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Abstract

For a fixed prime p, let ep(n!) denote the order of p in the prime factorization of
n!. Chen and Liu (2007) asked whether for any fixed m, one has {ep(n2!) mod m :
n ∈ Z} = Zm and {ep(q!) mod m : q prime} = Zm. We answer these two questions
and show asymptotic formulas for #{n < x : n ≡ a mod d, ep(n

2!) ≡ r mod m} and
#{q < x : q prime, q ≡ a mod d, ep(q!) ≡ r mod m}. Furthermore, we show that for
each h ≥ 3, we have {n < x : n ≡ a mod d, ep(n

h!) ≡ r mod m} � x4/(3h+1).
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1 Introduction

Let p1 = 2, p2 = 3, . . . be the sequence of prime numbers in ascending order and consider
the prime factorization of

n! =
∏
pj6n

p
epj (n!)

j .

Legendre [10, p.10–12] (see also [7, p. 263], [16, Ch. 1.3]) showed that for any nonnegative
integer n and any fixed prime p we have

ep(n!) =
∑
i≥1

⌊
n

pi

⌋
=
n− sp(n)

p− 1
, (1.1)

where sp(n) denotes the sum of the digits of n in base p, i.e.,

sp(n) =
∑
i≥0

εi(n), for n =
∑
i≥0

εi(n)pi,

where εi(n) ∈ {0, 1, . . . , p − 1}. A well-known area of application for ep(n!) is the deter-
mination of the explicit numerical error term in Mertens first theorem [16, Ch. 1.4]. The
investigation of the distribution properties of ep(n!) can be said to have started with Erdős
and Graham [9, p.77] who stated (in our notation) that “it is annoying that we cannot even
show that for all k there is an nk so that in the prime decomposition of nk! all the epj(nk!),
1 6 j 6 k, are even.” In 1997, Berend [1] solved this problem by showing that for any fixed
m ≥ 2 there are infinitely many n that satisfy

ep1(n!) ≡ ep2(n!) ≡ · · · ≡ epk(n!) ≡ 0 mod m,

and the set of all such n has bounded gaps. In his solution, Berend [1] strengthened the
problem of Erdős and Graham in two different directions. On the one hand, he not only
considered the parity of the exponents but studied more generally if they were divisible
by a fixed integer m > 2. On the other hand, he already treated subsets of integers with
prescribed multiplicative properties instead of looking at the entire set of integers n. In
particular, he showed that for arbitrary fixed positive D, k and m there exist infinitely many
n such that all the exponents epj((dn)!), 1 6 j 6 k, 1 6 d 6 D, are divisible by m.

Several authors considered in the last years extensions of the Erdős-Graham problem,
namely, Berend/Kolesnik [2], Chen [3], Chen/Liu [4, 5], Chen/Zhu [6], Luca/Stănică [11],
Sander [14] and Zhai [17]. The most general result is due to Berend and Kolesnik [2] who
proved unconditionally that

#{0 6 n < x : n ≡ a mod d, eqj(n!) ≡ rj mod mj, 1 6 j 6 k}

=
x

dm1m2 · · ·mk

+O
(
x1−δ

)
,

for any integer a and d > 1 where k ≥ 1 is fixed, q = (q1, q2, . . . , qk) is a vector of distinct,
not necessarily ordered primes, m = (m1,m2, . . . ,mk) is a vector of arbitrary integers ≥ 2,
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and r = (r1, r2, . . . , rk) is such that 0 6 rj < mj for j = 1, 2, . . . , k, and δ = δ(m,q, r) > 0
is effectively computable.

Intriguing problems arise when the sequence of integers n lying in a fixed residue class
is replaced by sparser sequences such as primes, squares or higher-degree powers. Chen
and Liu [5] posed several problems in that respect (see also [17] for generalizations of these
problems). In particular, at the end of their paper they remark that they even have no
answer to the following basic questions:

Question 1: Is it true that for all fixed p and m,

{ep(n2!) mod m : n ∈ Z} = Zm ?

