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COMBINATORIAL CONSTRUCTIONS FOR THE ZECKENDORF

SUM OF DIGITS OF POLYNOMIAL VALUES

THOMAS STOLL

Abstract. Let p(X) ∈ Z[X] with p(N) ⊂ N be of degree h ≥ 2 and denote

by sF (n) the sum of digits in the Zeckendorf representation of n. We study
by combinatorial means three analogues of problems of Gelfond (1967/68),

Stolarsky (1978) and Lindström (1997) concerning the distribution of sF on

polynomial sequences. First, we show that for m ≥ 2 we have #{n < N :

sF (p(n)) ≡ a mod m} �p,m N4/(6h+1) (Gelfond). Secondly, we find the ex-

tremal minimal and maximal orders of magnitude of the ratio sF (p(n))/sF (n)

(Stolarsky). Third, we prove that lim supn→∞ sF (p(n))/ logϕ(p(n)) = 1/2,

where ϕ denotes the golden ratio (Lindström).

1. Introduction

Denote by (Fj)j≥0 = 0, 1, 1, 2, 3, 5, 8, 13, . . . the sequence of Fibonacci numbers
defined by F0 = 0, F1 = 1 and

(1) Fj+2 = Fj+1 + Fj , j ≥ 0.

Zeckendorf’s theorem (see [23] or [1, p.105]) says that every positive integer n can
be uniquely written as

(2) n =
∑
j≥0

εjFj+2,

with the digits εj ∈ {0, 1} under the condition that εjεj+1 = 0 for all j ≥ 0. In
what follows, we will say that the right hand side of (2) has non-adjacent terms
or, more informally, that the εj ’s are non-adjacent to refer to this condition. For
convenience, we will say that the digit εj is at position j+ 2. Let sF be the sum of
digits function defined in this numeration system, i.e.,

sF (n) =
∑
j≥0

εj .

The Zeckendorf sum of digits function sF shares many properties with the sum of
digits function in the usual q-ary positional representation of integers1 and many
analogues of well-known results have been found so far. For instance, Coquet and
Van Den Bosch [4] showed that sF has fractal summatory behaviour, and Drmota
and Ska lba [8] proved a Newman parity phenomenon. Also, there are various re-
sults known about the distribution of sF on polynomial sequences. Drmota and
Steiner [9] showed that a proper renormalization of sF (nh) is asymptotically nor-
mally distributed. Nowadays, several extensions of these results to numeration
systems are known that use more general linear recurring sequences as digital base

1In the q-ary expansion, one uses qj in place of Fj+2 in (2) with digits εj in the set {0, 1, . . . , q−1}.
1
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sequences. We refer to the article of Wagner [22] and the references given therein
for a rather extensive list.

The aim of the present paper is to study – by purely combinatorial and elemen-
tary means – three Zeckendorf analogues of problems concerning the distribution
of the sum of digits on polynomial values, that have so far been considered for the
q-ary (or binary) case.

In what follows, let p(x) ∈ Z[x] with p(N) ⊂ N be a polynomial of degree h ≥ 2
and set

p(x) = ahx
h + ah−1x

h−1 + · · ·+ a0.

In 1967/68, Gelfond [11] proved equidistribution in arithmetic progressions for
the q-ary sum of digits of linear polynomials. He then asked to find an asymptotic
formula (n → ∞) for the q-ary sum of digits of p(n), h ≥ 2, in a fixed arithmetic
progression. We refer to the recent paper of Drmota, Mauduit and Rivat [6] and
the references given therein for a detailed description and the most recent result
to the problem. A complete answer to Gelfond’s question is available only when
either the base q is particularly large [6], i.e., q ≥ exp

(
67h3(log h)2

)
, or the degree

h of p(x) is particularly small [11], [18], i.e., h ≤ 2.
The Zeckendorf expansion of integers can be seen as an expansion with respect

to ϕ = (1 +
√

5)/2 < 2, the golden ratio, and it is the purpose of this paper to
find a general lower bound for this expansion for polynomials of arbitrary degree
h ≥ 2. The equidistribution result for linear polynomials in expansions with respect
to linear recurrences has been found in Drmota and Ska lba [8] (see (59), (60) in
that paper).

Our main result complements the investigation put forward by Dartyge and
Tenenbaum [5], and by the author [21], and is as follows.2

Theorem 1.1. Let m ≥ 2. Then for all a ∈ Z with 0 ≤ a < m we have

#{n < N : sF (p(n)) ≡ a mod m} �p,m N4/(6h+1).

In 1978, Stolarsky [20] studied the pointwise relationship between the binary
sum of digits of nh versus the binary sum of digits of n. Recently, Hare, Laishram
and Stoll [15] found the maximal and minimal extremal orders of magnitude of
the related ratio in the q-ary case and settled hereby an open problem posed by
Stolarsky.

