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Abstract. The aim of the present article is twofold. We first give a sur-
vey on recent developments on the distribution of symbols in polynomial
subsequences of the Thue–Morse sequence t = (t(n))n≥0 by highlighting
effective results. Secondly, we give explicit bounds on

min{n : (t(pn), t(qn)) = (ε1, ε2)},

for odd integers p, q, and on

min{n : (t(nh1), t(nh2)) = (ε1, ε2)}

where h1, h2 ≥ 1, and (ε1, ε2) is one of (0, 0), (0, 1), (1, 0), (1, 1).
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1 Introduction

The Thue–Morse sequence

t = (t(n))n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .

can be defined via

t(n) = s2(n) mod 2, (1)

where s2(n) denotes the number of one bits in the binary expansion of n, or
equivalently, the sum of digits of n in base 2. This sequence can be found in
various fields of mathematics and computer science, such as combinatorics on
words, number theory, harmonic analysis and differential geometry. We refer the
reader to the survey articles of Allouche and Shallit [2], and of Mauduit [14]
for a concise introduction to this sequence. As is well-known, Thue–Morse is
2-automatic and can be generated by the morphism 0 7→ 01, 1 7→ 10. It is also
the prime example of an overlapfree sequence.
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The overall distribution of the symbols 0 and 1 in Thue–Morse is trivial since
the sequence consists exclusively of consecutive blocks of the forms 01 and 10,
thus there are “as many 0’s as 1’s” in the sequence. The investigation of Thue–
Morse along subsequences can be said to have started with an influential paper
by Gelfond in 1967/68 [9]. He proved, via exponential sums techniques, that t
is uniformly distributed along arithmetic progressions, namely,

#{n < N : t(an+ b) = ε} ∼ N

2
, (ε = 0 or 1)

with an explicit error term. Gelfond’s result shows that there are “as many 0’s as
1’s” in the sequence also regarding arithmetic progressions. His result, however,
gives no information on how long one actually has to wait to “see” the first, say,
“1” along a specific arithmetic progression. Newman [19] showed that there is a
weak preponderance of the 0’s over the 1’s in the sequence of the multiples of
three. More precisely, he showed that

#{n < N : t(3n) = 0} =
N

2
+ C(N),

with c′1N
log4 3 < C(N) < c′2N

log4 3 for all N ≥ 1 and certain positive constants
c′1, c

′
2. For the multiples of three one has to wait for 7 terms to “see the first 1”,

i.e.,

min{n : t(3n) = 1} = 7.

Morgenbesser, Shallit and Stoll [18] proved that for p ≥ 1,

min{n : t(pn) = 1} ≤ p+ 4,

and this becomes sharp for p = 22r−1 for r ≥ 1 (Note that 3 = 22·1−1 is exactly
of that form). A huge literature is nowadays available for classes of arithmetic
progressions where such Newman-type phenomena exist and many generaliza-
tions have been considered so far (see [3, 4, 8, 10, 12, 22] and the references given
therein). Still, a full classification is not yet at our disposal.

Most of the results that hold true for Thue–Morse in the number-theoretic
setting of (1) have been proven for the sum of digits function in base q, where q
is an integer greater than or equal to 2, and where the reduction in (1) is done
modulo an arbitrary integer m ≥ 2. We refrain here from the general statements
and refer the interested readers to the original research papers.

Following the historical line, Gelfond [9] posed two challenging questions
concerning the distribution of the sum of digits function along primes and along
polynomial values instead of looking at linear subsequences. A third question was
concerned with the simultaneous distribution when the sum of digits is taken
to different bases; this question has been settled by Kim [13]. In recent years,
this area of research gained much momentum due to an article by Mauduit and
Rivat [15] who answered Gelfond’s question for primes with an explicit error
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term. In a second paper [16], they also answered Gelfond’s question for the
sequence of squares. Their result implies that

#{n < N : t(n2) = ε} ∼ N

2
.

In a very recent paper, Drmota, Mauduit and Rivat [6] showed that t along
squares gives indeed a normal sequence in base 2 meaning that each binary block
appears with the expected frequency. This quantifies a result of Moshe [17] who
answered a question posed by Allouche and Shallit [1, Problem 10.12.7] about
the complexity of Thue–Morse along polynomial extractions.

