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On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence

Let P (x) ∈ Z[x] be an integer-valued polynomial taking only positive values and let d be a fixed positive integer. The aim of this short note is to show, by elementary means, that for any sufficiently large integer N ≥ N0(P, d) there exists n such that P (n) contains exactly N occurrences of the block (q -1, q -1, . . . , q -1) of size d in its digital expansion in base q. The method of proof allows to give a lower estimate on the number of "0" resp. "1" symbols in polynomial extractions in the Rudin-Shapiro sequence.

Introduction

Any introductory course on automatic sequences starts in one way or another with the example of the Thue-Morse sequence (sequence A010060 in the OEIS [START_REF]The Online Encyclopedia of Integer Sequences (OEIS)[END_REF]; cf. [1, Chapter 1.6]), i.e., (t n ) n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . The maybe second best known example of an automatic sequence is the Rudin-Shapiro sequence (sometimes also known as the Golay-Rudin-Shapiro sequence; see [START_REF] Rudin | Some theorems on Fourier coefficients[END_REF][START_REF] Shapiro | Extremal Problems for Polynomials and Power Series[END_REF]). Similarly to the Thue-Morse sequence, the Rudin-Shapiro sequence can be defined in various equivalent ways [ see [6, p.252]. For the aim of this note, we will make use of the numbertheoretic definition of the sequence: Denote by R n the number of (possibly overlapping) occurrences of the block "11" in the base two expansion of n. For example, R 59 = 3 since 59 = (111011) 2 written in base two. Let r n = R n mod 2, so that r 59 = 1.

Then the sequence (r n ) n≥0 = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, . . . is the Rudin-Shapiro sequence (A020987 in the OEIS; cf. [START_REF] Allouche | Automatic Sequences: Theory, Applications, Generalizations[END_REF]Chapter 3.3]). The overall distribution of the two symbols in the sequence (r n ) n≥0 is well understood. Brillhart and Morton [START_REF] Brillhart | A case study in mathematical research: the Golay-Rudin-Shapiro sequence[END_REF] 

calculated explicit (sharp) constants c 1 , c 2 such that N 2 -c 1 √ N < n<N r n < N 2 -c 2 √ N , N ≥ 1. (1) 
On the one hand, this result shows that the symbols 0 and 1 are well-distributed within r n , and, on the other hand, that there is still a weak preponderance of the 0's over 1's. For the Thue-Morse sequence, one easily verifies that

N 2 - 1 2 ≤ n<N t n ≤ N 2 + 1 2 , N ≥ 1. (2) 
1

Various results on weak preponderance are known under the term "Newman's phenomenon" (see, for example, [START_REF] Drmota | Newman's phenomenon for generalized Thue-Morse sequences[END_REF]). Newman [START_REF] Newman | On the number of binary digits in a multiple of three[END_REF] originally showed in 1969 that there are more 0's than 1's if the restriction of the summation is to multiples of three in [START_REF] Brillhart | A case study in mathematical research: the Golay-Rudin-Shapiro sequence[END_REF].

The rarefication of automatic sequences has its early roots in work of Gelfond [START_REF] Gelfond | Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF] from 1967/68. He considered the distribution of the sum-of-digits function evaluated on arithmetic progressions. In particular, his work implies that the symbols 0 and 1 in the Thue-Morse sequence are equidistributed when the restriction is to arithmetic progressions. More difficult rarefications, such as primes and squares, have been considered in recent years, and put in the context of Sarnak's "Möbius randomness principle" and related "prime number theorems". We refer to the work of Mauduit and Rivat [START_REF] Mauduit | Prime numbers along Rudin-Shapiro sequences[END_REF] on prime numbers in Rudin-Shapiro sequences and to the references given therein. The underlying problem shows that the growth rate of the subsequence is crucial. In that sense, primes and squares have still a "quite large" relative density in the integers whereas subsequences of larger growth (polynomials of large degree, for example) remain still out-of-reach of the current methods. There is no particular reason to believe that the behaviour concerning the distribution along such subsequences should be different than the overall behaviour (concerning the principal leading term N/2 in ( 1) and ( 2)), but it remains, for example, still a difficult open problem to determine (asymptotically) the number of 1's in the extraction of cubes in the Thue-Morse sequence.