In the present paper, we are interested to study the same problem for the Zeck-
endorf sum of digits function. The function sF is different from its q-ary counter-
part in an important respect, namely, it is in general not submultiplicative (compare
with [15, Proposition 2.2] or [19]). A simple example for this is

sF (37 · 42) = sF (1554) = sF (F16 + F14 + F12 + F9 + F6 + F4 + F2) = 7,

sF (37) · sF (42) = sF (F9 + F4) · sF (F9 + F6) = 2 · 2 = 4.

We therefore might expect that sF (nh)/sF (n) for fixed h ≥ 2 can be (up to the

multiplicative constants) as large as log n and as small as (log n)
−1

. This a different

2We write f �ω g resp. f �ω g if there exists a positive constant c depending at most on ω such
that f ≤ cg resp. f ≥ cg.
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matter for the q-ary sum of digits [15] where the submultiplicativity property yields
an upper bound of the form (log n)1−1/h.

Theorem 1.2. There exist constants C1 = C1(p) > 0 and C2 = C2(p) > 0 such
that

(3)
sF (p(n))

sF (n)
> C1 log n,

respectively,

(4)
sF (p(n))

sF (n)
<

C2

log n
,

for an infinite number of integers n. In particular, we have

lim sup
n→∞

sF (p(n))

sF (n)
= +∞, lim inf

n→∞

sF (p(n))

sF (n)
= 0.

The function sF is, like its q-ary counterpart, a subadditive function (see Propo-
sition 2.1). This allows the following interpretation: sF (n) equals the minimal
number of Fibonacci numbers needed to write n as a sum thereof. Finding polyno-
mial values with small and large values of sF in turn is related to some extent to
the classical investigation of finding perfect powers among Fibonacci numbers and
their sums. A deep result of Bugeaud, Mignotte and Siksek [3] says that the only
powers nh among Fibonacci numbers are 1, 8 and 144. In our language, this means
that

#
{

(n, h) : sF (nh) = 1, n ≥ 2, h ≥ 2
}

= 2.

One might ask, whether the number of pairs (n, h) remains still small (or finite)
when sF (nh) = 1 is replaced by a less stringent condition. From the method of
proof of Theorem 1.2 we obtain the following result. Recall that ϕ denotes the
golden ratio.

Corollary 1.3. There exist C = C(p) > 0 and N0 = N0(p) > 0, such that for all
N ≥ N0,

# {n : sF (p(n)) ≤ C, sF (n) = N, n ≥ 1} ≥ 1.

Moreover, if p(x) = xh then for all N ≥ 8h+ 1 we have

#
{
n < 56ϕ4N : sF (nh) ≤ (2h+ 1)(8h+ 2), sF (n) = N

}
≥ 1.

In other words, for sufficiently large N there always exists an integer n such that
n is the sum of exactly N distinct, non-adjacent Fibonacci numbers, and p(n) can
be expressed as the sum of at most C(p) Fibonacci numbers.

Our third result concerns a Zeckendorf analogue of a theorem of Lindström [17]
(see also Drmota and Rivat [7] for the special case of squares) who proved that for
ε > 0 there exists an n such that the density of 1’s in the binary digital expansion
of p(n) is at least 1− ε.

Theorem 1.4. We have

lim inf
n→∞

sF (p(n))

logϕ p(n)
= 0, lim sup

n→∞

sF (p(n))

logϕ p(n)
=

1

2
.
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Bugeaud, Luca, Mignotte and Siksek [2] also found all powers that are at most
one away from a Fibonacci number. Rephrased in our context, this can be seen
as finding powers with sum of digits values that are close to the maximal and
minimal possible ones. Theorem 1.4 says that for any polynomial p and n → ∞
we can get arbitrarily “close” to a Fibonacci number both from above and from
below, where “close” here means that the values differ by adding or subtracting
only “few” Fibonacci numbers.

The paper is structured as follows. In Section 2 we provide some necessary
notation and tools to treat the three problems. Sections 3, 4 and 5 are then devoted
to the proofs of Theorem 1.1, Theorem 1.2 and Corollary 1.3, and Theorem 1.4,
respectively.

2. Notation and auxiliary results

We first show that sF is a subadditive function.

Proposition 2.1. For all integers n1, n2 ≥ 0 we have

sF (n1 + n2) ≤ sF (n1) + sF (n2).

Proof. Write n1 and n2 in Zeckendorf expansion, i.e.,

n1 =
∑
j

ε
(1)
j Fj+2 and n2 =

∑
j

ε
(2)
j Fj+2,

and consider

(5) n1 + n2 =
∑
j

(ε
(1)
j + ε

(2)
j )Fj+2.