We are still very far from understanding

#{n < N : t(P (n)) = ε},

where P (x) ∈ Z[x] is a polynomial of degree ≥ 3. Drmota, Mauduit and Rivat [7]
obtained an asymptotic formula for #{n < N : sq(P (n)) = ε (mod m)} when-
ever q is sufficiently large in terms of the degree of P . The case of Thue–Morse
is yet out of reach of current technology. The currently best result is due to the
author [23], who showed that there exists a constant c = c(P ) depending only
on the polynomial P such that

#{n < N : t(P (n)) = ε} ≥ cN4/(3 degP+1). (2)

This improves on a result of Dartyge and Tenenbaum [5] who had N2/(degP )!

for the lower bound. The method of proof for (2) is constructive and gives an
explicit bound on the minimal non-trivial n such that t(nh) = ε for fixed h ≥ 1.
Since t(nh) = 1 for all n = 2r, and t(0h) = 0, we restrict our attention to

A = {n : n 6= 2r, r ≥ 0} = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, . . .}.

From the proof of (2) follows that

min(n ∈ A : t(nh) = ε) ≤ 64h+1
(
8h · 12h

)3h+1
.

Hence, there exists an absolute constant c1 > 0 such that

min(n ∈ A : t(nh) = ε) ≤ exp(c1h
2). (3)

With some extra work, a similar result can be obtained for a general polyno-
mial P (n) instead of nh, where there corresponding constant will depend on the
coefficients of P .

The joint distribution of the binary digits of integer multiples has been
studied by J. Schmid [20] and in the more general setting of polynomials by
Steiner [21]. The asymptotic formulas do not imply effective bounds on the first
n that realizes such a system and it is the aim of this paper to prove effective
bounds in the case of two equations for integer multiples and for monomials.

Our first result is as follows.
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Theorem 1. Let p > q ≥ 1 be odd integers. Then there exists an absolute
constant c2 > 0 such that

min(n : t(pn) = ε1, t(qn) = ε2) ≤ exp(c2 log p) (ε1, ε2 ∈ {0, 1}).

Remark 1. Note that for p = 2r+1 with r ≥ 1 we have t(pn) = 0 for all n < p−1,
so that there is no absolute bound for the minimal n.

There are examples that show that sometimes one has to “wait” quite some
time to see all of the four possibilities for (ε1, ε2) when the extraction is done
along two monomial sequences. For instance, we have

min{n ∈ A : t(n130) = ε1)} ≤ 7 and min{n ∈ A : t(n53) = ε2)} ≤ 5

for ε1, ε2 = 0, 1 but

min
{
n : (t(n130), t(n53)) = (0, 0)

}
= 113.

The construction that we will use to prove Theorem 1 will not be useful to
study the minimal n along polynomial subsequences since in this case we would
need to keep track of the binary digits sum of various binomial coefficients.
Instead, we will use ideas from work of Hare, Laishram and the author [11] to
show the following result.

Theorem 2. Let h1 > h2 ≥ 1 be integers. Then there exists an absolute con-
stant c3 > 0 such that

min(n ∈ A : t(nh1) = ε1, t(n
h2) = ε2) ≤ exp(c3h

3
1) (ε1, ε2 ∈ {0, 1}).

Remark 2. The method also allows to treat general monic polynomials P1(x),
P2(x) ∈ Z[x] of different degree h1, h2 in place of xh1 , xh2 . Even more generally,
we can deal with non-monic polynomials P1(x), P2(x) ∈ Z[x] provided h1 is
odd. As we will see in the proof (compare with the remark after (14)), the latter
condition relies on the fact that for odd h the congruence xh ≡ a (mod 16)
admits a solution mod 16 for each odd a, while this is not true in general if h is
even.

We write log2 for the logarithm to base 2. Moreover, for n =
∑`

j=0 nj2
j with

nj ∈ {0, 1} and n` 6= 0 we write (n`, n`−1, · · · , n1, n0)2 for its digital represen-
tation in base 2 and set ` = `(n) for its length. To simplify our notation, we
allow to fill up by a finite number of 0’s to the left, i.e., (n`n`−1 · · ·n1n0)2 =
(0n`n`−1 · · ·n1n0)2 = (0 · · · 0n`n`−1 · · ·n1n0)2.

The paper is structured as follows. In Section 2 we prove Theorem 1 and in
Section 3 we show Theorem 2.
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2 Thue–Morse at distinct multiples

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Let p, q be odd positive integers with p > q ≥ 1 and let (ε1, ε2) be
one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min {n : (t(pn), t(qn)) = (ε1, ε2)} ≤ Cε1,ε2(p, q),

where

C0,0(p, q) = C1,1(p, q) = 4p, C0,1(p, q) =
223p11

(p− q)6
C1,0(p, q) =

26p3

(p− q)2
.