In the sequel, let P (x) ∈ Z[x] denote an integer-valued polynomial that takes only positive values. A lower bound for the Thue-Morse sequence on general polynomial extractions is due to the author [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF]. He proved that

n<N t P (n) P N 4/(3 deg P +1) , N → ∞, (3) 
where the implied constant depends on P . This result improved on the lower bound obtaind by Dartyge and Tenenbaum [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF] who had

n<N t P (n) P N 2/(deg P )! , N → ∞.
In the present note we show (with a suitably modified application of the method used in [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF]) that for each sufficiently large integer N we can find an integer n such that the number of digital blocks of length d (overlapping or non-overlapping) of the form (q -1, . . . , q -1), i.e., blocks consisting of digits q -1 repeated d times, in P (n) is exactly N . The method of proof allows to give a lower estimate similar to (3) for polynomial extractions within the Rudin-Shapiro sequence.

Notation and Main Result

Let q ≥ 2 be an integer. For n ∈ N we write

i≥0 ε i (n)q i , ε i (n) ∈ {0, 1, . . . , q -1}
for its digital expansion in base q. For fixed q we denote by e d (n) the number of occurrences of the block (q -1, q -1, . . . , q -1) of length d ≥ 1 (possibly overlapping) in the base q representation of n, by U (n) the number of leading digits (q -1) in the expansion of n and by L(n) the number of trailing digits (q -1) in the representation of n. For instance, for q = 10 and n = 9184399992399 we have e

2 (n) = 4, U (n) = 1 and L(n) = 2.
Our main result is as follows:

Theorem 1. There is N 0 (q, P, d) > 1 such that for all N ≥ N 0 (q, P, d) there is an n with e d (P (n)) = N .

We also get a quantitative result if we look at arithmetic progressions.

Theorem 2. Let m ≥ 2. There exist C = C(q, P, d, m) > 0 and N 0 = N 0 (q, P, d, m) ≥ 1 such that for all a ∈ Z and all N ≥ N 0 ,

#{0 ≤ n < N : e d (P (n)) ≡ a mod m} ≥ CN 4/(3 deg P +1) .
The constant C in Theorem 2 is effectively computable. However, we refrain here from calculating this constant, and refer the interested reader to [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF] where such a calculation is presented. A statement about the polynomially rarefied Rudin-Shapiro sequence follows by taking q = d = m = 2.

Corollary 1. We have n<N r P (n) P N 4/(3 deg P +1) , N → ∞.

Proofs

Our results are based on a crucial lemma about polynomials with a certain sign structure in their l-th power [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF]. For the sake of completeness, we restate the proof here.

Lemma 1. For m 0 , m 1 , m 2 , m 3 ∈ R + and ≥ 1 denote t(x) = m 3 x 3 + m 2 x 2 -m 1 x + m 0 , T (x) = t(x) = 3 i=0 c i x i , (4) 
with c i = c i (m 3 , m 2 , m 1 , m 0 , ). If 1 ≤ m 0 , m 2 , m 3 < q, 0 < m 1 < -1 (6q) -,
then c i > 0 for i = 0, 2, 3, . . . , 3 and c i < 0 for i = 1. Moreover, for all i,

|c i | ≤ (4q) . (5) 
Proof. The bound (5) follows from easy considerations. For the first statement, observe that c 0 = m 0 > 0 and c 1 = -m 1 m -1 0 which is negative. Assume now that 2 ≤ i ≤ 3 and consider the coefficient of x i in