The right hand side of (5) is in general not the Zeckendorf expansion of n1+n2 since

on the one hand, ε
(1)
j +ε

(2)
j ∈ {0, 1, 2} and, on the other hand, there is no condition

that prohibits adjacent terms. However, we have carry propagation rules at our
disposal to get back the Zeckendorf expansion of n1 + n2. First, if we encounter

two adjacent 1’s, say, (ε
(1)
j′ + ε

(2)
j′ ) = (ε

(1)
j′+1 + ε

(2)
j′+1) = 1, we can replace these two

1’s by a single 1 at position j′ + 2 because of

(6) 1 · Fj′+1 + 1 · Fj′ = 1 · Fj′+2.

(At first, we neglect the addition that has to be performed at position j′+2.) When
we apply this rule for the first time, we decrease sF (n1) + sF (n2) by 1. Second, if

we encounter a 2 at position j′ ≥ 4, say, (ε
(1)
j′ + ε

(2)
j′ ) = 2, then we can replace this

non-admissible number with the aid of the recurrence

(7) 2 · Fj′ = 1 · Fj′+1 + 1 · Fj′−2.
Note that here we have equality of coefficients 2 = 1 + 1, so that sF (n1) + sF (n2)
remains unmodified when we apply this rule for the first time. For j′ ≤ 3 we use

(8) 2 · F3 = 1 · F4 + 1 · F2 and 2 · F2 = 1 · F3,

in either case the value of sF (n1) + sF (n2) is not increased. The replacement
rules (6)–(8) shift a portion of the summands to the more significant digits. We
now repeat the application of these rules. Note that we can use (7) also when we
encounter a number ≥ 3 at some position, to shift the contribution to the more
significant digits. After a finite number of applications of these rules (in any order)
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we will end up with the Zeckendorf expansion of n1 + n2. This concludes the
proof. � �

Consider the Zeckendorf expansions of the m integers n1, n2, . . . , nm,

ni =

Ki∑
j=ki

ε
(i)
j Fj+2, i = 1, 2, . . . ,m,

with ε
(i)
ki

= ε
(i)
Ki

= 1. Suppose that k1 ≤ k2 ≤ . . . ≤ km (this can always be

achieved by reordering of the ni). We say that n1, n2, . . . , nm (or their expansions)
are non-interfering, if ki+1 − Ki ≥ 2 for all i = 1, 2, . . . ,m − 1. More informally,
non-interfering integers have digital blocks that do not overlap. For non-interfering
n1, n2, . . . , nm we have

sF (n1 + n2 + · · ·+ nm) = sF (n1) + sF (n2) + . . .+ sF (nm),

a fact that will be central in our combinatorial constructions.

We will often use the following simple lemmas that follow easily from from Binet’s
formula (see e.g. [14, 10.14]) or straightforward inductive arguments.

Denote by (Lj)j≥0 the sequence of Lucas numbers defined by L0 = 2, L1 = 1
and

(9) Lj+2 = Lj+1 + Lj , j ≥ 0.

Lemma 2.2. For k > l ≥ 1 we have

(10) Fk − Fl =

{
Fk−1 + Fk−3 + · · ·+ Fl+1, if k ≡ l mod 2,

Fk−1 + Fk−3 + · · ·+ Fl+2 + Fl−1, if k 6≡ l mod 2.

Lemma 2.3. For k ≥ l ≥ 0 we have

(11) LkLl = Lk+l + (−1)lLk−l,

(12) LkFl = Fk+l − (−1)lFk−l.

Our constructions are based on formulas for powers of Lucas numbers. These
formulas are proven in [10] and can be obtained by an easy inductive argument on
h and (11).

Proposition 2.4. For all k ≥ 0 and h ≥ 1 we have

Lhk =

(h−1)/2∑
i=0

(
h

i

)
(−1)ikL(h−2i)k, h odd,(13)

Lhk =

h/2−1∑
i=0

(
h

i

)
(−1)ikL(h−2i)k +

(
h

h/2

)
(−1)kh/2, h even.



6 THOMAS STOLL

Proof. For the convenience of the reader we here outline the induction step from h
odd to h+ 1 even, the other case is similar. We have

Lh+1
k =

(h−1)/2∑
i=0

(
h

i

)
(−1)ikL(h−2i)kLk

=

(h−1)/2∑
i=0

(
h

i

)
(−1)ik

(
L(h−2i+1)k + (−1)kL(h−2i−1)k

)
=

(h−1)/2∑
i=1

((
h

i

)
+

(
h

i− 1

))
(−1)ikL(h+1−2i)k

+ L(h+1)k +

(
h
h−1
2

)
(−1)(

h+1
2 )kL0,

and the statement follows by observing that
(
h
i

)
+
(
h
i−1
)

=
(
h+1
i

)
, 2
(

h
(h−1)/2

)
=(

h+1
(h+1)/2

)
. � �

It is well-known that multiples of Fibonacci numbers mFk have finite length as
k →∞, a fact that is true more generally for any numeration system defined by a
Pisot recurrence [12] [13]. Also, it is well-known that the digits in the finite block
only get shifted when k increases. Multiples of Lucas numbers mLk have finite
length, too, with the similar behaviour about shifted digits. We make this explicit
in the following proposition.

