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Introduction

The Thue-Morse sequence t = (t(n)) n≥0 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . can be defined via

t(n) = s 2 (n) mod 2, (1) 
where s 2 (n) denotes the number of one bits in the binary expansion of n, or equivalently, the sum of digits of n in base 2. This sequence can be found in various fields of mathematics and computer science, such as combinatorics on words, number theory, harmonic analysis and differential geometry. We refer the reader to the survey articles of Allouche and Shallit [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF], and of Mauduit [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF] for a concise introduction to this sequence. As is well-known, Thue-Morse is 2-automatic and can be generated by the morphism 0 → 01, 1 → 10. It is also the prime example of an overlapfree sequence.

Work supported by the ANR-FWF bilateral project MuDeRa "Multiplicativity: Determinism and Randomness" (France-Austria) and the joint project "Systèmes de numération : Propriétés arithmétiques, dynamiques et probabilistes" of the Université de Lorraine and the Conseil Régional de Lorraine.

The overall distribution of the symbols 0 and 1 in Thue-Morse is trivial since the sequence consists exclusively of consecutive blocks of the forms 01 and 10, thus there are "as many 0's as 1's" in the sequence. The investigation of Thue-Morse along subsequences can be said to have started with an influential paper by Gelfond in 1967/68 [START_REF] Gelfond | Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF]. He proved, via exponential sums techniques, that t is uniformly distributed along arithmetic progressions, namely,

#{n < N : t(an + b) = ε} ∼ N 2 , (ε = 0 or 1)
with an explicit error term. Gelfond's result shows that there are "as many 0's as 1's" in the sequence also regarding arithmetic progressions. His result, however, gives no information on how long one actually has to wait to "see" the first, say, "1" along a specific arithmetic progression. Newman [START_REF] Newman | On the number of binary digits in a multiple of three[END_REF] showed that there is a weak preponderance of the 0's over the 1's in the sequence of the multiples of three. More precisely, he showed that

#{n < N : t(3n) = 0} = N 2 + C(N ), with c 1 N log 4 3 < C(N ) < c 2 N log 4 3
for all N ≥ 1 and certain positive constants c 1 , c 2 . For the multiples of three one has to wait for 7 terms to "see the first 1", i.e., min{n : t(3n) = 1} = 7.

Morgenbesser, Shallit and Stoll [START_REF] Morgenbesser | Thue-Morse at multiples of an integer[END_REF] proved that for p ≥ 1, min{n : t(pn) = 1} ≤ p + 4, and this becomes sharp for p = 2 2r -1 for r ≥ 1 (Note that 3 = 2 2•1 -1 is exactly of that form). A huge literature is nowadays available for classes of arithmetic progressions where such Newman-type phenomena exist and many generalizations have been considered so far (see [START_REF] Boreico | On a conjecture of Dekking: the sum of digits of even numbers[END_REF][START_REF] Coquet | A summation formula related to the binary digits[END_REF][START_REF] Drmota | Rarified sums of the Thue-Morse sequence[END_REF][START_REF] Goldstein | The fractal structure of rarefied sums of the Thue-Morse sequence[END_REF][START_REF] Hofer | Coquet-type formulas for the rarefied weighted Thue-Morse sequence[END_REF][START_REF] Stoll | Multi-parametric extensions of Newman's phenomenon[END_REF] and the references given therein). Still, a full classification is not yet at our disposal.

Most of the results that hold true for Thue-Morse in the number-theoretic setting of (1) have been proven for the sum of digits function in base q, where q is an integer greater than or equal to 2, and where the reduction in (1) is done modulo an arbitrary integer m ≥ 2. We refrain here from the general statements and refer the interested readers to the original research papers. Following the historical line, Gelfond [START_REF] Gelfond | Sur les nombres qui ont des propriétés additives et multiplicatives données[END_REF] posed two challenging questions concerning the distribution of the sum of digits function along primes and along polynomial values instead of looking at linear subsequences. A third question was concerned with the simultaneous distribution when the sum of digits is taken to different bases; this question has been settled by Kim [START_REF] Kim | On the joint distribution of q-additive functions in residue classes[END_REF]. In recent years, this area of research gained much momentum due to an article by Mauduit and Rivat [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] who answered Gelfond's question for primes with an explicit error term. In a second paper [START_REF] Mauduit | La somme des chiffres des carrés[END_REF], they also answered Gelfond's question for the sequence of squares. Their result implies that