Question 2: Is it true that for all fixed p and m,

{ep(q!) mod m : q prime} = Zm ?

Zhai [17, Theorems 3 and 4] obtained a partial answer to Question 1. He showed that
for all h ≥ 2 and r ∈ Z, there are infinitely many n such that ep(n

h!) ≡ r mod m provided
that

p ≥

{
4m− 2, if h = 2,

hhmh−1, if h ≥ 3.
(1.2)

From his proof one can obtain a lower bound of the form1

#{n < x : ep(n
h!) ≡ r mod m} �p,h,m log x, x→∞.

Unfortunately, Zhai’s method cannot be applied in the case of small p, such as to treat
e2(n

2!) or e5(n
2!).

The aim of the present paper is to use our current knowledge of the distribution properties
of the sum-of-digits function to give complete answers to Questions 1 and 2. We are able to
improve on Zhai’s result and to generalize Chen and Liu’s questions in two different respects.
First, we are able to drop the superfluous condition (1.2) and to find asymptotic formulas
for the counting functions in the case of squares and primes. Second, we give a general lower
bound for h ≥ 3.

Using our results we get the following nice application: Let Z(n) be the number of ending
0’s in base 10 of n!. Observe that

Z(n) = min{e2(n!), e5(n!)} = e5(n!).

Then it will follow from Theorem 2.1 that

lim
x→∞

1

x
#{n < x : Z(n2) ≡ r mod m} =

1

m

for every m > 2 and 0 6 r < m. The analogous result holds also true for the number of
ending 0’s of factorials of primes.

1By f �ω g resp. f �ω g we mean that there exists a constant C depending at most on ω such that
f 6 Cg resp. f ≥ Cg.
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2 Main results

In the sequel, let π(x; a, d) be the number of primes ≡ a mod d that are less than or equal
to x.

Theorem 2.1. Let p be a prime, m, d ≥ 1 and 0 6 a < d, 0 6 r < m. Then there exist
constants δ

(1)
p,m > 0 and δ

(2)
p,m > 0 such that

#{n < x : n ≡ a mod d, ep(n
2!) ≡ r mod m}

=
x

dm
+O

(
(log x)11/4x1−δ

(1)
p,m

)
,

and

#{q < x : q prime, q ≡ a mod d, ep(q!) ≡ r mod m}

=
π(x; a, d)

m
+O

(
(log x)3x1−δ

(2)
p,m

)
.

The implied constants depend only on p.

The proof of this result is notably based on recent work by Mauduit and Rivat [13]
and Martin, Mauduit and Rivat [12], and uses exponential sum estimates of hybrid type.
In contrast, we use an idea of Stoll [15] to obtain general lower bounds for higher-degree
powers. The method is constructive.

Theorem 2.2. Let h ≥ 2, p be a prime, m, d ≥ 1 and 0 6 a < d, 0 6 r < m. Then, as
x→∞,

#{n < x : n ≡ a mod d, ep(n
h!) ≡ r mod m} �p,h,d,m x4/(3h+1). (2.1)

Moreover, there is an effectively computable constant C = C(p, h, d,m) such that

{ep(nh!) mod m : 0 6 n < C, n ≡ a mod d} = Zm.

The constant C can be directly obtained from the proof. We remark that

{ep(nh!) mod m : 0 6 n < p1/h + (m− 2)d, n ≡ a mod d} 6= Zm. (2.2)

By a probabilistic argument one might expect that we have the full set of residues after about
m logm steps. However, as (2.2) shows, this is not true since there is a crucial dependency
of p in the bound for n in (2.2).

3 Proof of Theorem 2.1

Legendre’s formula (1.1) shows that

ep(n!) ≡ r mod m ⇐⇒ n− sp(n) ≡ r(p− 1) mod (p− 1)m. (3.1)
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In order to prove Theorem 2.1, we need some auxiliary results. In particular, we have to deal
with exponential sums containing the sum-of-digits function of primes and squares. Let ω(b)
denote the number of different prime divisors of b. The first proposition is a generalization
of [13, Theorem 1] and the second proposition is taken from [12, Proposition 4].