Here and throughout, for an integerm ≥ 1 we denote by u = u(m) ≥ 0 the unique
integer u with F2u < m ≤ F2u+2. We set v = v(m) = 1 if F2u+1 ≤ m ≤ F2u+2 and
0 else. From Binet’s formula we see that

(14) u(m) ≤ log(m+ 1)

2 logϕ
+

log
√

5

2 logϕ
<

logm

2 logϕ
+ 2.

Proposition 2.5. There exist non-adjacent

ε−(2u+1)(m), ε−2u(m), . . . , ε2u+v(m) ∈ {0, 1}, ε−(2u+1)(m) = ε2u+v(m) = 1,

depending only on m, such that for all k ≥ 2u+ 3,

(15) mLk =

2u+v∑
j=−(2u+1)

εj(m)Fk+j .

Proof. We prove (15) by induction on sF (m). If m = F2l+1 for l ≥ 1 then u = l,
v = 1 and by (12),

F2l+1Lk = Fk+2u+1 + Fk−(2u+1).

If m = F2l for l ≥ 1 then u = l − 1, v = 1 and by (10),

F2lLk = Fk+2l − Fk−2l
= Fk+2u+1 + Fk+2u−1 + · · ·+ Fk−(2u+1).

For the induction step, set m′ = m+ Fl where 0 < m < Fl−1 and assume (15) for
sF (m). We can suppose that l ≥ 4. Write u′ = u(m+Fl) and v′ = v(m+Fl). Since
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m′ is not a Fibonacci number we have u′ = bl/2c and v′ = (l mod 2). Therefore,
k ≥ 2u′ + 3 implies k > l and by (12) (we write u = u(m) and v = v(m)),

m′Lk =
(
Fk+2u+v + w + Fk−(2u+1)

)
+
(
Fk+l − (−1)lFk−l

)
= (Fk+l + Fk+2u+v) + w +

(
Fk−(2u+1) − (−1)lFk−l

)
,(16)

where w is either zero or a positive integer whose most significant digit is at a
position ≤ k+ 2u+ v− 2 and least significant digit at a position ≥ k− (2u+ 1) + 2.
Note also that l ≥ (2u+ v) + 2. Thus

k + 2u′ + v′ = k + 2

⌊
l

2

⌋
+ (l mod 2) = k + l

indeed denotes the position of the most significant digit in (16). It remains to prove
that

k − (2u′ + 1) = k − 2

⌊
l

2

⌋
− 1

is the position of the least significant digit of m′Lk. We distinguish two cases. If l
is odd then l ≥ 2u + v + 2 implies that l ≥ 2u + 3 and m′Lk = Fk+l + Fk+2u+v +
w + Fk−(2u+1) + Fk−l. Therefore, the least significant digit is at position

k − l = k − 2

⌊
l

2

⌋
− 1

and we are done. Now, assume that l is even. Then by (10),

Fk−(2u+1) − Fk−l = Fk−(2u+1)−1 + Fk−(2u+1)−3 + · · ·+ Fk−l+2 + Fk−l−1,

and the least significant digit of m′Lk is at position

k − l − 1 = k − 2

⌊
l

2

⌋
− 1.

This finishes the proof. � �

The next lemma shows that when we substract a “small” positive integer from
mLk then we obtain a large sum of digits when k gets large.

Lemma 2.6. For all m ≥ 1, k ≥ 2u+ 3 and 1 ≤ b < Fk−2u−2 we have

sF (mLk − b) ≥
k

2
− u− 1

2
− sF (b− 1).(17)

For integers m1,m2, k1, k2 ≥ 1 with

2k1 ≥ 2u(m1) + 3, 2k2 ≥ 2u(m2) + 3, and m2L2k2 < F2k1−2u(m1)−2

we have

sF (m1L2k1 +m2L2k2) = C3(m1,m2),(18)

sF (m1L2k1 −m2L2k2) = k1 − k2 + C4(m1,m2),

where C3(m1,m2) and C4(m1,m2) do not depend on k1 and k2.