#{n < N : t(n 2 ) = ε} ∼ N 2 .
In a very recent paper, Drmota, Mauduit and Rivat [START_REF] Drmota | The Thue-Morse sequence along squares is normal[END_REF] showed that t along squares gives indeed a normal sequence in base 2 meaning that each binary block appears with the expected frequency. This quantifies a result of Moshe [START_REF]On the subword complexity of Thue-Morse polynomial extractions[END_REF] who answered a question posed by Allouche and Shallit [1, Problem 10.12.7] about the complexity of Thue-Morse along polynomial extractions.

We are still very far from understanding #{n < N : t(P (n)) = ε}, where P (x) ∈ Z[x] is a polynomial of degree ≥ 3. Drmota, Mauduit and Rivat [START_REF] Drmota | The sum of digits function of polynomial sequences[END_REF] obtained an asymptotic formula for #{n < N : s q (P (n)) = ε (mod m)} whenever q is sufficiently large in terms of the degree of P . The case of Thue-Morse is yet out of reach of current technology. The currently best result is due to the author [START_REF] Stoll | The sum of digits of polynomial values in arithmetic progressions[END_REF], who showed that there exists a constant c = c(P ) depending only on the polynomial P such that

#{n < N : t(P (n)) = ε} ≥ cN 4/(3 deg P +1) . (2) 
This improves on a result of Dartyge and Tenenbaum [START_REF] Dartyge | Congruences de sommes de chiffres de valeurs polynomiales[END_REF] who had N 2/(deg P )!

for the lower bound. The method of proof for ( 2) is constructive and gives an explicit bound on the minimal non-trivial n such that t(n h ) = ε for fixed h ≥ 1. Since t(n h ) = 1 for all n = 2 r , and t(0 h ) = 0, we restrict our attention to A = {n : n = 2 r , r ≥ 0} = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, . . .}.

From the proof of (2) follows that

min(n ∈ A : t(n h ) = ε) ≤ 64 h+1 8h • 12 h 3h+1 .
Hence, there exists an absolute constant

c 1 > 0 such that min(n ∈ A : t(n h ) = ε) ≤ exp(c 1 h 2 ). (3) 
With some extra work, a similar result can be obtained for a general polynomial P (n) instead of n h , where there corresponding constant will depend on the coefficients of P .

The joint distribution of the binary digits of integer multiples has been studied by J. Schmid [START_REF] Schmid | The joint distribution of the binary digits of integer multiples[END_REF] and in the more general setting of polynomials by Steiner [START_REF] Steiner | On the joint distribution of q-additive functions on polynomial sequences[END_REF]. The asymptotic formulas do not imply effective bounds on the first n that realizes such a system and it is the aim of this paper to prove effective bounds in the case of two equations for integer multiples and for monomials.

Our first result is as follows.

Theorem 1. Let p > q ≥ 1 be odd integers. Then there exists an absolute constant c 2 > 0 such that min(n :

t(pn) = ε 1 , t(qn) = ε 2 ) ≤ exp(c 2 log p) (ε 1 , ε 2 ∈ {0, 1}).
Remark 1. Note that for p = 2 r +1 with r ≥ 1 we have t(pn) = 0 for all n < p-1, so that there is no absolute bound for the minimal n.

There are examples that show that sometimes one has to "wait" quite some time to see all of the four possibilities for (ε 1 , ε 2 ) when the extraction is done along two monomial sequences. For instance, we have

min{n ∈ A : t(n 130 ) = ε 1 )} ≤ 7 and min{n ∈ A : t(n 53 ) = ε 2 )} ≤ 5 for ε 1 , ε 2 = 0, 1 but min n : (t(n 130 ), t(n 53 )) = (0, 0) = 113.
The construction that we will use to prove Theorem 1 will not be useful to study the minimal n along polynomial subsequences since in this case we would need to keep track of the binary digits sum of various binomial coefficients. Instead, we will use ideas from work of Hare, Laishram and the author [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF] to show the following result.