T (x) = (m 3 x 3 + m 2 x 2 + m 0 ) + r(x), (6) 
where

r(x) = j=1 j (-m 1 x) j m 3 x 3 + m 2 x 2 + m 0 -j = 3 -2 j=1 d j x j .
First, consider the first summand in [START_REF] Lothaire | Applied combinatorics on words[END_REF]. Since m 0 , m 2 , m 3 ≥ 1 the coefficient of x i in the expansion of (m 3 x 3 + m 2 x 2 + m 0 ) is ≥ 1. Note also that all the powers x 2 , x 3 , . . . , x 3 appear in the expansion of this term due to the fact that every i ≥ 2 allows at least one representation as i = 3i 1 + 2i 2 with non-negative integers i 1 , i 2 . We prove that for sufficiently small m 1 > 0 the coefficient of x i in the first summand in ( 6) is dominant. Suppose that m 1 < 1 so that m 1 > m j 1 for 2 ≤ j ≤ . Then

|d j | < 2 m 1 (3q) = (6q) m 1 , 1 ≤ j ≤ 3 -2.
Therefore, if m 1 < -1 (6q) -then all of x 2 , . . . , x 3 in the polynomial T (x) have positive coefficients.

In [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF] we considered the sum-of-digits function in base q which is a strictly q-additive function. Counting blocks, as we do here, is certainly not a q-additive process but we are not far off as seen in the following proposition.

Proposition 1. Let 1 ≤ q u-1 ≤ b < q u ≤ q k and a, k ≥ 1. (i) If b < q k-1 then e d (aq k + b) = e d (a) + e d (b). (ii) If k -u ≥ d then e d (aq k -b) = k -u -d + 1 + e d (a -1) + e d (q u -b) + min(d -1, L(a -1)) + min(d -1, U (q u -b)).
Proof. The inequality b < q k-1 guarantees that ε k-1 (aq k +b) = 0, so that there are no blocks (q-1, . . . , q-1) that span over the a and b parts, and (i) follows. For (ii), we first write

e d (aq k -b) = e d ((a -1)q k + q k -q u + q u -b) = e d (a -1)q k + k-u-1 i=0 (q -1)q i+u + q u -b = e d (a -1) + e d k-u-1 i=0 (q -1)q i + e d (q u -b) + min(d-1,L(a-1)) i=1 1 + min(d-1,U (q u -b)) i=1 1.
Moreover, we have

e d k-u-1 i=0 (q -1)q i = (k-u-1)-d+1 i=0 1 = k -u -d + 1
and (ii) follows.

Proofs of Theorems 1 and 2. We start the proofs of Theorems 1 and 2 with the easier case of monomials,

P (x) = x h , h ≥ 1,
and generalize in a second step to general polynomials P (x) ∈ Z[x]. We regard d and h as fixed quantities.

Lemma 1 shows that for all integers m 0 , m 1 , m 2 , m 3 with

q v-1 ≤ m 0 , m 2 , m 3 < q v , 1 ≤ m 1 < q v /(hq(6q) h ), (7) 
the polynomial T h (x) = (t(x)) h = P (t(x)) has all positive integer coefficients with the only exception of the coefficient of x 1 which is negative. Let v be an integer such that

q v ≥ 2hq(6q) h (8) 
and let k ∈ Z be such that k > hv + 2h + 1.

With these inequalities at hand, the interval for m 1 in ( 7) is non-empty and

q k-1 > q hv • q 2h ≥ (4q v ) h ≥ |c i |, for all i = 0, 1, . . . , 3h,
where c i is the coefficient of x i in T h (x) which only depends on m 0 , m 1 , m 2 and m 3 . We now use twice Proposition 1 (i) to get

e d (t(q k ) h ) = e d 3h i=2 c i q ik -|c 1 |q k + c 0 = 3h i=3 e d (c i ) + e d (c 2 q k -|c 1 |) + e d (c 0 ).
Let u be such that

q u-1 ≤ |c 1 | < q u . (10) 
Since

|c 1 | = hm 1 m h-1 0 ( 11 
)
we see that u only depends on m 0 , m 1 . Suppose that, in addition to [START_REF]The Online Encyclopedia of Integer Sequences (OEIS)[END_REF] we also have