Proof. Consider

sF (mLk − b) = sF ((mLk − Fk−2u−1) + (Fk−2u−1 − b)).
Let l ≥ 3 be such that Fl−1 ≤ b < Fl and take l′ ∈ {l, l + 1} with l′ ≡ k − 2u −
1 mod 2. Then

(19) Fk−2u−1 − Fl′ = Fl′+1 + Fl′+3 + · · ·+ Fk−2u−2
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and by subadditivity,

(20)
l′

2
− 1 ≤ sF (Fl′ − 1) = sF ((Fl′ − b) + (b− 1)) ≤ sF (Fl′ − b) + sF (b− 1).

The least significant digit of mLk is at position k−2u−1, thus the least significant
digit of mLk −Fk−2u−1 is at a position ≥ k− 2u+ 1. By (19), the most significant
digit of Fk−2u−1−Fl′ can be found at position k−2u−2. Therefore, the Zeckendorf
expansions of mLk−Fk−2u−1 and of Fk−2u−1−Fl′ involve different, non-interfering
blocks of digits and

sF (mLk − Fl′) = sF (mLk − Fk−2u−1) + sF (Fk−2u−1 − Fl′).

Furthermore, the least significant digit of Fk−2u−1 − Fl′ is at position l′ + 1 and
Fl′ − b < Fl′ . By using (20) and Proposition 2.5 we conclude

sF (mLk − b) = sF (mLk − Fk−2u−1) + sF (Fk−2u−1 − Fl′) + sF (Fl′ − b)

= sF (mLk)− 1 +
(k − 2u− 1)− l′

2
+ sF (Fl′ − b)(21)

≥ 1 +
k − 2u− 1− l′

2
+
l′

2
− 1− sF (b− 1)

≥ −u+
k

2
− 1

2
− sF (b− 1).

The second statement follows from Proposition 2.5 and (21). � �

3. Gelfond’s problem

For k ≥ 1 consider

(22) t(k) = m3L6k −m2L4k +m1L2k +m0L0,

with positive real parameters m0,m1,m2,m3 ≥ 1 as a linear form in even-indexed
Lucas numbers. For l ≥ 1 set

(23) Tl(k) = t(k)l =

3l∑
i=0

ciL2ik

as the formal expansion of the l-th power of t(k) in terms of even-indexed Lucas
numbers. We obtain this expansion by using relation (11) a number of (l − 1)
times. The following lemma is the key result in the proof of Theorem 1.1 and is an
analogue to Lemma 2.1 of [21].

Lemma 3.1. Let M > 1. For all m3,m2,m1,m0 ∈ R with

(24) 1 ≤ m0,m1,m3 < M, 0 < m2 <
1

l3 · (32M)l

we have c3l > 0, c3l−1 < 0 and

(25) ci > 0 for i = 0, 1, 2, . . . , 3l − 2.

Moreover, for i = 0, 1, . . . , 3l,

(26) |ci| <
1

2
(8M)l.
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Proof. The coefficient ci of L2ik in (23) is bounded above in absolute value by the
coefficient of L2ik in the expansion of

(ML6k +ML4k +ML2k +ML0)l = M l(L6k + L4k + L2k + L0)l.

Expanding (L6k + L4k + L2k + L0)l with the help of (11) gives a total of 2l−1 · 4l
summands, so that each individual coefficient in the expansion of (23) is bounded
by

(27) M l2l−1 · 4l =
1

2
(8M)l.

We further have c3l = ml
3 > 0 and c3l−1 = −lm2m

l−1
3 < 0. Suppose now that

0 ≤ i ≤ 3l − 2 and consider the coefficient of L2ik in

(28) Tl(k) = (m3L6k +m1L2k +m0L0)l + r(k),

where

(29) r(k) =

l∑
j=1

(
l

j

)
(−m2L4k)

j
(m3L6k +m1L2k +m0L0)

l−j
.

Consider the first summand in (28). Since m3,m1,m0 ≥ 1 the coefficient of L2ik

in the expansion of (m3L6k + m1L2k + m0L0)l is ≥ 1. Note also that by (11) all
Lucas numbers with index 0, 2k, 4k, . . . , (6l − 4)k appear in the expansion of the
first term. Set

r(k) =

3l−1∑
i=0

diL2ik.

We want to show that for sufficiently small m2 > 0 the coefficient of L2ik in the first
summand in (28) is dominant. To this end, we assume m2 < 1 so that m2 ≥ mj

2

for 1 ≤ j ≤ l. The term Lj4k, 1 ≤ j ≤ l, in (29) can be written as a linear form
of at most (l + 1) even-indexed Lucas numbers where each individual coefficient is

bounded above by 2l−1. Similarly, the expansion of (m3L6k +m1L2k +m0L0)
l−j

involves at most (l − 1) · 3 + 1 = 3l − 2 even-indexed Lucas numbers with each

coefficient being bounded by 1
2 (8M)l−1. Using

(
l
j

)
< 2l and M > 1 we hence find

that

|di| < l2lm2 · 2l−1 ·
1

2
(8M)l−1 · 2(l + 1)(3l − 2) < m2l

3(32M)l.