Theorem 2. Let h 1 > h 2 ≥ 1 be integers. Then there exists an absolute constant c 3 > 0 such that

min(n ∈ A : t(n h1 ) = ε 1 , t(n h2 ) = ε 2 ) ≤ exp(c 3 h 3 1 ) (ε 1 , ε 2 ∈ {0, 1}).
Remark 2. The method also allows to treat general monic polynomials P 1 (x),

P 2 (x) ∈ Z[x] of different degree h 1 , h 2 in place of x h1 , x h2 .
Even more generally, we can deal with non-monic polynomials P 1 (x), P 2 (x) ∈ Z[x] provided h 1 is odd. As we will see in the proof (compare with the remark after ( 14)), the latter condition relies on the fact that for odd h the congruence x h ≡ a (mod 16) admits a solution mod 16 for each odd a, while this is not true in general if h is even.

We write log 2 for the logarithm to base 2. Moreover, for n = j=0 n j 2 j with n j ∈ {0, 1} and n = 0 we write (n , n -1 , • • • , n 1 , n 0 ) 2 for its digital representation in base 2 and set = (n) for its length. To simplify our notation, we allow to fill up by a finite number of 0's to the left, i.e., (n

n -1 • • • n 1 n 0 ) 2 = (0n n -1 • • • n 1 n 0 ) 2 = (0 • • • 0n n -1 • • • n 1 n 0 ) 2 .
The paper is structured as follows. In Section 2 we prove Theorem 1 and in Section 3 we show Theorem 2.

Thue-Morse at distinct multiples

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Let p, q be odd positive integers with p > q ≥ 1 and let (ε 1 , ε 2 ) be one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min {n : (t(pn), t(qn)) = (ε 1 , ε 2 )} ≤ C ε1,ε2 (p, q), where C 0,0 (p, q) = C 1,1 (p, q) = 4p, C 0,1 (p, q) = 2 23 p 11 (p -q) 6 C 1,0 (p, q) = 2 6 p 3 (p -q) 2 .
Proof. Recall that for 1 ≤ b < 2 k and a, k ≥ 1, we have

s 2 (a2 k + b) = s 2 (a) + s 2 (b), s 2 (a2 k -b) = s 2 (a -1) + k -s 2 (b -1). ( 4 
)
In the sequel we will make frequent use of these splitting formulas. We first deal with the two cases when (ε 1 , ε 2 ) is one of (0, 0), [START_REF] Allouche | Automatic Sequences. Theory, Applications[END_REF][START_REF] Allouche | Automatic Sequences. Theory, Applications[END_REF].

If 2 k > p > q then s 2 (p(2 k -1)) = s 2 (q(2 k -1)) = k. Moreover, since k ≡ 0 or 1 mod 2 and 2 k -1 ≤ 2 log p/ log 2+2 -1 = 4p -1 < 4p,
we get that C 0,0 (p, q), C 1,1 (p, q) ≤ 4p. Finding explicit bounds for C 0,1 (p, q) and C 1,0 (p, q) is more involved. To begin with, we first claim that there exists n 1 ≥ 1 with the following two properties:

(a) (pn 1 ) > (qn 1 ), (b) pn 1 ≡ 1 mod 4.

As for (a), we need to find two integers a, n 1 such that 2 a ≤ pn 1 and 2 a > qn 1 . This is equivalent to

2 a p ≤ n 1 < 2 a q . ( 5 
)
For odd k, n either kn ≡ 1 (mod 4) or k(n + 2) ≡ 1 (mod 4), so provided 2 a 1 q -1 p ≥ 4, we can find an odd n 1 that satisfies both (a) and (b). By taking a to be the unique integer with