Proof. Recall that for 1 ≤ b < 2k and a, k ≥ 1, we have

s2(a2k + b) = s2(a) + s2(b), s2(a2k − b) = s2(a− 1) + k − s2(b− 1). (4)

In the sequel we will make frequent use of these splitting formulas. We first
deal with the two cases when (ε1, ε2) is one of (0, 0), (1, 1). If 2k > p > q then
s2(p(2k − 1)) = s2(q(2k − 1)) = k. Moreover, since k ≡ 0 or 1 mod 2 and

2k − 1 ≤ 2log p/ log 2+2 − 1 = 4p− 1 < 4p,

we get that C0,0(p, q), C1,1(p, q) ≤ 4p. Finding explicit bounds for C0,1(p, q) and
C1,0(p, q) is more involved. To begin with, we first claim that there exists n1 ≥ 1
with the following two properties:

(a) `(pn1) > `(qn1),
(b) pn1 ≡ 1 mod 4.

As for (a), we need to find two integers a, n1 such that 2a ≤ pn1 and 2a > qn1.
This is equivalent to

2a

p
≤ n1 <

2a

q
. (5)

For odd k, n either kn ≡ 1 (mod 4) or k(n + 2) ≡ 1 (mod 4), so provided

2a
(

1
q −

1
p

)
≥ 4, we can find an odd n1 that satisfies both (a) and (b). By taking

a to be the unique integer with

4pq

p− q
≤ 2a < 2 · 4pq

p− q
, (6)

we get an n1 with

n1 <
8p

p− q
.

Now, define n2 = 2`(pn1) + 1. Since both p and n1 are odd we have n2 ≤ pn1.
Then

s2(pn1n2) = s2(pn12`(pn1) + pn1) = 2s2(pn1)− 1 ≡ 1 (mod 2), (7)
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since there is exactly one carry propagation from the most significant digit of
pn1 to the digit at digit place `(pn1) of pn12`(pn1) which stops immediately after
one step because of property (b). On the other hand, (a) implies that

s2(qn1n2) = s2(qn12`(pn1) + qn1) = 2s2(qn1) ≡ 0 (mod 2), (8)

because the terms qn1 and qn12`(pn1) do not interfere and there is therefore no
carry propagation while adding these two terms. We therefore can set

n = n1n2 ≤
(

8p

p− q

)2

p

to get that C1,0(p, q) ≤ 26 · p3

(p−q)2 . For (ε1, ε2) = (0, 1), take m to be the unique

odd integer with
pn1n2 < 2m ≤ 4pn1n2

and put
n3 = 22m + 2m − 1 ≤ 2(4pn1n2)2 ≤ 25(pn1)4.

Then by (7),

s2(pn1n2n3) = s2 ((pn1n22m + pn1n2)2m − pn1n2)

= s2 (pn1n22m + pn1n2 − 1) +m− s2 (pn1n2 − 1)

= s2 (pn1n2 − 1) + s (pn1n2) +m− s2 (pn1n2 − 1)

≡ m+ 1 ≡ 0 (mod 2).

A similar calculation shows by (8) that

s (qn1n2n3) ≡ m ≡ 1 (mod 2).

We set n = n1n2n3 and get

n ≤
(

8p

p− q

)2

p · 25p4 · (8p)4

(p− q)4
= 223 · p11

(p− q)6
.

This completes the proof. ut

Proof (Theorem 1). This follows directly from Lemma 1 and

223 · p11

(p− q)6
≤ 217p11.

ut

3 Thue–Morse at two polynomials

This section is devoted to the proof of a technical result which implies Theorem 2.
Considering the extractions of Thue–Morse along nh1 and nh2 , it is simple to
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get two and not too difficult to get three out of the four possibilities for (ε1, ε2).
However, to ensure that we see all of the four possibilities, we need a rather
subtle construction. The difficulty is similar to that one to get C0,0(p, q) in the
proof of Theorem 1. The idea is to shift two specific blocks against each other
while all other terms in the expansions are non-interfering. Via this procedure,
we will be able to keep track of the number of carry propagations. In the proof
of Theorem 1 we have used the blocks pn1 and qn1. In the following, we will
make use of u1 = 9 = (1001)2 and u2 = 1 = (0001)2. Then

s2(u1 + u2) = 2,

s2(u1 + 2u2) = 3,

s2(u1 + 22u2) = 3,

s2(u1 + 23u2) = 2,

and mod 2 we get the sequence (0, 1, 1, 0). These particular expansions and
additions will be of great importance in our argument (compare with (16)–(19)).