k ≥ d + u. (12) 
Then by Proposition 1 (ii) we get

e d (t(q k ) h ) = 3h i=3 e d (c i ) + e d (c 0 ) + k -u -d + 1 + e d (c 2 -1) + e d (q u -|c 1 |) + min (d -1, L(c 2 -1)) + min (d -1, U (q u -|c 1 |)) which means that e d (t(q k ) h ) = k + M with M = M (m 0 , m 1 , m 2 , m 3 
). Once we fix m 0 , m 1 , m 2 and m 3 (with fixed d and h) in the ranges [START_REF] Mauduit | Prime numbers along Rudin-Shapiro sequences[END_REF], the quantity M does not depend on k and is constant whenever k satisfies ( 9) and ( 12), say, k ≥ k 0 . Since hv + 2h + 1 < hv + 2h + d + 1, and by ( 10), ( 11) and ( 7),

q u-1 < h q v hq(6q) h • q v(h-1) < q vh-1 ,
we see that we can take

k 0 = hv + 2h + d + 1. ( 13 
)
Summing up, given h, q and d we choose v and integers m 0 , m 1 , m 2 , m 3 according to ( 8) and ( 7), set k 0 as given in (13), and find that for all N = M + k ≥ M + k 0 =: N 0 we have e d (n h ) = N with n = t(q k ). This already proves Theorem 1 for the case of monomials P

(x) = x h . Now, since e d (t(q k ) h ), for k = k 0 , k 0 + 1, . . . , k 0 + m -1, (14) 
runs through a complete set of residues mod m, we hit a fixed arithmetic progression mod m for some k with k 0 ≤ k ≤ k 0 + m -1. Therefore, by ( 7) we find at least (q v -q v-1 ) 3 (q v /(hq(6q) h ) -1) q,h q 4v (15)

integers n that by ( 9), ( 12) and ( 14) are all smaller than

q v • q 3(hv+2h+d+m) = q 3(2h+d+m) • q v(3h+1)
and satisfy e d (n h ) ≡ a mod m for fixed a and m. Note that by our construction all these integers are distinct. We denote

N 0 = N 0 (q, h, d, m) = q 3(2h+d+m) • q v0(3h+1) , where v 0 = log q 2hq(6q) h = O q,h (1). 
Then for all N ≥ N 0 we find v ≥ v 0 with

q 3(2h+d+m) • q v(3h+1) ≤ N < q 3(2h+d+m) • q (v+1)(3h+1) . (16) 
By ( 15) and (16), we finally find at least c N 4/(3h+1) integers n with 0 ≤ n < N and e d (n h ) ≡ a mod m, where the constant c depends at most on q, h, d and m. We therefore get the statement of Theorem 2 for the case of monomials P (x) = x h with h ≥ 1.

Finally, let P (x) = a h x h + • • • + a 0 ∈ Z[x]. Without loss of generality we may assume that all a i are positive, since otherwise there exists δ = δ(P ) depending only on P such that P (x + δ) has all positive coefficients. By Lemma 1 we see that the polynomial P (t(x)) has all positive coefficients with the exception of a negative coefficient to the power x 1 . Choosing k sufficiently large, e.g., k > hv + 2h + d + log q max 0≤i≤h a i , we can again split the digital structure of P (t(q k )) exactly as above and can apply the same reasoning to obtain the general statements of Theorems 1 and 2.

Concluding remarks

We conclude this note with two open questions that naturally arise in this context: (i) Is it possible to extend Theorem 1 to arbitrary blocks of size d?

(ii) Can we sharpen the result in Corollary 1 for P (n) = n 2 ? Numerical simulations suggest that there exists c 3 > 0 and 0 < α < 1 such that for

N ≥ N 0 , n<N r n 2 < N 2 -c 3 N α .
This is supported by the inequalities (1).
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 1 Example 3.3.1]. The most common one (for combinatorialists on words) is via the morphism a → ab, b → ac, c → db, d → dc and the mapping a → 0, b → 0, c → 1, d → 1,