l-1 0 which is negative for all m 1 > 0. Suppose now that 2 ≤ i ≤ 3l and consider the coefficient of x i in

T l (x) = (m 3 x 3 + m 2 x 2 + m 0 ) l + r(x), (2.4) 
where

r(x) = l j=1 l j (-m 1 x) j m 3 x 3 + m 2 x 2 + m 0 l-j = 3l-2 j=1 d j x j .
First, consider the first summand in (2.4). Since m 0 , m 2 , m 3 ≥ 1 the coefficient of x i in the expansion of (m

3 x 3 + m 2 x 2 + m 0 ) l is ≥ 1.
Note also that all the powers x 2 , x 3 , . . . , x 3l appear in the expansion of this term due to the fact that every i ≥ 2 allows at least one representation as i = 3i 1 + 2i 2 with non-negative integers i 1 , i 2 . We now want to show that for sufficiently small m 1 > 0 the coefficient of x i in the first summand in (2.4) is dominant. To this end, we assume m 1 < 1 so that m 1 > m j 1 for 2 ≤ j ≤ l. Using l j < 2 l and a similar reasoning as above we get that

|d j | < l2 l m 1 (3q) l = l (6q) l m 1 , 1 ≤ j ≤ 3l -2.
This means that if m 1 < l -1 (6q) -l then the powers x 2 , . . . , x 3l in the polynomial T l (x) indeed have positive coefficients. This finishes the proof.

To proceed we recall the following splitting formulas for s q which are simple consequences of the q-additivity of the function s q (see [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF] for the proofs). Proposition 2.2. For 1 ≤ b < q k and a, k ≥ 1, we have s q (aq k + b) = s q (a) + s q (b), s q (aq k -b) = s q (a -1) + k(q -1) -s q (b -1).

We now turn to the proof of Theorem 1.4. To clarify the construction we consider first the simpler case of monomials,

p(x) = x h , h ≥ 1.
(We here include the cases h = 1 and h = 2 because we will need them to deal with general polynomials with linear and quadratic terms.) Let u ≥ 1 and multiply t(x) in (2.1) by q u-1 . Lemma 2.1 then shows that for all integers m 0 , m 1 , m 2 , m 3 with

q u-1 ≤ m 0 , m 2 , m 3 < q u , 1 ≤ m 1 < q u /(hq(6q) h ), (2.5) 
the polynomial T h (x) = (t(x)) h = p(t(x)) has all positive (integral ) coefficients with the only exception of the coefficient of x 1 which is negative. Let u be an integer such that q u ≥ 2hq(6q) h (2.6)

and let k ∈ Z be such that

k > hu + 2h. (2.7)
For all u with (2.6) the interval for m 1 in (2.5) is non-empty. Furthermore, relation (2.7) implies by (2.3) that

q k > q hu • q 2h ≥ (4q u ) h > |c i |, for all i = 0, 1, . . . , 3h,
where c i here denotes the coefficient of x i in T h (x). Roughly speaking, the use of a large power of q (i.e. q k with k that satisfies (2.7)) is motivated by the simple wish to split the digital structure of the h-power according to Proposition 2.2. By doing so, we avoid to have to deal with carries when adding terms in the expansion in base q since the appearing terms will not interfere. We also remark that this is the point where we get the dependency of h in the lower bound of Theorem 1.4. Now, by c 2 , |c 1 | ≥ 1 and the successive use of Proposition 2.2 we get

s q (t(q k ) h ) = s q 3h i=3 c i q ik + c 2 q 2k -|c 1 |q k + c 0 = s q 3h i=3 c i q (i-1)k + c 2 q k -|c 1 | + s q (c 0 ) = s q 3h i=3 c i q (i-3)k + s q (c 2 -1) + k(q -1) -s q (|c 1 | -1) + s q (c 0 ) = 3h i=3 s q (c i ) + s q (c 2 -1) + k(q -1) -s q (|c 1 | -1) + s q (c 0 ) = k(q -1) + M, (2.8) 
where we write

M = 3h i=3 s q (c i ) + s q (c 2 -1) -s q (|c 1 | -1) + s q (c 0 ).
Note that M is an integer that depends (in some rather obscure way) on the quantities m 0 , m 1 , m 2 , m 3 . Once we fix a quadruple (m 0 , m 1 , m 2 , m 3 ) in the ranges (2.5), the quantity M does not depend on k and is constant whenever k satisfies (2.7). We now exploit the appearance of the single summand k(q -1) in (2.8). Since by assumption (m, q -1) = 1, we find that s q (t(q k ) h ), for k = hu + 2h + 1, hu + 2h + 2, . . . , hu + 2h + m, (2.9) runs through a complete set of residues mod m. Hence, in any case, we hit a fixed arithmetic progression mod m (which might be altered by M ) for some k with hu + 2h + 1 ≤ k ≤ hu + 2h + m. Summing up, for u with (2.6) and by (2.5) we find at least (q u -q u-1 ) 3 (q u /(hq(6q) h ) -1) ≥ (1 -1/q) 3 2hq (6q) h q 4u (2.10) integers n that in turn by (2.1), (2.5), (2.7) and (2.9) are all smaller than q u • q 3(hu+2h+m) = q 3(2h+m) • q u(3h+1)

and satisfy s q (n h ) ≡ g mod m for fixed g and m. By our construction and by choosing k > hu + 2h > u all these integers are distinct. We denote N 0 = N 0 (q, m, p) = q 3(2h+m) • q u 0 (3h+1) , where u 0 = log q 2hq(6q) h ≤ log q 2hq 2 (6q) h .

Then for all N ≥ N 0 we find u ≥ u 0 with q 3(2h+m) • q u(3h+1) ≤ N < q 3(2h+m) • q (u+1)(3h+1) .

(2.11) By (2.10) and (2.11), and using (1 -1/q) 3 ≥ 1/8 for q ≥ 2, we find at least

(1 -1/q) 3 2hq (6q) h q 4u ≥ 16hq 5 (6q) h • q (24h+12m)/(3h+1) -1 N 4/(3h+1)
integers n with 0 ≤ n < N and s q (n h ) ≡ g mod m. We therefore get the statement of Theorem 1.4 for the case of monomials p(x) = x h with h ≥ 3. The estimates are also valid for h = 1 and h = 2.

The general case of a polynomial p(x) = a h x h + • • • + a 0 of degree h ≥ 3 (or, more generally, of degree h ≥ 1) follows easily from what we have already proven. Without loss of generality we may assume that all coefficients a i , 0 ≤ i ≤ h, are positive, since otherwise there exists e = e(p) depending only on p such that p(x + e) has all positive coefficients. Note that a finite translation can be dealt with choosing C and N 0 appropriately in the statement. Since Lemma 2.1 holds for all l ≥ 1 and all negative coefficients are found at the same power x 1 , we have that the polynomial p(t(x)) has again all positive coefficients but one where the negative coefficient again corresponds to the power x 1 . It is then sufficient to suppose that k > hu + 2h + log q max 0≤i≤h a i in order to split the digital structure of p(t(q k )). In fact, this implies that

q k > max 0≤i≤h a i • (4q u ) h ,
and exactly the same reasoning as before yields q,p q 4u distinct positive integers that are q,m,p q u(3h+1) and satisfy s q (p(n)) ≡ g mod m. This completes the proof of Theorem 1.4.

Gelfond's work and Theorem 1.1 give precise answers for linear and quadratic polynomials, so we do not include the cases h = 1

, 2 in our statement though our approach works without change.
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