4pq p -q ≤ 2 a < 2 • 4pq p -q , (6) 
we get an n 1 with

n 1 < 8p p -q .
Now, define n 2 = 2 (pn1) + 1. Since both p and n 1 are odd we have n 2 ≤ pn 1 . Then

s 2 (pn 1 n 2 ) = s 2 (pn 1 2 (pn1) + pn 1 ) = 2s 2 (pn 1 ) -1 ≡ 1 (mod 2), (7) 
since there is exactly one carry propagation from the most significant digit of pn 1 to the digit at digit place (pn 1 ) of pn 1 2 (pn1) which stops immediately after one step because of property (b). On the other hand, (a) implies that

s 2 (qn 1 n 2 ) = s 2 (qn 1 2 (pn1) + qn 1 ) = 2s 2 (qn 1 ) ≡ 0 (mod 2), (8) 
because the terms qn 1 and qn 1 2 (pn1) do not interfere and there is therefore no carry propagation while adding these two terms. We therefore can set

n = n 1 n 2 ≤ 8p p -q 2 p to get that C 1,0 (p, q) ≤ 2 6 • p 3 (p-q) 2 . For (ε 1 , ε 2 ) = (0, 1)
, take m to be the unique odd integer with pn 1 n 2 < 2 m ≤ 4pn 1 n 2 and put

n 3 = 2 2m + 2 m -1 ≤ 2(4pn 1 n 2 ) 2 ≤ 2 5 (pn 1 ) 4 .
Then by ( 7),

s 2 (pn 1 n 2 n 3 ) = s 2 ((pn 1 n 2 2 m + pn 1 n 2 )2 m -pn 1 n 2 ) = s 2 (pn 1 n 2 2 m + pn 1 n 2 -1) + m -s 2 (pn 1 n 2 -1) = s 2 (pn 1 n 2 -1) + s (pn 1 n 2 ) + m -s 2 (pn 1 n 2 -1) ≡ m + 1 ≡ 0 (mod 2).
A similar calculation shows by ( 8) that s (qn 1 n 2 n 3 ) ≡ m ≡ 1 (mod 2).

We set n = n 1 n 2 n 3 and get

n ≤ 8p p -q 2 p • 2 5 p 4 • (8p) 4 (p -q) 4 = 2 23 • p 11 (p -q) 6 .
This completes the proof.

Proof (Theorem 1). This follows directly from Lemma 1 and 2 23 • p 11 (p -q) 6 ≤ 2 17 p 11 .

Thue-Morse at two polynomials

This section is devoted to the proof of a technical result which implies Theorem 2. Considering the extractions of Thue-Morse along n h1 and n h2 , it is simple to get two and not too difficult to get three out of the four possibilities for (ε 1 , ε 2 ). However, to ensure that we see all of the four possibilities, we need a rather subtle construction. The difficulty is similar to that one to get C 0,0 (p, q) in the proof of Theorem 1. The idea is to shift two specific blocks against each other while all other terms in the expansions are non-interfering. Via this procedure, we will be able to keep track of the number of carry propagations. In the proof of Theorem 1 we have used the blocks pn 1 and qn 1 . In the following, we will make use of u 1 = 9 = (1001) 2 and u 2 = 1 = (0001) 2 . Then

s 2 (u 1 + u 2 ) = 2, s 2 (u 1 + 2u 2 ) = 3, s 2 (u 1 + 2 2 u 2 ) = 3, s 2 (u 1 + 2 3 u 2 ) = 2,
and mod 2 we get the sequence (0, 1, 1, 0). These particular expansions and additions will be of great importance in our argument (compare with ( 16)-( 19)).

Lemma 2. Let h 1 , h 2 be positive integers with h 1 > h 2 ≥ 1 and let (ε 1 , ε 2 ) be one of (0, 0), (0, 1), (1, 0), (1, 1). Then we have

min n ∈ A : (t(n h1 ), t(n h2 )) = (ε 1 , ε 2 ) ≤ C, where C = 32 3h1+5 1 15 150 h 1 8 h1 2 5h 2 1 +h1-5
.