Lemma 2. Let h1, h2 be positive integers with h1 > h2 ≥ 1 and let (ε1, ε2) be
one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min
{
n ∈ A : (t(nh1), t(nh2)) = (ε1, ε2)

}
≤ C,

where

C = 323h1+5

(
1

15

(
150

h1
8h1

)2
)5h2

1+h1−5

.

Proof. Let h ≥ 1 and put

l =

⌊
log2

(
1

15

(
150

h
8h
)2
)⌋

+ 1, (9)

a = (2lh − 1)24 + 1,

b =

⌊
150

h
8ha1−

1
h

⌋
,

M =
⌊
15a1−

1
h

⌋
+ 1,

k = lh2 + 3h+ 4− l.

It is straightforward to check that for all h ≥ 1, we have

l ≥ 12, a ≥ 65521, b ≥ 1200, M ≥ 16, k ≥ 7. (10)

Obviously, we have b ≥M . Moreover,

a = 16 · 2lh − 15 ≥ 15 · 2lh ≥
(

150

h
8h
)h
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and therefore a ≥ b. Furthermore, for h ≥ 2, we have aM > b2 since by

a >

(
1

15

(
150

h
8h
)2
)h

we have

aM − b2 > a · 15a1−
1
h −

(
150

h
8ha1−

1
h

)2

> 0.

Let
T (x) = ax5 + bx4 +Mx3 +Mx2 − x+M

and write T (x)h =
∑5h

i=0 αix
i. Obviously, α0 > 0 and α1 < 0. We claim that for

h ≥ 1 we have αi > 0 for 2 ≤ i ≤ 5h. To see this we write

T (x)h =
(
ax5 + bx4 +Mx3 +Mx2 +M

)h
+ r(x), (11)

with

r(x) =

h∑
j=1

(
h

j

)
(−x)j

(
ax5 + bx4 +Mx3 +Mx2 +M

)h−j
=

5(h−1)∑
j=1

djx
j .

Since a ≥ b ≥ M the coefficient of xi in the first term in (11) is ≥ Mh. On the
other hand,

|dj | < h2h(5a)h−1,

and

Mh ≥
(

15a1−1/h
)h

>
(

3 · 5a1−1/h
)h

>
(

2h1/h(5a)1−1/h
)h

= |dj |

which proves the claim. Next, we need a bound on he size of αi. The coefficients
αi, 0 ≤ i ≤ 5h−2, are bounded by the corresponding coefficients in the expansion
of (ax5 + bx4 +M(x3 + x2 + x+ 1))h. Since aM > b2 and M ≤ 16a1−1/h, each
of these coefficients is bounded by(

ah−1M
)
· 6h < ah−1M8h ≤ ah− 1

h · 16 · 8h,

and therefore

|αi| ≤ ah−
1
h · 16 · 8h, i = 0, 1, 2, . . . , 5h− 2. (12)

Moreover, we have

α5h−1 = hbah−1 =

⌊
150

h
8ha1−

1
h

⌋
hah−1 (13)

and
149 · 8hah− 1

h ≤ α5h−1 ≤ 150 · 8hah− 1
h ,
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which is true for all a ≥ 1 and h ≥ 1. Note that both the bound in (12) and
the coefficient α5h−1 are increasing functions in h. From now on, suppose that
h ≥ 2. We further claim that

ah−
1
h · 16 · 8h < 2k, 9 · 2k ≤ α5h−1 < 10 · 2k, (14)

which will give us the wanted overlap for the digital blocks of α5h−1 and α5h.
By (14) the binary expansion of α5h−1 is (1001 · · · )2 and interferes with the
digital block coming from α5h = ah which is (· · · 0001)2 since a ≡ 1 (mod 16).
To prove (14), we show a stronger inequality that in turn implies (14), namely,

144 · 8hah− 1
h < 9 · 2k ≤ 149 · 8hah− 1

h . (15)

Passing to logarithms, this is equivalent to

(k − 3h− 4)− δ ≤
(
h− 1

h

)
log2 a < k − 3h− 4

with

δ = log2 149− log2 9− 4 = 0.04924 · · · > 1

25
.