This means that if m2 < l−3 · (32M)−l then the terms

L0, L2k, L4k, . . . , L2(3l−2)k

in the expression of Tl(k) have positive coefficients. � �

We are now ready for the proof of Theorem 1.1.

Theorem 1.1. We consider first the case of monomials p(x) = xh. Let µ ≥ 1 be an
integer such that

(30) ϕµ > h3ϕ(32ϕ)h

and take M = ϕ > 1 in Lemma 3.1. Then, for all integers m0,m1,m2,m3 with

(31) ϕµ−1 ≤ m0,m1,m3 < ϕµ, 1 ≤ m2 < ϕµ/(h3ϕ(32ϕ)h),

the expansion of Th(k) = (t(k))h has all positive integral coefficients with the only
exception of the coefficient of L2(3h−1)k which is negative. Observe that for all µ
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with (30) the intervals for m0,m1,m2,m3 in (31) are non-empty. Let k ∈ Z be such
that

(32) k > hµ+ 5h+ 3.

The inequalities (32) and (26) yield that

(33) ϕk > ϕhµ · ϕ5h > (8ϕµ)h >
1

2
(8ϕµ)h > |ci|, for all i = 0, 1, . . . , 3h,

where ci here denotes the coefficient of L2ik in Th(k). Roughly speaking, if k is
sufficiently large, then the digital structure of Th(k) will split according to Propo-
sition 2.5. We will now make this process explicit. Consider

t(k)h = c3hL6hk − |c3h−1|L2(3h−1)k +

3h−2∑
i=0

ciL2ik.

In order to apply Proposition 2.5 we assume that

(34) 2ik ≥ 2u(|ci|) + 3 for i = 1, 2, . . . , 3h.

From (14) and (33) it is easy to see that this condition is verified for all k with (32).
Second, in order to have noninterfering blocks of digits we want to have

(35) |ci|L2ik < F2(i+1)k−2u(|ci+1|)−2 for i = 0, 1, . . . , 3h− 1.

It is a again direct (but rather tedious) calculation that this condition is verified
whenever k satifies (32). We therefore get by Lemma 2.6 that

sF (t(k)h) = sF
(
c3hL6hk − |c3h−1|L2(3h−1)k

)
+

3h−2∑
i=0

sF (ciL2ik)(36)

= 3hk − (3h− 1)k + C3(c3h, |c3h−1|) + C4(c3h−2, c3h−3, . . . , c0)

= k + C5(c3h, |c3h−1|, . . . , c1, c0),

where C3, C4 and C5 do not depend on k. If we fix a quadruple (m0,m1,m2,m3)
in the ranges (31), the quantity C5 does not depend on k and is constant whenever
k satisfies (32). We therefore find that

(37) sF (t(k)h), k = hµ+ 5h+ 4, hµ+ 5h+ 5, . . . , hµ+ 5h+m+ 3,

runs through a complete set of residues mod m. Hence, in any case, we hit a fixed
arithmetic progression mod m (which might be altered by C5) for some k with

hµ+ 5h+ 4 ≤ k ≤ hµ+ 5h+m+ 3.

Thus, for µ with (30) and by (31) we find �h,m ϕ4µ distinct integers that are all

�h,m ϕµ(6h+1) (note that the coefficient “6” comes from the use of L6k instead of
the factor “3” and the use of q3k in [21]). Thus, we get the statement for monomials.

The general case of a polynomial p(x) = ahx
h + · · · + a0 of degree h ≥ 2 with

p(N) ⊂ N follows easily from what we have already proven. We may assume that
all coefficients ai, 0 ≤ i ≤ h, are positive since otherwise we can find e = e(p) ∈ N
depending only on p such that p(x+ e) has positive coefficients only. Write

t(k)l =

3l∑
i=0

c
(l)
i L2ik, l = 0, 1, . . . , h.
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The coefficients c
(l)
i , i = 0, 1, . . . , 3l − 2 and c

(l)
3l are positive by Lemma 3.1. Ob-

viously, we have that c
(h)
3h−1 < 0. It is therefore sufficient to ensure that for all

l = 1, . . . , h − 1 one can achieve |c(l)3l−1| < c
(l+1)
3l−1 . As a consequence, the negative

Lucas term in the expansion of t(k)l is then compensated by the corresponding pos-

itive term in t(k)l+1. By (31), we have that |c(l)3l−1| �l ϕ
µl and |c(l+1)