Proposition 3.1. Let b > 2 and α, β, γ real numbers such that (b − 1)α 6∈ Z. Then there

exists a constant σ
(1)
b,α > 0 such that 2∑
n<x

e(αsb(n
2) + βn2 + γn)�b (log x)(ω(b)+10)/4x1−σ

(1)
b,α .

Proof. This result can be proven in the same way as [13, Theorem 1]. Thus, we just give a
short outline. Let bν−1 < x 6 bν and set f(n) = αsb(n). As in the Mauduit–Rivat case, it
suffices to show that

S1 :=
∑

bν−1<n6x

e(f(n2) + βn2 + γn)�b (log x)(ω(b)+6)/4x1−σ
(1)
b,α (3.2)

for some constant σ
(1)
b,α. Lemma 15 from [13] (a van der Corput-type inequality) implies that

S1 is bounded by (some constant times)

bν−ρ/2 + bν/2 max
16|r|<bρ

∣∣∣∣∣ ∑
bν−1<n6bν

e(f((n+ r)2) + β(n+ r)2 + γ(n+ r))

· e(−f(n2)− βn2 − γn)

∣∣∣∣∣
1/2

�b b
ν−ρ/2 + bν/2 max

16|r|<bρ

∣∣∣∣∣∣
∑

bν−1<n6bν

e(f((n+ r)2)− f(n2) + 2βnr)

∣∣∣∣∣∣
1/2

,

where 1 6 ρ 6 ν/2 is an integer which we will choose later on. Set λ := ν+2ρ+1. Using [13,
Lemma 16], we obtain

S1 �b b
ν−ρ/2 + bν/2 max

16|r|<bρ
|S2|1/2 , (3.3)

where
S2 :=

∑
bν−1<n6bν

e(fλ((n+ r)2)− fλ(n2) + 2βnr),

and fλ(n) is defined by

fλ(n) := α
∑

06j<λ

εj(n),

2If β = γ = 0, [13, Theorem 1] shows this result with an error term of the form (log x)(ω(b)+8)/2x1−σ

instead of (log x)(ω(b)+10)/4x1−σ. However, we want to remark that the proof given in [13] already implies
the better error term as stated in this proposition.
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where εj(n) denotes the j-th digit of n. Note, that fλ(n) (a so-called truncated sum of digits
function) sums up just the λ lower placed digits (multiplied with α). Lemma 17 from [13]
(again a van der Corput-type inequality) implies now that

|S2|2 6 b2ν−2ρ + bν max
16|s|<b2ρ

|S3|, (3.4)

where

S3 =
∑

I(ν,s,µ)

e(fλ((n+ r + sbµ)2)− fλ((n+ sbµ)2) + 2β(n+ sbµ)r)

· e(−fλ((n+ r)2) + fλ(n
2)− 2βnr),

the interval I(ν, s, µ) is given by I(ν, s, µ) = {n ∈ N : bν−1 < n, n + sbµ 6 bν} and µ is an
integer satisfying 1 6 µ 6 ν − 2ρ− 1. Thus we get that |S3| is equal to∣∣∣∣∣∣

∑
I(ν,s,µ)

e(fλ((n+ r + sbµ)2)− fλ((n+ r)2)− fλ((n+ sbµ)2) + fλ(n
2))

∣∣∣∣∣∣
Note, that the terms containing β and γ are vanished. Mauduit and Rivat considered exactly
the term S3 and they showed that

|S3| �b ν
ω(b)+6bν−2ρ (3.5)

for every 1 6 ρ 6 ν/2, 1 6 µ 6 ν−2ρ−1, 1 6 |r| < bρ and 1 6 |s| < b2ρ (see [13, Eq. (45)]).
Equations (3.3), (3.4), and (3.5) finally imply

S1 �b ν
(ω(b)+6)/4bν−ρ/2.