Proof. Let h ≥ 1 and put

l = log 2 1 15 150 h 8 h 2 + 1, (9) 
a = (2 lh -1)2 4 + 1, b = 150 h 8 h a 1-1 h , M = 15a 1-1 h + 1, k = lh 2 + 3h + 4 -l.
It is straightforward to check that for all h ≥ 1, we have

l ≥ 12, a ≥ 65521, b ≥ 1200, M ≥ 16, k ≥ 7. (10) 
Obviously, we have b ≥ M . Moreover, we have

a = 16
aM -b 2 > a • 15a 1-1 h - 150 h 8 h a 1-1 h 2 > 0. Let T (x) = ax 5 + bx 4 + M x 3 + M x 2 -x + M and write T (x) h = 5h i=0 α i x i .
Obviously, α 0 > 0 and α 1 < 0. We claim that for h ≥ 1 we have α i > 0 for 2 ≤ i ≤ 5h. To see this we write

T (x) h = ax 5 + bx 4 + M x 3 + M x 2 + M h + r(x), (11) 
with

r(x) = h j=1 h j (-x) j ax 5 + bx 4 + M x 3 + M x 2 + M h-j = 5(h-1) j=1 d j x j . Since a ≥ b ≥ M the coefficient of x i in the first term in (11) is ≥ M h . On the other hand, |d j | < h2 h (5a) h-1 ,
and

M h ≥ 15a 1-1/h h > 3 • 5a 1-1/h h > 2h 1/h (5a) 1-1/h h = |d j |
which proves the claim. Next, we need a bound on he size of α i . The coefficients α i , 0 ≤ i ≤ 5h-2, are bounded by the corresponding coefficients in the expansion of (ax 5 + bx 4 + M (x 3 + x 2 + x + 1)) h . Since aM > b 2 and M ≤ 16a 1-1/h , each of these coefficients is bounded by

a h-1 M • 6 h < a h-1 M 8 h ≤ a h-1 h • 16 • 8 h ,
and therefore

|α i | ≤ a h-1 h • 16 • 8 h , i = 0, 1, 2, . . . , 5h -2. ( 12 
)
Moreover, we have

α 5h-1 = hba h-1 = 150 h 8 h a 1-1 h ha h-1 (13) 
and 149

• 8 h a h-1 h ≤ α 5h-1 ≤ 150 • 8 h a h-1 h ,
which is true for all a ≥ 1 and h ≥ 1. Note that both the bound in [START_REF] Hofer | Coquet-type formulas for the rarefied weighted Thue-Morse sequence[END_REF] and the coefficient α 5h-1 are increasing functions in h. From now on, suppose that h ≥ 2. We further claim that

a h-1 h • 16 • 8 h < 2 k , 9 • 2 k ≤ α 5h-1 < 10 • 2 k , (14) 
which will give us the wanted overlap for the digital blocks of α 5h-1 and α 5h . By [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF] the binary expansion of α 5h-1 is (1001 • • • ) 2 and interferes with the digital block coming from α 5h = a h which is (• • • 0001) 2 since a ≡ 1 (mod 16).

To prove [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF], we show a stronger inequality that in turn implies [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF], namely,

144 • 8 h a h-1 h < 9 • 2 k ≤ 149 • 8 h a h-1 h . ( 15 
)
Passing to logarithms, this is equivalent to

(k -3h -4) -δ ≤ h - 1 h log 2 a < k -3h -4 with δ = log 2 149 -log 2 9 -4 = 0.04924 • • • > 1 25 .
We rewrite

h - 1 h log 2 a = h - 1 h lh + log 2 1 - 1 2 lh-4 - 1 2 lh
, which on the one hand shows that

h - 1 h log 2 a < h - 1 h lh = lh 2 -l = k -3h -4,
and on the other hand by -x/(1 -x) < log(1 -x) < 0 for 0 < x < 1 that

h - 1 h log 2 a > lh 2 -l - 1 log 2 • (2 4 -1) • h -1 h 2 lh -2 4 + 1 .
Finally, we easily check that for all h ≥ 2 and l ≥ 5 we have

1 log 2 • 15 h -1 h 2 lh -15 < 1 25 ,
which finishes the proof of (15) and thus of [START_REF] Mauduit | Multiplicative properties of the Thue-Morse sequence[END_REF].