3l−1 | �l ϕ
µ(l+1),

as µ→∞. This means that for a given polynomial p there is µ0 = µ0(p) such that
for all µ ≥ µ0 the polynomial p(t(k)) will have all but one negative coefficient in
the expansion of even-indexed Lucas numbers. Now, exactly the same reasoning as
for the monomial case works, and gives the desired general result. � �

4. Stolarsky’s problem

Theorem 1.2. First, assume that p(x) = xh. We define

(38) tm(k) = mL4k +mL2k − L0,

where m ≥ 5 is a fixed integer. With the help of (11) we calculate

tm(k)2 = m2L8k + 2m2L6k + (m2 − 4m)L4k

+ (2m2 − 4m)L2k + (2m2 + 2)L0,(39)

and

tm(k)3 = m3L12k + 3m3L10k + 3m2(m− 2)L8k

+ 4m2(m− 3)L6k +m(7m2 − 6m+ 12)L4k

+ 3m(3m2 − 4m+ 4)L2k + (3m3 − 12m2 − 4)L0.

Sincem ≥ 5, all coefficients in these two linear forms in even-indexed Lucas numbers

are positive. Since tm(x)h =
(
tm(x)2

)h1 ·
(
tm(x)3

)h2
for some nonnegative integers

h1, h2, we get that

(40) tm(x)h =

2h∑
i=0

ci(m)L2ik

has ci(m) > 0 for all i = 0, 1, . . . , 4h. Moreover, each ci(m) is bounded from above
by the corresponding coefficient of L2ik in the expansion of (mL4k+mL2k+mL0)h =
mh(L4k + L2k + L0)h which is bounded by mh · 2h−1 · 3h = 1

2 (6m)h, thus

0 < ci(m) < (6m)h.

This means that for each fixed m ≥ 5 the linear form (40) is made of summands
that by Proposition 2.5 have finite length. Therefore, as in the previous section,
for sufficiently large k these summands correspond to digital blocks that do not
interfere, hence we can calculate the overall sum of digits by breaking down the
calculation to the sum of digits of the summands. This gives, as k →∞,

(41) sF (tm(k)h) =

2h∑
i=0

sF (ci(m)L2ik)� (2h+ 1) log((6m)h),

and, on the other hand, by Lemma 2.6,

sF (tm(k)) = sF (mL4k) + sF (mL2k − L0)

≥ 1 + k − u(m)− 1

2
− 1� k.(42)
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This shows that

lim
k→∞

sF (tm(k)h)

sF (tm(k))
= 0.

More precisely, since k = O(log(tm(k))) for fixed m, we get by (41) and (42) that
there exists a constant C2 = C2(h) such that

sF (nh)

sF (n)
<

C2

log n

has infinitely many solutions in positive integers n.

The step to the consideration of a general polynomial p(x) is very similar as
before. Without loss of generality assume that p(x) has only positive coefficients.
The coefficients in the expansion of tm(k)l, for l = 2, 3, . . . , h as linear forms in
Lucas numbers are positive by construction, so the coefficients in p(tm(k)) in the
expansion as a linear form in Lucas numbers L0, L2k, . . . , L4kh are positive with
the only possible exception of L0 which possibly stems from the contributing term
tm(k)1 = mL4k + mL2k − L0. But this is taking care of by choosing m ≥ m0(p)
sufficiently large, in order to have enough compensation for this negative term, say,
in the power tm(k)2 (note that in (39) the coefficient of L0 is 2m2 + 2). We then
end up with a linear form with only positive coefficients and we conclude as before.

For the first part of Theorem 1.2, we set r(k) = L2k+1. Since r(k) = F2k+2 +F2k

we have sF (r(k)) = 2 for all k ≥ 1. By (11) and an easy induction we see that
Lh2k+1 < Lh(2k+1) for all h ≥ 2. Therefore, by (13) and a trivial estimate of the
summands,

Lh2k+1 = Lh(2k+1) − b,
where

0 < b < 2hL(h−2)(2k+1)

(
h

2
+ 1

)
.

In particular, for k ≥ k0(h) sufficiently large, we have b < F(h−1)(2k+1) and by (17),

sF (Lh(2k+1) − b) ≥
(2k + 1)h

2
− 1− 1

2
− sF (b− 1)

≥ (2k + 1)h

2
− 3

2
− (h− 1)(2k + 1)

2
= k − 1.

Therefore, we get sF (r(k)h)/sF (r(k)) ≥ k−1
2 , and conclude that there is a constant

C1 = C1(h) > 0 such that
sF (nh)

sF (n)
> C1 log n

has infinitely many solutions in positive integers n. A minor variation of the
above argument gives the result for general polynomials p(x). In fact, we see
that sF (r(k) + e) = Op(1) where e = e(p) is such that p(x + e) only has positive
coefficients. � �

Corollary 1.3. Set m = 5 in (38). Then, for k ≥ 4, we get

sF (t5(k)) = sF (F4k+5 + F4k−5 + F2k+5 + F2k−5 − 2) = k − 1.