As in [13], it is now possible to choose ρ and µ in order to obtain (3.2). This finishes the
proof of Proposition 3.1.

Proposition 3.2. Let b > 2 and α, β real numbers such that (b−1)α 6∈ Z. Then there exists

a constant σ
(2)
b,α > 0 such that∑

q<x
q prime

e(αsb(q) + βq)�b (log x)3x1−σ
(2)
b,α .

Proof of Theorem 2.1. We just give a proof of the stated result for the squares. The case
ep(q!), q prime, can be shown exactly the same way but using Proposition 3.2 instead of
Proposition 3.1. In the following we use the abbreviation

m′ = (p− 1)m.
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Relation (3.1) allows us to write

#{n < x : n ≡ a mod d, ep(n
2!) ≡ r mod m} =

∑
06j<m′

Tj(x),

where

Tj(x) := #{n < x : n ≡ a mod d, n2 ≡ j mod m′, sp(n
2) ≡ j − r(p− 1) mod m′}.

Using discrete Fourier analysis, we have

Tj(x) =
∑
n<x

(
1

d

∑
06u<d

e

(
u
n− a
d

))
·

(
1

m′

∑
06k<m′

e

(
k
n2 − j
m′

))

·

(
1

m′

∑
06`<m′

e

(
`
sp(n

2)− (j − r(p− 1))

m′

))
.

This can be written as

Tj(x) =
1

dm′2

∑
n<x

∑
06u<d

e

(
u
n− a
d

) ∑
06k<m′

e

(
k
n2 − j
m′

)
·
∑

06`1<p−1
06`2<m

e

(
(`1m+ `2)

sp(n
2)− (j − r(p− 1))

m′

)
,

and we obtain (splitting the part coming from `2 = 0 and `2 > 0)

Tj(x) =
1

m′2

∑
n<x

n≡a mod d

∑
06k<m′

∑
06`1<p−1

e

(
kn2 − kj − `1mj + `1msp(n

2)

m′

)

+O

 1

dm′2

∑
06u<d
06k<m′

∑
06`1<p−1
0<`2<m

∣∣∣∣∣∑
n<x

e

(
`1m+ `2

m′
sp(n

2) +
k

m′
n2 +

u

d
n

)∣∣∣∣∣
.

Thus we get that #{n < x : n ≡ a mod d, ep(n
2!) ≡ r mod m} is given by

MT +O

 max
06u<d
06k<m′
06`1<p−1
0<`2<m

∣∣∣∣∣∑
n<x

e

(
`1m+ `2

m′
sp(n

2) +
k

m′
n2 +

u

d
n

)∣∣∣∣∣
 , (3.6)

where

MT :=
1

m′2

∑
06j<m′

∑
n<x

n≡a mod d

∑
06k<m′

∑
06`1<p−1

e

(
kn2 − kj − `1mj + `1msp(n

2)

m′

)
.
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Next we calculate the main termMT in (3.6). Therefore, let us define 1j(n) for all 0 6 j < m′

and for all positive integer n by

1j(n) =

{
1, if n ≡ j mod m′,

0, otherwise.

Then we get that the main term MT is equal to

1

m′

∑
06`1<p−1

∑
n<x

n≡a mod d

∑
06j<m′

e

(
−`1mj + `1msp(n

2)

m′

)
1

m′

∑
06k<m′

e

(
k
n2 − j
m′

)

=
1

m′

∑
06`1<p−1

∑
n<x

n≡a mod d

∑
06j<m′

e

(
`1
sp(n

2)− j
p− 1

)
· 1j(n2).

Since sp(n
2) ≡ j mod (p − 1) if n2 ≡ j mod m′, we obtain that the remaining exponential

part is equal to 1 for all nonzero summands. Furthermore, the relation∑
06j<m′

1j(n) = 1

holds trivially for any integer n. Thus we finally have

MT =
1

m′

∑
06`1<p−1

∑
n<x

n≡a mod d

∑
06j<m′

1j(n
2)

=
p− 1

m′

∑
n<x

n≡a mod d

∑
06j<m′

1j(n
2) =

x

dm
+O(1).