After this technical preliminaries we proceed to the evaluation of the sum of digits. First note that for all h ≥ 1 by construction none of n = T (2 k ), T (2 k+1 ), T (2 k+2 ), T (2 k+3 ) is a power of two and therefore n ∈ A in these four cases. Let h = h 1 ≥ 2 and define a, b, M, l, k according to (9). To begin with, by ( 12), ( 13), ( 14) and the splitting formulas (4), we calculate

s 2 (T (2 k ) h1 ) = s 2 5h1 i=0 α i 2 ik = A 1 -1 + A 2 + k + A 3 , (16) 
where

A 1 = s 2 (α 5h1 ) + s 2 (α 5h1-1 ), A 2 = s 2 5h1-2 i=3 α i + s 2 (α 0 ), A 3 = s 2 (α 2 -1) -s 2 (α 1 -1).
Note that the summand k in ( 16) comes from formula (4) due to the negative coefficient α 1 , and the -1 comes from the addition of (• • • 0001) 2 and (1001) 2 (the ending and starting blocks corresponding to α 5h1 and α 5h1-1 ) which gives rise to exactly one carry. A similar calculation shows that

s 2 (T (2 k+1 ) h1 ) = A 1 + A 2 + (k + 1) + A 3 , (17) 
s 2 (T (2 k+2 ) h1 ) = A 1 + A 2 + (k + 2) + A 3 , (18) 
s 2 (T (2 k+3 ) h1 ) = A 1 + A 2 -1 + (k + 3) + A 3 . (19) 
In [START_REF]On the subword complexity of Thue-Morse polynomial extractions[END_REF] we add (1001) 2 to (• • • 00010) 2 which gives no carry. The same happens for the addition of (1001) 2 to (• • • 000100) 2 in [START_REF] Morgenbesser | Thue-Morse at multiples of an integer[END_REF]. Finally, in [START_REF] Newman | On the number of binary digits in a multiple of three[END_REF] we again have exactly one carry in the addition of (1001) 2 to (• • • 0001000) 2 . If we look mod 2 this shows that t(T (2 k ) h1 ), t(T (2 k+1 ) h1 ), t(T (2 k+2 ) h1 ), t(T (2 k+3 ) h1 ) is either (0, 0, 1, 1) or (1, 1, 0, 0). For h 2 < h 1 with h 2 ≥ 1 all coefficients are non-interfering. To see this, consider the coefficients of T (x) h2 = 5h2 i=0 α i x i . By [START_REF] Hofer | Coquet-type formulas for the rarefied weighted Thue-Morse sequence[END_REF], they are clearly bounded in modulus by a h1-1 h 1 • 16 • 8 h1 < 2 k for i = 0, 1, 2, . . . , 5h 2 -2. Also, by [START_REF] Goldstein | The fractal structure of rarefied sums of the Thue-Morse sequence[END_REF] and h 1 ≥ 2, α 5h2-1 ≤ 150 • 8 h2 a h2-1 h 2 < 150 8

• 8 h1 a h1-1 < a h1-1 h 1 • 16 • 8 h1 < 2 k , and thus we don't have carry propagations in the addition of terms in the expansion of T (2 k ) h2 . Similarly, we show that t(T (2 k ) h2 ), t(T (2 k+1 ) h2 ), t(T (2 k+2 ) h2 ), t(T (2 k+3 ) h2 ) is either (0, 1, 0, 1) or (1, 0, 1, 0). This yields in any case that {(t(T (2 k+i ) h1 ), t(T (2 k+i ) h2 )) : i = 0, 1, 2, 3} = {(0, 0), (0, 1), (1, 0), (1, 1)}, which are the four desired values. Finally, for some suitable positive constant c 3 .

T (2 k+3 ) ≤ 2 5(k+3) • 2 lh1+4 ≤ 2 l(5h

  • 2 lh -15 ≥ 15 • 2 lh ≥ ≥ b. Furthermore, for h ≥ 2, we have aM > b 2 since by

	and therefore a a >	1 15	h 150	8 h	2 h
					h 150	8 h	h
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