Therefore, by (41) and the reasoning from above, there exists C = C(p) such that
sF (p(t5(k))) ≤ C for all k ≥ 4. This gives the general case of Theorem 1.3. In the
case of p(x) = xh, we compute the quantities explicitly. We have 0 < ci(5) < 30h.
If we assume that k is such that 2k ≥ (2u+1)+1+(2u+1) then by Proposition 2.5
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the terms in (40) will not interfere. A calculation then shows that it suffices to take
k ≥ 8h+ 2 ≥ 2u(30h) + 2 to get

sF (t5(k)h) ≤ (2h+ 1) · (2u+ 2) ≤ (2h+ 1)(8h+ 2).

Finally, one has t5(k) < F4k+6 < ϕ10

√
5
· ϕ4(k−1) + 1. This finishes the proof of

Corollary 1.3. � �

5. Lindström’s problem

Theorem 1.4. The liminf statement follows directly from inequality (4) of Theo-
rem 1.2. In fact, we have

sF (p(n))

logϕ p(n)
=
sF (p(n))

sF (n)
· sF (n)

logϕ p(n)
,

and the second factor is O(1) for any fixed p(x).

For the limsup result we use a construction similar to the one used by Lind-
ström [17] (we use convenient choices of the parameters to simplify the argument).
Again, we first consider the case of p(x) = xh. For k ≥ h put

t(k) = kh+2L2k(k+1) −
k∑
i=1

L2ik + kh+2L0,

and consider

t(k)h =

(k+1)h∑
i=0

ciL2ik.

We will show here that there is k0(h) such that for all k ≥ k0(h) and i = 0, 1, . . . , (k+
1)h,

ci > 0, if i ≡ 0 mod k + 1;(43)

ci < 0, if i 6≡ 0 mod k + 1.

The argument is similar to the one used to prove Lemma 3.1. For convenience set
m = kh+2, l = k + 1 and write

t(k)h = mh (L2kl + L0)
h − hmh−1

(
l−1∑
i=1

L2ik

)
(L2kl + L0)

h−1
(44)

+

h∑
j=2

(
h

j

)
mh−j

(
−
l−1∑
i=1

L2ik

)j
(L2kl + L0)h−j .(45)

The first term on the right hand side of (44) can be written as a linear combination
of Lucas number with index 0, 2kl, 4kl, . . . , 2hkl having only positive coefficients.
Moreover, each coefficient ≥ mh. The second term in (44) (with the minus sign in
front) is a linear combination of Lucas number with index in

{2jk : 0 ≤ j ≤ hk} \ {2klj : 0 ≤ j ≤ h}.

having only negative coefficients. Each coefficient is ≥ hmh−1 in modulus. To
prove (43) it is therefore sufficient to show that the expansion of (45) as a sum of
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even-indexed Lucas numbers has coefficients that are < min(mh, hmh−1) in modu-
lus. A similar argument as in Lemma 3.1 shows that each coefficient in the expan-
sion of (45) is bounded in modulus by

(h− 1)2hmh−2 · 2h−1(l − 1)h · 2(h−3)+(h−2) · 2 · ((l − 1)h+ 1) · ((h− 2) + 1) .

Therefore, if we assume k ≥ h (thus, min(mh, hmh−1) = hmh−1), it is sufficient to
have

(h− 1)224h−5mh−2(l − 1)h (h(l − 1) + 1) < hmh−1.

It is easily seen that this holds true for k ≥ k1(h). Next, in order to split the
digital structure and to have noninterfering terms, we need to ensure the condition
in Lemma 2.6. We have |ci| < mh · 2h−1(l + 1)h (compare with (33)) and by (14)
it is therefore enough to show that for sufficiently large k,

2k ≥ 2

(
log
(
mh · 2h−1(l + 1)h

)
log 2ϕ

+ 2

)
+ 3.

This is true for all sufficiently large k ≥ k2(h). Lemma 2.6 yields that, as k →∞,

sF (t(k)h) = hk2 +Oh(1),

logϕ
(
t(k)h

)
≤ h · 2k(k + 1) +Oh(log k).

We therefore conclude that

lim inf
k→∞

sF (t(k)h)

logϕ (t(k)h)
≥ lim inf

k→∞

hk2 +Oh(1)

2hk(k + 1) +Oh(log k)
= 1/2,

which proves the statement for monomials p(x) = xh. The consideration of general
polynomials is straightforward here, since the conditions (43) do not depend on
h and therefore the signs of the ci’s for different powers match up. We leave the
details to the reader. � �
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