We rewrite(
h− 1

h

)
log2 a =

(
h− 1

h

)(
lh+ log2

(
1−

(
1

2lh−4
− 1

2lh

)))
,

which on the one hand shows that(
h− 1

h

)
log2 a <

(
h− 1

h

)
lh = lh2 − l = k − 3h− 4,

and on the other hand by −x/(1− x) < log(1− x) < 0 for 0 < x < 1 that(
h− 1

h

)
log2 a > lh2 − l − 1

log 2
·

(24 − 1) ·
(
h− 1

h

)
2lh − 24 + 1

.

Finally, we easily check that for all h ≥ 2 and l ≥ 5 we have

1

log 2
·

15
(
h− 1

h

)
2lh − 15

<
1

25
,

which finishes the proof of (15) and thus of (14).
After this technical preliminaries we proceed to the evaluation of the sum

of digits. First note that for all h ≥ 1 by construction none of n = T (2k),
T (2k+1), T (2k+2), T (2k+3) is a power of two and therefore n ∈ A in these four
cases. Let h = h1 ≥ 2 and define a, b,M, l, k according to (9). To begin with,
by (12), (13), (14) and the splitting formulas (4), we calculate

s2(T (2k)h1) = s2

(
5h1∑
i=0

αi2
ik

)
= A1 − 1 +A2 + k +A3, (16)
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where

A1 = s2(α5h1
) + s2(α5h1−1),

A2 = s2

(
5h1−2∑
i=3

αi

)
+ s2(α0),

A3 = s2(α2 − 1)− s2(α1 − 1).

Note that the summand k in (16) comes from formula (4) due to the negative
coefficient α1, and the −1 comes from the addition of (· · · 0001)2 and (1001)2
(the ending and starting blocks corresponding to α5h1

and α5h1−1) which gives
rise to exactly one carry. A similar calculation shows that

s2(T (2k+1)h1) = A1 +A2 + (k + 1) +A3, (17)

s2(T (2k+2)h1) = A1 +A2 + (k + 2) +A3, (18)

s2(T (2k+3)h1) = A1 +A2 − 1 + (k + 3) +A3. (19)

In (17) we add (1001)2 to (· · · 00010)2 which gives no carry. The same happens
for the addition of (1001)2 to (· · · 000100)2 in (18). Finally, in (19) we again have
exactly one carry in the addition of (1001)2 to (· · · 0001000)2. If we look mod 2
this shows that(

t(T (2k)h1), t(T (2k+1)h1), t(T (2k+2)h1), t(T (2k+3)h1)
)

is either (0, 0, 1, 1) or (1, 1, 0, 0). For h2 < h1 with h2 ≥ 1 all coefficients are

non-interfering. To see this, consider the coefficients of T (x)h2 =
∑5h2

i=0 α
′
ix

i.

By (12), they are clearly bounded in modulus by ah1− 1
h1 · 16 · 8h1 < 2k for

i = 0, 1, 2, . . . , 5h2 − 2. Also, by (10) and h1 ≥ 2,

α′5h2−1 ≤ 150 · 8h2ah2− 1
h2 <

150

8
· 8h1ah1−1 < ah1− 1

h1 · 16 · 8h1 < 2k,

and thus we don’t have carry propagations in the addition of terms in the ex-
pansion of T (2k)h2 . Similarly, we show that(

t(T (2k)h2), t(T (2k+1)h2), t(T (2k+2)h2), t(T (2k+3)h2)
)

is either (0, 1, 0, 1) or (1, 0, 1, 0). This yields in any case that

{(t(T (2k+i)h1), t(T (2k+i)h2)) : i = 0, 1, 2, 3} = {(0, 0), (0, 1), (1, 0), (1, 1)},

which are the four desired values. Finally,

T (2k+3) ≤ 25(k+3) · 2lh1+4

≤ 2l(5h
2
1+h1−5) · 25(3h1+4)+4

≤ 323h1+5

(
1

15

(
150

h1
8h1

)2
)5h2

1+h1−5

,

which completes the proof. ut
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Proof (Theorem 2). This follows from Lemma 2 and

323h1+5

(
1

15

(
150

h1
8h1

)2
)5h2

1+h1−5

≤ exp
(
c3h

3
1

)
for some suitable positive constant c3. ut
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