It remains to bound the error term in (3.6). Since 0 < `2 < m, we have (`1m + `2)/m
′ ·

(p− 1) = `1 + `2/m 6∈ Z. Thus we can employ Proposition 3.1 (note, that ω(p) = 1 since p
is prime). Setting

δ(1)p,m := min
06`1<p−1
0<`2<m

σ
(1)
p,(`1m+`2)/m′

,

we finally obtain the desired result.

4 Proof of Theorem 2.2

Proof of Theorem 2.2. Consider the polynomial t(x) ∈ Z[x] with

t(x) = d(p− 1)m ·
(
m3x

3 +m2x
2 −m1x+m0

)
+ a,
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where m3,m2,m1,m0 are positive integers. Lemma 2.1 in [15] says that for all u ≥ 1 and

pu−1 6 m0 +
a

d(p− 1)m
< pu,

pu−1 6 m2,m3 < pu,

1 6 m1 < pu/
(
hp(6p)h

)
(4.1)

the polynomial (t(x))h =
∑3h

i=0 cix
i ∈ Z[x] has all positive integral coefficients with the only

exception of the coefficient of x1 which is negative. Also, note that a 6 d(p− 1)m and thus
we have

|ci| 6 (4pud(p− 1)m)h .

In order to have that the range (4.1) for m1 contains at least one admissible integer m1 we
suppose now that u is such that

pu > hp(6p)h. (4.2)

Furthermore, let k be such that

pk > (4pud(p− 1)m)h . (4.3)

Note that pk �p,h,d,m puh as u→∞. We get as in [15] that

sp((t(p
k))h) = k(p− 1) +M,

where M does not depend on k provided k is such as in (4.3). In addition, we have t(pk) ≡
a mod d and (t(pk))h ≡ ah mod (p − 1)m. Therefore, by (3.1), for each k with (4.3) and
j ≥ 0 we have

ep((t(p
k+j))h!) =

(t(pk+j))h − sp((t(pk+j))h)
p− 1

≡ ah

p− 1
− (k + j)− M

p− 1
mod m.

Note that (p−1)|(ah−M) so that for each fixed r with 0 6 r < m there is j with 0 6 j 6 m−1
such that

ep((t(p
k+j))h!) ≡ r mod m.

By construction we thus find �p,h,d,m p4u distinct integers that are all �p,h,d,m pu(3h+1) (for
more details we refer to [15]). This proves (2.1).

To get an explicit bound for C(p, h, d,m) we only have to make some admissible choices,
say, u0 and k0, for u in (4.2) resp. k in (4.3), and estimate t(pk+m−1). First we take u0 to
be such that pu0 6 hp2(6p)h. Secondly, we find k0 such that pk0 6 (4pu0d(p− 1)m)h p. It is
now a straightforward calculation to find

C 6 t(pk+m−1) 6 2(p− 1)mpu0p3(k0+m−1)

≤ m3h+1d3h(p− 1)3h+1p3m
(
4hp2(6p)h

)1+3h
.

This concludes the proof of Theorem 2.2.
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5 Concluding remarks

We end our discussion with a few remarks. It seems possible to use the approach of Drmota,
Mauduit and Rivat [8] to get an asymptotic formula in Theorem 2.2 provided that p is a very
large prime whose size is about exponential in h. For small p it is already an open and surely
very difficult problem to find an asymptotic formula for ep(n

3) in arithmetic progressions.
As a further remark, we also stress the fact that Theorem 2.1 and Theorem 2.2 hold for
arbitrary quadratic polynomials in place of n2, respectively, for arbitrary P (x) ∈ Z[x] of
degree h (with P (N) ⊂ N) in place of xh. A minor variation of the used arguments will yield
these generalizations.
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[16] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Belin,
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